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Introduction

An artist travels to Italy and sees the Sistine Chapel for the first time. After
seeing The Last Judgment, he is inspired to make a replica in the form of a stained
glass window. However, he can only make windows in a circular form, and he would
like to preserve nearly every aspect of Michelangelo’s creation, including the angles.
How is he going to do this?

Theoretically, the Riemann mapping theorem guarantees that this can be done.
The theorem states that any bounded, hole-less domain in C is biholomorphically
equivalent to the unit disc D. In fact, this map is angle preserving. However, many
proofs of this theorem are non-constructive and give no intuition of how to even
approximate this biholomorphic map.

To remedy this, William Thurston, at the Bieberbach conference in 1985, conjec-
tured that circle packings, an arrangement of circles inside a given boundary such
that no two overlap and all of them are mutually tangent, can be used to describe
a discrete counterpart to the Riemann mapping theorem, namely, mapping circle
packings inside a hole-less domain to circle packings inside the unit disk. What
is beautiful about this observation is that circle packings appear in everyday life.
From the bubbles of a Coca-Cola to the honeycombs of bees, circle packings seem
like natural geometric objects for approximation. In fact, the ‘honeycomb’ packing
is a pivotal object towards the end of this thesis.

This thesis is based on the sources [1] and [2]. We begin by proving various
facts about hyperbolic geometry, which eventually lead to a road map in proving
theorems about circle packings. We then develop the theory of quasiconformal
maps, proving various analogous statements in complex analysis, like the Schwartz
reflection principle, Montel’s theorem, and Hurwitz’s theorem. We end with proving
the rigidity of the honeycomb packing, with a proof of the main theorem of this
thesis, informally stated below.

Theorem 0.1 (Informal Rodin-Sullivan-Thurston Theorem). Let U be a simply
connected domain with two distinct points z0, z1. Let φ : U → D be the unique
conformal map such that φ(z0) = 0 and φ(z1) > 0 (as guaranteed by the Riemann
mapping theorem). For small ε > 0, let Cε be the portion of the honeycomb packing
of circles of radius ε that are contained in U , and let C′ε be a packing of D ‘combi-
natorially equivalent’ to Cε where the boundary circles are tangent to the unit circle.
This gives rise to approximate maps φε : Uε → Dε where Uε ⊂ U and Dε ⊂ D are
regions that converge to U and D respectively. After normalizing φε(z0) = 0 and
φε(z1) > 0, we have φε → φ as ε → 0 uniformly on compact subsets of U (also
known as ‘local uniform’ convergence).
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1. Hyperbolic Geometry

We first define an inner product on D := {z ∈ C ; |z| < 1}.

Definition 1.1. Fix w ∈ D. Then for z1, z2 ∈ D, define the hyperbolic Riemannian
metric 〈·, ·〉w : D2 → R as

〈z1, z2〉w :=
4〈z1, z2〉euc.

(1− |w|2)2

It is easy to see that 〈·, ·〉w is an inner product for all fixed w ∈ D. Note that
the norm associated to this inner product is

‖z‖w :=
2|z|

1− |w|2
.

We will use this in the next definition of length.

Definition 1.2. Let γ : [0, 1]→ D be a piecewise-C1 curve. Recall that this means
γ is continuous on [0, 1] and if there exists points

0 = x0 < x1 < · · · < xn−1 < xn = 1,

where γ′(t) exists and is continuous on [xk, xk+1] (where the derivative at the
endpoints is defined to be the one-sided limits). The hyperbolic length of γ is

lengthhyp.(γ) :=

∫ 1

0

‖γ′(t)‖γ(t)dt =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt ≥ 0.

It is easy to see that hyperbolic length is invariant under complex conjuga-
tion, reparametrization and reversing orientation. It is also invariant under Möbius
transformations of the disk by the Schwartz-Pick lemma, stated below.

Theorem 1.3 (Schwartz-Pick lemma). Let f : D → D be holomorphic. Then for
all z, w ∈ D we have ∣∣∣∣ f(z)− f(w)

1− f(z)f(w)

∣∣∣∣ ≤ ∣∣∣ z − w1− zw

∣∣∣
and

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2

where both inequalities have equality if and only if f is a Möbius transformation.

The proof of this theorem can be found on page 172 of [3].

Definition 1.4. The hyperbolic metric on D is the function dhyp. : D2 → R≥0

defined by

dhyp.(z1, z2) := inf
γ

lengthhyp.(γ)

where the infimum is taken over piecewise-C1 curves γ : [0, 1]→ D where γ(0) = z1

and γ(1) = z2.

Proposition 1.5. dhyp.(·, ·) is indeed a metric.

Proof. dhyp. ≥ 0: This is clear as dhyp. is defined as the infimum of nonnegative

numbers.
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dhyp.(z1, z2) = 0 ⇐⇒ z1 = z2: The if direction is clear by considering the constant

curve. For the only if direction, we prove the contrapositive. If z1 6= z2, then

0 < |z1 − z2| = inf
γ

∫
γ

|dz| ≤ inf
γ

∫
γ

2

1− |z|2
|dz|

where the infimum is taken over piecewise-C1 curves γ : [0, 1]→ D where γ(0) = z1

and γ(1) = z2. Thus dhyp.(z1, z2) 6= 0.
dhyp.(z1, z2) = dhyp.(z2, z1): This is easy to see as lengthhyp.(·) is invariant under

reversing orientation.
dhyp.(z1, z3) ≤ dhyp.(z1, z2) + dhyp.(z2, z3): Let γ0 : [0, 1] → D be an arbitrary

piecewise-C1 curve such that γ0(0) = z1, γ0(1) = z2, and let γ1 : [0, 1] → D be
an arbitrary piecewise-C1 curve such that γ1(0) = z2, γ0(1) = z3. Furthermore, we
define γ : [0, 1]→ D by

γ(t) :=

{
γ0(2t) t ∈ [0, 1/2)

γ1(2t− 1) t ∈ [1/2, 1]
.

It is easy to see that γ is piecewise-C1, γ(0) = z1 and γ(1) = z3. Furthermore,

dhyp.(z1, z3) ≤ lengthhyp.(γ) = lengthhyp.(γ0) + lengthhyp.(γ1).

Taking the infimum over piecewise-C1 curves γ0 : [0, 1]→ D where γ0(0) = z1 and
γ0(1) = z2 and then taking the infimum over piecewise-C1 curves γ1 : [0, 1] → D
where γ1(0) = z2 and γ1(1) = z3 on both sides, we get the result. �

Proposition 1.6. Let f : D → D be holomorphic. Then

dhyp.

(
f(z1), f(z2)

)
≤ dhyp.(z1, z2).

If f is a Möbius transformation, then we have equality.

Proof. Let γ : [0, 1] → D be a piecewise-C1 curve where γ(0) = z1 and γ(1) = z2.
Then

dhyp.

(
f(z1), f(z2)

)
≤
∫
f◦γ

2

1− |z|2
|dz|

=

∫ 1

0

|γ′(t)|
2|f ′

(
γ(t)

)
|

1− |f
(
γ(t)

)
|2
dt

≤
∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt

where the second inequality follows from the Schwartz-Pick lemma. Taking the
infimum over piecewise-C1 curves γ : [0, 1]→ D where γ(0) = z1 and γ(1) = z2 on
both sides, we obtain the inequality. For the equality, we use the equality statement
of the Schwartz-Pick lemma, as well as realize that for every piecewise-C1 curve
r : [0, 1]→ D with r(0) = f(z1) and r(1) = f(z2) there exists a piecewise-C1 curve
γ : [0, 1]→ D such that r = f ◦ γ (take γ := f−1 ◦ r). �

Proposition 1.7. For all 0 ≤ x ≤ y < 1, we have

dhyp.(x, y) = log
(1 + y)(1− x)

(1− y)(1 + x)
.
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Furthermore, if γ : [0, 1]→ D is a piecewise-C1 curve such that γ(0) = x, γ(1) = y,
and lengthhyp.(γ) = dhyp.(x, y), then image(γ) = [x, y]. Additionally, such a curve
exists.

Proof. Let γ : [0, 1] → D be a piecewise-C1 curve where γ(0) = x and γ(1) = y.
Then∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt ≥
∫ 1

0

2
∣∣<(γ′(t))∣∣

1− |γ(t)|2
dt ≥

∫ 1

0

2
∣∣<(γ′(t))∣∣

1−<
(
γ(t)

)2 dt ≥ ∫ 1

0

2<
(
γ(t)

)′
1−<

(
γ(t)

)2 dt
=

∫ y

x

2

1− t2
dt = log

1 + y

1− y
− log

1 + x

1− x
= log

(1 + y)(1− x)

(1− y)(1 + x)
.

Note that all the inequalities above are all equal if and only if =(γ) = 0 and
<(γ)′ ≥ 0. If we consider γ(t) := (y − x)t + x, we satisfy these conditions as well
as the original curve conditions. If γ is a piecewise-C1 curve such that γ(0) = x,
γ(1) = y, and lengthhyp.(γ) = dhyp.(x, y), we see that from the above discussion
we have =(γ) = 0 and <(γ)′ ≥ 0. Thus <(γ) is nondecreasing, and this implies
image(γ) = [x, y]. �

Corollary 1.8. For all z1, z2 ∈ D, we have

dhyp.(z1, z2) = log
1 +

∣∣ z2−z1
1−z1z2

∣∣
1−

∣∣ z2−z1
1−z1z2

∣∣ = 2 arctanh
∣∣∣ z2 − z1

1− z1z2

∣∣∣.
Furthermore, if γ : [0, 1]→ D is a piecewise-C1 curve such that γ(0) = z1, γ(1) =
z2, and lengthhyp.(γ) = dhyp.(z1, z2), then image(γ) = ϕ−1

z1,z2

(
[0, | z2−z11−z1z2 |]

)
where

ϕz1,z2(z) := z−z1
1−z1z e

−iArg(
z2−z1
1−z1z2

). Additionally, such a curve exists.

Proof. Note dhyp.(z1, z2) = dhyp.(0, | z2−z11−z1z2 |) by Proposition 1.6 and using the

transformation ϕz1,z2 . Suppose γ : [0, 1] → D is a piecewise-C1 curve such that
γ(0) = z1, γ(1) = z2, and lengthhyp.(γ) = dhyp.(z1, z2), then

lengthhyp.(ϕz1,z2 ◦ γ) = lengthhyp.(γ) = dhyp.(z1, z2) = dhyp.

(
0,
∣∣∣ z2 − z1

1− z1z2

∣∣∣).
Thus image(ϕz1,z2 ◦ γ) = [0, | z2−z11−z1z2 |] by Proposition 1.7. A curve that does this

is given by ϕ−1
z1,z2 ◦ γ where γ(t) = t| z2−z11−z1z2 | defined for t ∈ [0, 1]. �

Corollary 1.9. Let z1, z2, z3 ∈ D. Then

dhyp.(z1, z3) = dhyp.(z1, z2) + dhyp.(z2, z3)

if and only if z2 ∈ ϕ−1
z1,z3

(
[0, | z3−z11−z1z3 |]

)
.

Proof. ⇐= : Suppose ϕz1,z3(z2) ∈ [0, | z3−z11−z1z3 |]. Then

dhyp.

(
0, ϕz1,z3(z2)

)
+ dhyp.

(
ϕz1,z3(z2),

∣∣∣ z3 − z1

1− z1z3

∣∣∣)
1.7
= log

1 + ϕz1,z3(z2)

1− ϕz1,z3(z2)
+ log

(
1 + | z3−z11−z1z3 |

)(
1− ϕz1,z3(z2)

)(
1− | z3−z11−z1z3 |

)(
1 + ϕz1,z3(z2)

)
= log

1 + | z3−z11−z1z3 |
1− | z3−z11−z1z3 |

= dhyp.

(
0,
∣∣∣ z3 − z1

1− z1z3

∣∣∣).
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Apply Proposition 1.6 to all distances above with the transformation ϕ−1
z1,z3 we get

dhyp.(z1, z3) = dhyp.(z1, z2) + dhyp.(z2, z3).

=⇒ : We prove the contrapositive. Suppose ϕz1,z3(z2) /∈ [0, | z3−z11−z1z3 |]. Let γ0 :

[0, 1] → D be a piecewise-C1 curve such that γ0(0) = 0 and γ0(1) = ϕz1,z3(z2)
satisfying lengthhyp.(γ0) = dhyp.

(
0, ϕz1,z3(z2)

)
per Corollary 1.8. Similarly, let γ1 :

[0, 1]→ D be a piecewise-C1 curve such that γ1(0) = ϕz1,z3(z2) and γ1(1) = | z3−z11−z1z3 |
satisfying lengthhyp.(γ0) = dhyp.

(
ϕz1,z3(z2), | z3−z11−z1z3 |

)
per Corollary 1.8. Now we

define γ : [0, 1]→ D by

γ(t) :=

{
γ0(2t) t ∈ [0, 1/2)

γ1(2t− 1) t ∈ [1/2, 1]
.

It is easy to see that γ is piecewise-C1, γ(0) = 0 and γ(1) = | z3−z11−z1z3 |. Furthermore,

dhyp.

(
0, ϕz1,z3(z2)

)
+ dhyp.

(
ϕz1,z3(z2),

∣∣∣ z3 − z1

1− z1z3

∣∣∣)
= lengthhyp.(γ0) + lengthhyp.(γ1)

= lengthhyp.(γ) > dhyp.

(
0,
∣∣∣ z3 − z1

1− z1z3

∣∣∣),
where the inequality follows from Proposition 1.6 since image(γ) 6= [0, | z3−z11−z1z3 |]
(consider ϕz1,z3(z2)). We finish by applying Proposition 1.6 to all distances above
with the transformation ϕ−1

z1,z3 we get

dhyp.(z1, z3) < dhyp.(z1, z2) + dhyp.(z2, z3). �

Note that Corollary 1.9 can be used to compute relations between Euclidean and
hyperbolic circles.

Example 1.10. For any z ∈ D, r > 0, and 0 < r′ < 1, we have

dhyp.(0, z) = r ⇐⇒ |z| = tanh( r2 ), and |z| = r′ ⇐⇒ dhyp.(0, z) = 2 arctanh(r′).

Thus every hyperbolic circle with center at 0 is a Euclidean circle with center at 0
(and vice-versa). Similarly, every hyperbolic circle with center at a ∈ D and radius
r > 0 is a Euclidean circle because if T (z) := z−a

1−az , we have

{z | dhyp.(z, a) = r} = {z | dhyp.(T (z), 0) = r} = T−1
(
{z | dhyp.(z, 0) = r}

)
.

Since T−1 sends Euclidean circles to Euclidean circles, we have the result. Now if
we would like to know the Euclidean center and radius of a hyperbolic circle with
center at a ∈ D \ {0} and radius r > 0, we first note

{z | dhyp.(z, |a|) = r} = {z | dhyp.(z, |a|) = r}

since dhyp.(·, ·) is invariant under complex conjugates. Thus the imaginary part of
the Euclidean center is 0 because the circle is symmetric about the real axis. Now
if z ∈ D such that =(z) = 0 and dhyp.(z, |a|) = r, then

tanh( r2 ) =

∣∣z − |a|∣∣
1− |a|z

=⇒ z =
|a| ± tanh( r2 )

1± |a| tanh( r2 )
.
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Now the Euclidean center is thus the midpoint of these points. Doing the arithmetic,
we see that the center is

c = |a|
1− tanh2( r2 )

1− |a|2 tanh2( r2 )
.

To get the radius, we take the larger of the z’s and subtract c. We get that

(1.11) reuc. = tanh( r2 ) · 1− |a|2

1− |a|2 tanh2( r2 )
.

To get the original circles Euclidean center, we note

eiθ{z | dhyp.(z, |a|) = r} = {z | dhyp.(z, a) = r},
where θ = Arg(a). So

ceuc. = ceiθ = a
1− tanh2( r2 )

1− |a|2 tanh2( r2 )

This also proves that the hyperbolic center and radius are unique.
Conversely, if we have a Euclidean circle centered at a ∈ D \ {0} with radius

0 < r < 1− |a|, we first consider the set

C := {z ;
∣∣z − |a|∣∣ = r}.

We set x := |a| − r and y := |a|+ r. We would like to find an α ∈ (0, 1) such that
if T (z) := z−α

1−αz then T (x) = −T (y). Using the quadratic formula, such an α exists
and

0 < α =
xy + 1−

√
(1− x2)(1− y2)

x+ y
< x < 1.

Now since T (z) = T (z) and T sends Euclidean circles to Euclidean circles, we
have that the imaginary part of the center of T (C) is 0. Since T (x) = −T (y),
we have that the real part of the center of T (C) is 0, so the center of T (C) is 0.
The Euclidean radius of T (C) is T (x). From the above discussion, we have that if
r′ = 2 arctanhT (x) then

T (C) = {z | dhyp.(0, z) = r′} =⇒ C = {T−1(z) | dhyp.(z, 0) = r′}
=
{
z | dhyp.

(
T (z), T (α)

)
= r′

}
= {z | dhyp.(z, α) = r′}.

Thus the hyperbolic center of C is α. Now if θ = Arg(a), we have

Ceiθ = {z ; |z − a| = r} = {zeiθ | dhyp.(z, α) = r′}

= {z | dhyp.(ze
−iθ, α) = r′}

= {z | dhyp.(z, αe
iθ) = r′}.

Thus the center and radius of the hyperbolic circle are

chyp. = αeiθ and rhyp. = r′ = 2 arctanhT (x).

Definition 1.12. Given two distinct points on a general Riemannian manifold, the
geodesic is a shortest path between them, parameterized by arc length. Corollary
1.8 not only gives the geodesic between two points in D, but it also motivates the
definition of the geodesic between two points in D. If z1 ∈ D and z2 ∈ ∂D, then
the geodesic between them is defined as ϕ−1

z1,z2([0, 1]). If z1, z2 ∈ ∂D, we know there
exists a Möbius transformation ϕ such that ϕ(z1) = −1 and ϕ(z2) = 1. We can
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construct this ϕ as follows. If z∗ ∈ ∂D is distinct from z1, z2,−1, 1, we know there
is an automorphism ϕ on the Riemann sphere such that ϕ(z1) = −1, ϕ(z2) = 1, and
ϕ(z∗) = z∗. Since automorphisms of the Riemann sphere send circles to circles,
ϕ(∂D) = ∂D. Since ϕ is a homeomorphism, it sends connected components to
connected components, so composing with an inversion if needed, we have our
desired map. So we define the geodesic as ϕ−1([−1, 1]). It can be seen that this
definition is well-defined by geometric considerations, including the fact that right
angles are preserved.

We next define the hyperbolic triangle.

Definition 1.13. Given three distinct points z1, z2, z3 ∈ D, the hyperbolic triangle
with vertices z1, z2, z3 is the closed region enclosed by the points and the geodesics
connecting them. We can also describe hyperbolic triangles in terms of externally
tangent hyperbolic circles. If (r1, r2, r3) ∈ (0,∞]3, we say that a hyperbolic tri-
angle with vertices z1, z2, z3 is a (r1, r2, r3)-triangle if there are hyperbolic circles
Cr1(z1), Cr2(z2), Cr3(z3) that are externally tangent to each other, where a circle
of infinite radius is internally tangent to D with center on ∂D (we call these cir-
cles horocycles). Note that this implies that the side lengths opposite of z1, z2, z3

have length r2 + r3, r1 + r3, r1 + r2 respectively. It can be shown that for any
(r1, r2, r3) ∈ (0,∞]3 there exists a unique (r1, r2, r3)-triangle in D up to reflections
and Möbius automorphisms (this is left as an exercise for the reader for now. One
can use Möbius automorphisms to fix two of the hyperbolic circles, and then con-
sider possible centers for the third circle). Consequently, there is a well-defined
angle αi(r1, r2, r3) ∈ [0, π) subtended by the geodesics intersecting at vertex zi for
i = 1, 2, 3.

The next proposition is important in further understanding hyperbolic geometry.

Proposition 1.14 (Hyperbolic Law of Cosines). Let (r1, r2, r3) ∈ (0,∞]3. Then if
r1 <∞ we have

cosα1(r1, r2, r3) =



cosh(r1+r2) cosh(r1+r3)−cosh(r2+r3)
sinh(r1+r2) sinh(r1+r3) if r2, r3 <∞

cosh(r1+r3)−er3−r1
sinh(r1+r3) if r2 =∞, r3 <∞

cosh(r1+r2)−er2−r1
sinh(r1+r2) if r2 <∞, r3 =∞

1− 2e−2r1 if r2 = r3 =∞

.

Also, α1(∞, r2, r3) = 0 for all r2, r3 ∈ (0,∞]. In particular, α1 : (0,∞]3 → [0, π)
is a continuous function (on the product topology of the subspace topology inherited
by the extended real numbers).

Proof. Let r1 < ∞. We will only deal with the case where r2, r3 < ∞ as the
other cases follow from easier computations. Let z1, z2, z3 be a (r1, r2, r3)-triangle.
The idea of this proof is to apply the Euclidean law of cosines to the Euclidean
triangle connecting the Euclidean centers of these hyperbolic triangles. Since au-
tomorphisms of D are angle preserving, we can let z1 = 0, z2 ∈ R>0, and z3 ∈ D.
Note that

r1 + r2 = 2 arctanh |z2|, and r1 + r3 = 2 arctanh |z3|
by Corollary 1.8 and 1.9. Rearranging, we see

(1.15) |z2| = tanh
r1 + r2

2
, and |z3| = tanh

r1 + r3

2



8

Now let r′1, r
′
2, r
′
3 be the Euclidean radii of the hyperbolic circles C(z1, r1), C(z1, r1)

and C(z1, r1) respectively, as given by the formula (1.11). In particular, we have

r′1 = tanh( r12 )

r′2 = tanh( r22 ) · 1− |z2|2

1− |z2|2 tanh2( r22 )

(1.15)
= tanh( r22 ) ·

1− tanh2 r1+r2
2

1− tanh2 r1+r2
2 tanh2 r2

2

r′3 = tanh( r32 ) · 1− |z3|2

1− |z3|2 tanh2( r32 )

(1.15)
= tanh( r32 ) ·

1− tanh2 r1+r3
2

1− tanh2 r1+r3
2 tanh2 r3

2

.

By the identity

tanh y · 1− tanh2(x+ y)

1− tanh2(x+ y) tanh2 y
=

sinh 2y

cosh 2y + cosh(2x+ 2y)
,

for all x, y (which can be proven by factoring the fraction and converting to sinh
and cosh), the formulas above then are

r′1 =
sinh r1

2

cosh r1
2

r′2 =
sinh r2

cosh r2 + cosh(r1 + r2)

r′3 =
sinh r3

cosh r3 + cosh(r1 + r3)
.

Now the Euclidean triangle joining the Euclidean centers of the hyperbolic circles.
The Euclidean angle at z1 = 0 is the same as α1(r1, r2, r3). This follows from
the fact that the Euclidean and hyperbolic centers of a circle are on the same line
through the origin (see Example 1.10), and hyperbolic geodesics emanating from
the origin are lines. Thus by the Euclidean law of cosines, we have

cosα1(r1, r2, r3) =
(r′1 + r′2)2 + (r′1 + r′3)2 − (r′2 + r′3)2

2(r′1 + r′2)(r′1 + r′3)

= 1− 2
r′2r
′
3

(r′1 + r′2)(r′1 + r′3)
.

Substituting the values for r′1, r
′
2, r
′
3 yields the result.

Lastly, we have α1(∞, r2, r3) is between two geodesics making a right angle with
∂D from Corollary 1.8, thus α1(∞, r2, r3) = 0. �

Definition 1.16. Let E be a Lebesgue measurable subset ofD. Then the hyperbolic
area of E is defined as the quantity

areahyp.(E) :=

∫
E

4dµ

(1− |z|2)2
.

It can by easily shown that hyperbolic area is invariant under Möbius transfor-
mations by the Schwartz-Pick lemma.

Proposition 1.17 (Hyperbolic Area Formulas). The area of a hyperbolic triangle
is the difference of π and the sum of the triangle’s interior hyperbolic angles. Ad-
ditionally, the area of the interior of a hyperbolic circle with center p and radius
ρ <∞ is given by 4π sinh2(ρ/2).
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Proof. We will first verify the hyperbolic triangle area formula where one vertex is
in D while the other two vertices are on ∂D. We first apply a Möbius transformation
sending the interior vertex to the origin and one of the outer vertices to 1. If ϕ
is the central hyperbolic angle formed, we finally rotate by ϕ/2 to get the picture
in Figure 1. To find the Euclidean center and radius of the circle formed from the

=

<
0 1reiθ

eiϕ/2

e−iϕ/2

x0

r0

Figure 1. This figure illustrates the setup of the integration

geodesic, we implicitly differentiate (x− x0)2 + y2 = r2
0 to obtain

y′ =
x0 − x
y

.

Considering this at eiϕ/2, we set (x, y) = (cosϕ/2, sinϕ/2), which implies y′ =
tan(ϕ/2), to deduce that x0 = sec(ϕ/2) and r0 = tan(ϕ/2). In order to integrate
using polar coordinates, we need a formula for r in terms of θ. Using the formula

of the circle, we solve for r in
(
r cos θ − sec(ϕ/2)

)2
+ (r sin θ)2 = tan2(ϕ/2) via the

quadratic formula and obtain

(1.18) r = f(θ) =
cos ϕ2

cos θ +
√

cos2 θ − cos2 ϕ
2

.

Setting up the integral, we see that the area of the triangle ∆ is∫
∆

4dµ

(1− |z|2)2
=

∫ ϕ
2

−ϕ2

∫ f(θ)

0

4r

(1− r2)2
drdθ

=

∫ ϕ
2

−ϕ2

[
2

1− r2

]r=f(θ)

r=0

dθ

=

∫ ϕ
2

−ϕ2

2dθ

1− f(θ)2
− 2ϕ
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(1.18)
=

∫ ϕ
2

−ϕ2

(
cos θ√

cos2 θ − cos2 ϕ
2

+ 1

)
dθ − 2ϕ

=

∫ ϕ
2

−ϕ2

cos θdθ√
sin2 ϕ

2 − sin2 θ
− ϕ

=

∫ 1

−1

du√
1− u2

− ϕ = π − ϕ(1.19)

where the penultimate equality follows from the u-substitution u sin(ϕ/2) = sin θ.
We thus proved the result in this case as the other two angles are 0 by Proposition
1.14. For triangles with one boundary vertex and two interior vertices, we can use
Möbius transformation to map one of the interior vertices to 0 and the boundary
vertex to 1, leaving an interior vertex z. We then extend the geodesic between 0
and z to the edge of the unit circle, intersecting it at z′. We then draw the unique
geodesic connecting z′ with 1 (see the Figure 2). To find the area of the triangle

=

<
0 1

z

z′

Figure 2. This figure shows the area trick

with vertices 0, 1, z, it suffices to find the area of the triangle with vertices 0, 1, z′

and subtract the area of the triangle with vertices 1, z, z′, both of which can be
computed with (1.19). A similar trick can be done when all vertices are interior.
If all vertices are on the boundary, we apply a Möbius transformation mapping an
interior point of the triangle to 0. From here, if we connect each boundary vertex
to the origin via geodesics (they are lines since they contain the origin), we have
split the boundary triangle into three triangles, each of which have two boundary
vertices and one interior vertex. If we add the area formulas for these triangles, we
get π, matching up with the formula in the proposition.
For the formula for a hyperbolic circle with center p and radius ρ, we can apply a
Möbius transformation to map p to 0. Using a result deduced by Corollary 1.9, we
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see that dhyp.(0, z) = ρ if and only if |z| = tanh(ρ/2). So the area of circle C is
given by ∫

C

4dµ

(1− |z|2)2
=

∫ 2π

0

∫ tanh(ρ/2)

0

4r

(1− r2)2
drdθ

= 2π

[
2

1− r2

]tanh(ρ/2)

r=0

=
4π

1− tanh2(ρ/2)
− 4π = 4π sinh2(ρ/2) �

We end this section with a statement of monotonicity.

Proposition 1.20. The angle α1(r1, r2, r3) is strictly decreasing in r1 and strictly
increasing in r2 and r3 where the other two radii are fixed. Similarly, if (r1, r2, r3), (r′1, r

′
2, r
′
3) ∈

(0,∞]3 such that ri ≤ r′i for i = 1, 2, 3, then for a (r1, r2, r3)-triangle T and a
(r′1, r

′
2, r
′
3)-triangle T ′ we have

areahyp.(T ) ≤ areahyp.(T
′)

where equality holds if and only if ri = r′i for i = 1, 2, 3.

One can prove this result by applying calculus to the formulas in Propositions
1.14 and 1.17 (for a geometric proof, see Lemma 2 on page 589 of [4]).
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2. Circle Packings

In this section, we give a proof of the circle packing theorem stated below. We
begin by defining the main object of this thesis: circle packings.

Definition 2.1. A (finite) plane circle packing is a (finite) collection (Ci)i∈I of
circles Ci = {z ∈ C ; |z− zj | = rj} whose interiors are all disjoint and whose union
is connected. The nerve of a circle packing is the graph whose vertices {zi ; i ∈ I}
are the Euclidean centers of the circle packing, with two such centers connected by
an edge if the circles are tangent.

Definition 2.2. A hyperbolic circle packing is a circle packing in D where all circles
are hyperbolic circles.

It is worth noting that all graphs in this thesis are undirected and simple. It is
clear by definition that the nerve of a circle packing is connected and planar (planar
means it can be embedded into C). An abstraction of the above Definition 2.1 is
the concept of a Riemann sphere circle packing.

Definition 2.3. A Riemann sphere circle is a circle in C or a line in C (with ∞)
together with one of the two connected components of the compliment, designated
as the ‘interior.’ In the case of the circle in C, if one chooses the unbounded
region for the interior, the circle is called an exterior circle. A (finite) Riemann
sphere circle packing is a (finite) collection (Ci)i∈I of Riemann sphere circle whose
interiors are all disjoint and whose union is connected. The nerve of a Riemann
circle packing is the graph whose vertices {zi ; i ∈ I} are the spherical centers of
the Riemann circles, with two such centers connected by an edge if the circles are
tangent.

Note that the nerve of a Riemann sphere circle packing is also planar, since
we can apply a Möbius transformation to move all the points in the graph away
from infinity. In light of the nerve being a graph, we next introduce maximality of
connected planar graphs.

Proposition 2.4. Let G be a connected planar graph with n ≥ 3 vertices. Then
the following are equivalent:

(i) G is a maximal planar graph. That is, G is a planar graph such that no
further edge can be added to G without making it either not simple or not
planar.

(ii) G has 3n− 6 edges.
(iii) Every drawing D of G divides the plane into faces that have three edges

each (including the unbounded face).
(iv) At least one drawing D of G divides the plane into faces that have three

edges each.

A discussion of this proposition may be found in Chapter 4 of [5]. By Corollary
4.4.7 in [5], every maximal planar graph with at least four vertices is 3-connected,
which implies that each face has a unique boundary (see Lemma 4.2.5 of the same
reference). In light of the above proposition and this fact, we define triangulation.

Definition 2.5. A triangulation T of a maximal planar graph G of at least four
vertices is a drawing of G on the oriented plane, oriented Riemann sphere, or
oriented hyperbolic disc, depending on context, with the faces included. An oriented
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circle packing for a triangulation T is a circle packing (Cv) indexed by the vertices
of T such that

(i) Cu and Cv are externally tangent if u and v are connected by an edge in
T .

(ii) Cu, Cv and Cw form a positively oriented triple whenever (u, v, w) forms
a positively oriented face (the drawing of the nerve of (Cv) creates a well-
defined face for each triple, and a positively oriented triple is respect to the
orientation of the boundary of the corresponding oriented face).

If we neglect the second property, we simply call (Cv) a circle packing for T .

The next theorem is the main theorem we would like to prove in this section.

Theorem 2.6 (Riemann Sphere Circle Packing Theorem). Let G be a maximal
planar graph with at least four vertices, drawn as a triangulation T of the oriented
Riemann sphere. Then there exists an oriented circle packing for T , which is unique
up to Möbius transformations.

This theorem has the following important corollary

Corollary 2.7. Let G be a connected planar graph with a drawing D on the plane.
Then there exists a plane circle packing for D. Furthermore, if G is maximal, this
packing is unique up to reflections and Möbius transformations.

Note that if the plane in this corollary is oriented and G is a maximal planar
graph with at least four vertices with drawing D, then there exists an oriented plane
circle packing for D that unique up to Möbius transformations. So the reflection is
there to reverse orientation, if needed.

Proof of Corollary 2.7. Note that the existence of a circle packing is easy to see
when the connected planar graph has less than four vertices. The uniqueness state-
ment is also easy to see in this case, as every packing of a maximal graph of one,
two and three vertices is equal to {<z = 1}, {<z = ±1}, and {<z = ±1}∪{|z| = 1}
respectively, up to Möbius transformation. Now if D has at least four vertices, if
it is not maximal, we can add a vertex at the interior of each non-triangular face,
and connect that vertex to the vertices of the face, to create a new maximal planar
graph D′. By Theorem 2.6, there exists a Riemann sphere circle packing for D′.
We use stereographic projection to project this Riemann sphere circle packing on
to C (after a rotation to move∞ away from the circle packing, if needed) to obtain
a circle packing in C whose nerve is G′. After removing the circles corresponding
to the added vertices, we have a circle packing whose nerve is G, as desired.

For the uniqueness statement, suppose C and C′ are two circle packings for D,
a drawing of a maximal planar graph with at least four vertices. After applying
stereographic projection on C and C′, then either both packings satisfy the orien-
tation condition of Definition 2.5 for some orientation of the sphere, or they differ.
If they differ, we can apply a reflection on one of the packings so they agree. Then
they are equal up to Möbius transformation by Theorem 2.6. �

In literature, the first statement of this corollary is called the circle packing
theorem where is the second is called the Koebe-Andreev-Thurston theorem.

The idea of the proof of Theorem 2.6 can be split up into three main steps. The
first step is to reduce Theorem 2.6 into an induction procedure that takes a ‘weak’
version of a hyperbolic circle packing of D(0, 1) to a homotopic ‘weak’ hyperbolic
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circle packing of D(0, 1) where all the boundary circles are horocycles. The second
step is to prove that one can do this using a discrete version of Perron’s method of
solving the Dirichlet problem. The last step is to verify that the resulting ‘weak’
hyperbolic circle packing is indeed a genuine circle packing of D(0, 1).

For the induction procedure, we need to introduce a technical graph theory
concept.

Definition 2.8. Let G be a maximal planar graph with at least four vertices drawn
as a triangulation T . It can be seen that the degree of each vertex of T is at least
three. Now starting from some arbitrary neighbor of a vertex v, we write the
neighbors of v in order (with respect to the orientation) as v1, v2, . . . , vd. We see
that vi is adjacent to vi−1 and vi+1 (with v0 := vd and vd+1 := v1). We say v is
non-degenerate if the following two conditions hold:

(i) There are no further adjacencies between the v1, . . . , vd.
(ii) T \ {v, v1, . . . , vd} is nonempty (T \ {v, v1, . . . , vd} denotes T with the ver-

tices {v, v1, . . . , vd} and all the emanating edges from these vertices deleted).

We call v1, v2, . . . , vd the boundary vertices of T \{v}, and we call the other vertices
the interior vertices of T \ {v}.

This concept of non-degeneracy may be unmotivated, but the next proposition
gives an equivalence, and this will be used in an inductive procedure.

Proposition 2.9. Let G be a maximal planar graph with at least four vertices
drawn as a triangulation T . For v ∈ T with neighbors v1, . . . , vd, the following are
equivalent:

(i) v is non-degenerate.
(ii) The graph T \ {v, v1, . . . , vd} is nonempty and connected, and each vertex

v1, . . . , vd is adjacent to at least one vertex in T \ {v, v1, . . . , vd}.

Proof. We start with the harder direction (i) =⇒ (ii).

Step 1 : We first show each vertex v1, . . . , vd is adjacent to at least one vertex
in T \ {v, v1, . . . , vd}. We do this by the contrapositive statement. Assume there
exists a neighbor vi that is not adjacent to any vertex in T \ {v, v1, . . . , vd}. The
triangular face bounded by the edge vivi+1 that doesn’t contain v must have vi−1vi
as another edge (since vi has no other neighbors). Thus vi−1vi+1 is the last edge
of this face, so v is degenerate.

Step 2 : We next show T \{v, v1, . . . , vd} is connected. We first prove the following
lemma.

Lemma 2.10. Let w,w′ ∈ T \ {v, v1, . . . , vn} be vertices adjacent to vi, vi+1 re-
spectively for some i. Then w and w′ are connected by a path in T \{v, v1, . . . , vn}.

Proof. Consider the triangular face bounded by the edge vivi+1 that doesn’t contain
v. This face has a third vertex, which we call w∗. Note that w∗ could be either
w or w′, but since v is non-degenerate, it cannot be any of v, v1, . . . , vd. Thus
w∗ ∈ T \ {v, v1, . . . , vd}. Next, consider all the edges emanating from vi that are
in the angle (not containing the edge viv) between the edges viw and viw

∗. Call
the end of these edges w1, . . . , wn which are ordered from smallest to largest angle
with viw. Again, we have w1, . . . , wn ∈ T \{v, v1, . . . , vd} since v is non-degenerate.
By construction, viw and viw1 bound a triangular face, so w and w1 are adjacent.
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Similarly, we see wj and wj+1 are adjacent, ending with wn being adjacent to w∗.
We have thus found a path in T \ {v, v1, . . . , vd} connecting w to w∗. We can
do the same argument to find a path in T \ {v, v1, . . . , vd} connecting w∗ and w′.
Concatenating these paths yields the result. �

Now the connectedness of T \ {v, v1, . . . , vd} follows easily from the lemma. In-
deed, if u, u′ ∈ T \ {v, v1, . . . , vd}, we first connect u and u′ with a path in T . This
path can be broken up into sub-paths, one path connecting u to some vi (where
all the vertices in the path are in T \ {v, v1, . . . , vd} except vi), another path con-
necting vi to vj in the subgraph {v, v1, . . . , vd}, and the last path connecting vj to
u′ (where all the vertices in the path are in T \ {v, v1, . . . , vd} except vj). If we
let w be penultimate vertex in the first path and w′ the second vertex in the third
path, we can use Lemma 2.10 and Step 1 to create a path connecting w and w′ in
T \ {v, v1, . . . , vd}. Then u and u′ are connected in T \ {v, v1, . . . , vd} by following
the sub-path connecting u to w, then the one created connecting w to w′, and then
finally the sub-path w′ to u′.

Finally we show (ii) =⇒ (i) by contrapositive. If v is degenerate, then there
exists an additional adjacency between the neighbors v1, . . . , vd of v. By reordering
the neighbors, we can assume v1 is adjacent to vk for some 3 ≤ k < d. Note that
v2 and vd lie in different regions enclosed by the loop v1, v, v3, . . . , vk, v1 (this is
because the face triangles vv1v2 and vv1d lie in different regions of this loop). It
follows that either there exists a vertex (either v2 or vd) that is not adjacent to any
vertex of T \ {v, v1, . . . , vd}, or T \ {v, v1, . . . , vd} is not connected, as desired. �

We can now state the inductive procedure.

Theorem 2.11 (Inductive Step). Let G be a maximal planar graph with at least
four vertices V with a triangulation T on the oriented Riemann sphere with v a non-
degenerate vertex of T with neighbors v1, . . . , vd. Suppose there exists an oriented
Riemann sphere circle packing C := (Cw)w∈V \{v} for at least T \ {v} (meaning it
satisfies a similar orientation condition, but we allow for extra tangencies between
the circles, not just the ones required from the edges in the definition). Then there

is an oriented Riemann sphere circle packing C̃ := (C̃w)w∈V for T . Furthermore,
this packing is unique up to Möbius transformations.

Proof of Theorem 2.6 using Theorem 2.11. We induct on the number of vertices of
G. For the base case, let G be a maximal planar graph of four vertices, drawn as
a triangulation T of the Riemann sphere. It is easy to see that G must be K4,
the graph of four vertices where every two vertices are connected by an edge. If

r := 2
√

3
3 − 1, then

C(0, r), C(r + 1, 1), C
(
(r + 1)e2πi/3, 1

)
, C
(
(r + 1)e4πi/3, 1

)
is a circle packing in C for T (where C(z, ρ) := {w | |w − z| = ρ}, see Figure 3).
Viewing this circle packing as a Riemann sphere circle packing via stereographic
projection, after assigning vertices of T to the circles so as to respect orientation,
we have an oriented Riemann sphere circle packing for T . For the uniqueness
statement, given a circle packing, we can apply an inversion on a point of tangency
and then use rotations and scaling to obtain {<z = ±1} ∪ {|z± i| = 1} (see Figure
3).
Now let G be a maximal planar graph with more than four vertices, drawn as a
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=

<
0

1

=

<
0

i

1

Figure 3. This figure shows the base case for Theorem 2.6

triangulation T on the Riemann sphere. We have two cases.

Case 1: Suppose T has a non-degenerate vertex v with neighbors v1, . . . , vd. We
form another triangulation T ′ by contracting the edge connecting v and v1, which
removes one vertex and three edges. By the induction hypothesis, there exists an
oriented Riemann sphere circle packing for T ′, and hence at least for T \ {v}. By
Theorem 2.11, there exists an oriented Riemann sphere circle packing for T that is
unique up to Möbius transformations.

Case 2: Suppose T contains a degenerate vertex v. Let V be the set of vertices
of T . By assumption, there exists an additional adjacency between the neighbors
v1, . . . , vd of v. By reordering the neighbors, we can assume v1 is adjacent to vk
for some 3 ≤ k < d. Let V ′ denote the vertices of V \ {v1, . . . , vd} in the region
enclosed by the loop v1, . . . , vk, v1 that doesn’t contain v. Similarly, let V ′′ denote
the vertices of V \ {v1, . . . , vd} in the region enclosed by the loop vk, . . . , vd, v1, vk
that doesn’t contain v. We have then partitioned the vertices into two parts:

V = {v, v1, . . . , vd} t V ′ t V ′′.

Let T ′ be the restriction of T to the vertices {v, v1, . . . , vk}tV ′, and let T ′′ be the
restriction of T to the vertices {v, vk, . . . , vd, v1}tV ′′ (see Figure 4 for an example).
Note that both T ′ and T ′′ are triangulations, so by the induction hypothesis, there
exists oriented Riemann sphere circle packings C′ = (C ′v) and C′′ = (C ′′v ) for T ′ and
T ′′ respectively. Now we can apply the Möbius transformation to C′′ that sends the
mutually tangent circles C ′′v , C

′′
v1 , C

′′
vk

to the mutually tangent circles corresponding
to C ′v, C

′
v1 , C

′
vk

in C′. After this transformation, due to orientation, C′′ will lie in
one of the two connected components of the compliment on C ′v, C

′
v1 , C

′
vk

(with their
interiors), and C′ will lie in the other. We can then combine C′ and C′′ to an oriented
Riemann sphere circle packing C for T . Also, since a Möbius transformation is
uniquely determined by where it sends three distinct points, the uniqueness of this
circle packing up to Möbius transformations follows from the uniqueness of C′ and
C′′. �
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Figure 4. An example of a graph in the proof with k = 3 and
d = 4 where T is in the upper left, T ′ is in the upper right, and
T ′′ in the middle

We reformulate Theorem 2.11 in the hyperbolic setting by the following theorem.

Theorem 2.12 (Hyperbolic formulation of the Inductive Step). Let G be a maxi-
mal planar graph with at least four vertices V with a triangulation T on the oriented
hyperbolic disc with v a non-degenerate vertex of T with neighbors v1, . . . , vd. Sup-
pose there exists an oriented hyperbolic circle packing C := (Cw)w∈V \{v} for at least

T \ {v}. Then there is an oriented hyperbolic circle packing C̃ := (C̃w)w∈V \{v} for
T \ {v} where Cv1 , . . . , Cvd are horocycles. Furthermore, this packing is unique up
to automorphisms of the unit disc.

Proof of Theorem 2.11 using Theorem 2.12. Let T be a triangulation of a maxi-
mal planar graph G with at least four vertices V on the oriented Riemann sphere
with a non-degenerate vertex v with neighbors v1, . . . , vd. If we pick a point p in
one of the open faces of this triangulation, we can stereographically project this
triangulation from p (and follow it with a scaling) to obtain a triangulation of the
same graph on the hyperbolic disc (which we again call T ). Suppose there exists
an oriented Riemann sphere circle packing C := (Cw)w∈V \{v} for at least T \ {v}.
We can again stereographically project from a point in the compliment of the cir-
cle packing (such that this point is not in any closure of any circle) to obtain an
oriented hyperbolic circle packing (which we again call C := (Cw)w∈V \{v}) for at
least T \ {v}. We can then apply Theorem 2.12 to get an oriented hyperbolic circle

packing C̃ := (C̃w)w∈V \{v} for T \ {v} where Cv1 , . . . , Cvd are horocycles. We can
stereographically project this up to the Riemann sphere to an oriented Riemann
sphere circle packing. To this Riemann sphere circle packing, we add the equatorial
circle Cv with center at the north pole. This new circle is externally tangent to
Cv1 , . . . , Cvd since these circles were horocycles, and the addition of this new cir-
cle doesn’t break the orientation condition of Definition 2.5 since it’s neighboring
triangles have their orientation preserved. The uniqueness statement of Theorem
2.11 follows directly from the uniqueness statement of Theorem 2.12 after rotating
and scaling Cv to the equator with center at the north pole and stereographically
projecting to the hyperbolic disc. �
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We have now reduced our problem to proving Theorem 2.12. The idea of the
proof is to increase the radii of the circles so that the boundary circles are infinite.
The problem is that one cannot do this arbitrarily without breaking the properties of
circle packings. This is analogous to the fact that one cannot manipulate a harmonic
function very easily. The Perron method works with subharmonic functions and
takes a supremum to get a harmonic function. Analogously, we define a subpacking
and take a supremum to get a genuine circle packing. Before we do that, we first
give a remark.

Remark 2.13. The circle packing C̃ = (C̃)w∈V \{v} =
(
C̃(p̃w, r̃w)

)
w∈V \{v} guaran-

teed by Theorem 2.12 is uniquely determined up to Möbius transformation by the
values of the radii, r̃w. Indeed, given a triangle (t, u, w) in T \ {v}, there is a
(rt, ru, rw)-hyperbolic triangle associated to this triangle formed by connecting the
hyperbolic centers pt, pu, pw of Ct, Cu, Cw in C via hyperbolic geodesics (we denote
this ∆C(t, u, w)). We can then form a (r̃t, r̃u, r̃w)-hyperbolic triangle (which we
denote ∆C̃(t, u, w)) with the same orientation as ∆C(t, u, w), which is unique up to
Möbius transformations by Definition 1.13 (since they have the same orientation).
If we fix a triangle ∆C̃(t, u, w), the adjacent triangles are also fixed by orientation,
and we can continue this process to determine the entire circle packing.

Note that not all assignments of radii r̃w have the desired properties of hyper-
bolic circle packings. We next introduce some weaker notions of hyperbolic circle
packings with constraints we would like the radii to satisfy.

Definition 2.14. • A local packing is an assignment of radii rw ∈ (0,∞]
to each vertex w ∈ V \ {v} of T \ {v} in D that is under the following
constraints:

– Local constraint: If w is an interior vertex, the angles α1(rw, rw1 , rw2)
around w sum to 2π.

– Boundary constraint: The radii associated to the boundary vertices
v1, . . . , vd are infinite.

• A local subpacking is an assignment of radii rw ∈ (0,∞] to each vertex
w ∈ V \{v} of T \{v} in D that is under the following weakened constraint:

– Local sub-constraint: If w is an interior vertex, the angles α1(rw, rw1 , rw2)
around w sum to at least 2π.

We begin with two lemmas about local subpackings.

Lemma 2.15 (Upper Bound). Let (rw)w∈V \{v} be a local subpacking. Then for

any interior vertex w of degree d, one has rw ≤
√
d.

Proof. Let w ∈ V \ {v} be an arbitrary interior vertex. By the local sub-constraint
of local subpackings, there is a hyperbolic (w,w1, w2)-triangle in V such that

α1(w,w1, w2) ≥ 2π

d
.

Thus the (w,w1, w2)-triangle contains a sector of a hyperbolic circle of radius and
angle 2π/d. By 1.17, this triangle has area at most π, and thus we have

π ≥ 4π

d
sinh2

(rw
2

)
≥ πr2

w

d

where the last inequality we use the fact that sinh(x) ≥ x for x ≥ 0. We conclude

rw ≤
√
d. �
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Lemma 2.16 (Order). If R = (rw)w∈V \{v} and R′ = (r′w)w∈V \{v} are local sub-

packings, then max(R,R′) :=
(

max(rw, r
′
w)
)
w∈V \{v} is also a local subpacking.

Proof. Let w ∈ V \ {v} be an arbitrary interior vertex of V \ {v}. Without loss
of generality, suppose rw ≥ r′w. Now since R is a local subpacking, we have that
angles α1(rw, rw1

, rw2
) around w sum to at least 2π. Since α1(rw, rw1

, rw2
) is strictly

increasing in rw1
and rw2

by Proposition 1.20, we see that the angles

α1

(
max(rw, r

′
w),max(rw1

, r′w1
),max(rw2

, r′w2
)
)

= α1

(
rw,max(rw1

, r′w1
),max(rw2

, r′w2
)
)

around w sum to at least 2π. �

We are now set to prove the following theorem.

Theorem 2.17 (Local Subpacking to Local Packing). Suppose there exists a local
subpacking on V \ {v}. Then there exists a unique local packing on V \ {v}.

Proof. We first begin with proving existence. Define R = (rw)w∈V \{v} to be the
pointwise supremum of all the local subpackings on V \ {v}. By Lemma 2.15,
rw < ∞ for all interior vertices w. By Lemma 2.16, we can write R as a nonde-
creasing limit of local subpackings. In particular, R is also a local subpacking by the
continuity of α1 established in Proposition 1.14. Note that R satisfies the bound-
ary constraint because if rvi <∞ at some boundary vertex vi, then by Proposition
1.20 we could replace rvi with ∞ and only increase the sum of the angles around
the interior vertices connecting it while preserving the local-sub constraint of local
subpackings, contradicting the maximality of R. Finally, R satisfies the local con-
straint because if the sum of the angles α1(rw, rw1 , rw2) is strictly bigger than 2π
at an interior vertex w, then by Propositions 1.14 and 1.20, we could increase rw
slightly while still maintaining the local-sub constraint at w and any other interior
vertices, again contradicting the maximality of R. Thus R is a local packing.
Finally, we establish uniqueness. Suppose R′ = (r′w)w∈V \{v} is a local packing. R′
is in particular a subpacking, so by the maximality of R, we have r′w ≤ rw for all
w ∈ V \ {v}. By Proposition 1.20, we have

area(r′w, r
′
w1
, r′w2

) ≤ area(rw, rw1
, rw2

)

Prop.1.17⇐⇒
3∑
j=1

αj(r
′
w, r
′
w1
, r′w2

) ≥
3∑
j=1

αj(rw, rw1
, rw2

)

for any (w,w1, w2)-triangle. Summing over all triangles in V \ {v}, we have∑
w∈V \{v}

∑
(w,w1,w2)−triangle

α1(r′w, r
′
w1
, r′w2

) ≥
∑

w∈V \{v}

∑
(w,w1,w2)−triangle

α1(rw, rw1 , rw2).

But by definition of local packings, the inner sum (on either side) is equal to 2π for
an interior vertex and 0 for a boundary vertex. So the two sides agree, and by the
equality statement in Proposition 1.20, we have rw = r′w for all w ∈ V \ {v}, and
we are done. �

We would now like to verify that this local packing is indeed a hyperbolic circle
packing. This is a topological matter, and before we prove this, we introduce the
notion of stars of vertices.
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Definition 2.18. Let R = (rw)w∈V \{v} be the unique local packing on T \ {v}.
If w ∈ T \ {v} has neighbors w1, . . . , wd, then by Definition 1.13, there exists

a unique (rw, rw1
, rw2

)-triangle (which we call ∆C̃(w,w1, w2)) in D(0, 1) with the
same orientation as the triangle (w,w1, w2) in T \{v} up to Möbius transformations.
Once we fix ∆C̃(w,w1, w2), the adjacent (rw, rw2 , rw3)-triangle ∆C̃(w,w2, w3) is also
fixed. Continuing this way, we can define ∆C̃(w,wj , wj+1) for j = 1, . . . , d where
wd+1 := w1. These triangles are well-defined (i.e. it doesn’t matter if we define
them counterclockwise or clockwise around w) since the angles around w sum to 2π.
We define the star of w to be the union of these hyperbolic triangles, and we denote
it starw. By Definition 1.13, starw is unique up to Möbius transformations, and
the interiors of the triangles comprised in the star are disjoint by the local packing
condition.

The idea of the following proof is to not place the circles, but we instead place
the hyperbolic triangles by way of stars. We are essentially doing Remark 2.13 in
reverse. This way, we can use familiar topological results in our favor. We first
prove a topological lemma.

Lemma 2.19. Let f : X → Y be a local homeomorphism between Hausdorff spaces
with X compact and Y simply connected. Then f is a global homeomorphism.

Proof. We wish to show f is a covering map. First we prove f is surjective. Since
local homeomorphisms are open maps, f(X) is open. Since f is also continuous, so
f(X) is compact. Since Y is Hausdorff, f(X) is closed, and since Y is connected,
f(X) = Y . To prove it is a covering map, let y ∈ Y . Since f is continuous, f−1(y)
is closed, and since X is compact, f−1(y) is compact. Since f is a local homeo-
morphism, f−1(y) is discrete, so f−1(y) = {x1, . . . , xn} is finite. Let U1, . . . , Un
be mutually disjoint open neighborhoods of x1, . . . , xn (which we can do since X
is Hausdorff). By shrinking Uj if necessary, we may assume each Uj are mapped
homeomorphically onto an open neighborhood Vj of y. If we let

K := X \ (U1 t · · · t Un) and V := (V1 ∩ · · · ∩ Vn) \ f(K)

we see K is closed (and hence compact implying f(K) is compact and hence closed)
and V is an open neighborhood of y. Then V is evenly covered since

f−1(V ) =
(
U1 ∩ f−1(V )

)
t · · · t

(
Un ∩ f−1(V )

)
.

Thus f is a covering map. Since V is simply connected, it is it’s own universal
cover, so there exists a covering map f−1 : Y → X such that f ◦ f−1 = idY (i.e.
the lift of idY : Y → Y ). This equality implies f−1 is injective, and it is already
surjective continuous open map as a covering map. So f−1 is a homeomorphism,
implying f is a homeomorphism. �

Theorem 2.20 (Local Packing to Circle Packing). Suppose R = (r̃w)w∈V \{v}

is a local packing on T \ {v}. Then there is a hyperbolic circle packing C̃ :=(
C̃(p̃w, r̃w)

)
w∈V \{v} for T \ {v}.

Proof. For every w ∈ T \ {v}, we fix starw in D(0, 1). Now let

M :=
∐

w∈T \{v}

starw

/
∼
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where z ∈ starw ∼ z′ ∈ starw′ if w and w′ are adjacent and ψw,w′(z) = z′ where
ψw,w′ is the unique Möbius transformation taking w,w′ ∈ starw to w,w′ ∈ starw′,
respectively. Note that M is homeomorphic to T \ {v}, so M is Hausdorff and
simply connected. We will use these facts to show that the following map is well-
defined. If we fix w0 ∈ T \ {v}, we let Ψ : M → D(0, 1) be defined as follows:
Define Ψ([z]) := z for z ∈ starw0. For z ∈ M , we let γ : [0, 1] → M be a path
such that γ(0) = w0 and γ(1) = z. We can partition this path into sub-paths
γj ⊆ starwj ⊆M where γ = γ0 ∪ · · · ∪ γk. We then define auxiliary functions

ψ0([w]) := w for w ∈ starw0

ψ1([w]) := ψw1,w0(w) for w ∈ starw1

...

ψk([w]) := ψwk,wk−1
(w) for w ∈ starwk

where ψw1,w0
is the unique Möbius transformation taking w1, w0 ∈ starw1 to

w1, w0 ∈ starw0, respectively, and ψwj+1,wj is the unique Möbius transformation
taking wj+1, wj ∈ starwj+1 to wj+1, wj ∈ ψwj ,wj−1(starwj), respectively. Finally,
we define Ψ([z]) := ψk([z]). By the general monodromy theorem applied to the
étale space of the sheaf of holomorphic functions on M , we see that the values of
Ψ on homotopic curves coincide (see [6] for the general monodromy theorem, and
see [7] for the étale space). But since M is simply connected, all closed loops are
null homotopic, so Ψ is well-defined. In particular, the stars of the vertices in the
new packing are well-defined, and hence the hyperbolic triangles are well-defined.

To finish this argument off, we need to show the hyperbolic triangles have disjoint
interiors. Note that the image of Ψ does not quite cover the closed disc. This is
due to the boundary triangles’ boundary edge not being the same as the respective
arc on the unit circle, leaving a lens shaped region. We can modify Ψ to a map

Ψ̃ which deforms this boundary edge to the arc of the unit circle and leaves the

other edges unchanged. This map Ψ̃ : M → D(0, 1) is a local homeomorphism. By

Lemma 2.19, we see Ψ̃ is a global homeomorphism, and so the original map Ψ is
injective. Thus the hyperbolic triangles, along with the lens-shaped regions on the
boundary, have disjoint interiors. Because of this, the circles associated to these
hyperbolic triangles will all have disjoint interiors, proving the desired result. �
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3. Quasiconformal Maps

We begin this section with the theorem of central importance for which we give
two proofs (the proofs are based on pages 224, 258 of [8]).

Theorem 3.1 (Riemann Mapping Theorem). Let U $ C be a non-empty, simply
connected open set. If z0 ∈ U , then there exists a unique biholomorphic map f :
U → D such that

f(z0) = 0 and f ′(z0) > 0.

Proof of Uniqueness. Suppose f and g are two such maps. Define h : D → D with
h(z) = f ◦ g−1(z). Then we have the following

• h and h−1 are biholomorphic

• h(0) = h−1(0) = 0

• h′(0) = f ′
(
g−1(0)

)
· (g−1)′(0) = f ′

(
g−1(0)

)
/g′(g−1(0)

)
> 0.

Thus by Schwarz’s lemma, |h(z)| ≤ |z| and |h−1(w)| ≤ |w| for all z, w ∈ D. Letting
w = h(z), we see that |h(z)| = |z| for all z ∈ D. By equality statement in Schwarz’s
lemma, we have that h(z) = az where |a| = 1. Since h′(0) > 0, we deduce that
a = 1 and thus f ≡ g. �

Proof of Existence. Step 1 : Let α /∈ U . Then z − α is non-zero on U , and hence,
`(z) := log(z−α) is well-defined on U . Since e`(z) = z−α, we see that ` is injective.
Now if we let s > 0 be such that Bs(z0) ⊆ U , then

`
(
Bs(z0)

)
+ 2πi ∩ `(U) = ∅

for otherwise we would have `(w) + 2πi = `(z) for some w ∈ Bs(z0) and z ∈ U .
Exponentiating, we find z = w and thus `(z) = `(w) which is a contradiction.
Furthermore, there exists r > 0 such that

(3.2) Br
(
`(z0) + 2πi

)
∩ `(U) = ∅.

This is because `
(
Bs(z0)

)
+2πi is open (since ` is an open map by the open mapping

theorem) so there exists r > 0 such that Br
(
`(z0) + 2πi

)
⊆ `
(
Bs(z0)

)
+ 2πi. Now

let F : U → C be such that F (z) := (T ◦ I ◦ `)(z) where

I(z) :=
1

z −
(
`(z0) + 2πi

) and T (z) = z +
1

2πi
.

Note that the inversion I is bounded by 1/r on `(U) by (3.2). Furthermore, F is
bounded by M := 1

r + 1
2π on U by the triangle inequality. Now define G := 1

2M F .
Since ` is injective, so is G. Furthermore, G(z0) = 0 and |G(z)| < 1.

Step 2: Without loss of generality, by composing with the map described in step
1, we may assume U ⊂ D with 0 ∈ U (such a domain is called a Koebe domain).
Define

F := {f : U → D holomorphic, injective, and f(0) = 0}.
Note F 6= ∅ because it contains the identity. Also, F is uniformly bounded because
|f(z)| < 1 for all f ∈ F and z ∈ U . We want to find a function f ∈ F that
maximizes |f ′(0)|. The reason for this is we would like to maximize the ‘spread’ of
values in the range so as to cover the whole disc. Define

s := sup
f∈F
|f ′(0)|.
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Now there exists a sequence of functions {fn}∞n=1 ⊂ F such that |f ′n(0)| n→∞−−−−→ s. By
Montel’s theorem, there exists a subsequence of {fn}∞n=1 that converges uniformly to
a function f on compact subsets of U . First, f is holomorphic on U by Weierstrass’
theorem. Since s ≥ 1 (because the identity is in F), f is non-constant, hence
injective by a corollary of Hurwitz’s theorem. Also, f(0) = 0 and, by continuity,
we have |f(z)| ≤ 1 on U . Furthermore, by the maximum modulus principle, we see
that |f(z)| < 1 and hence f ∈ F with |f ′(0)| = s.

Step 3: We want to show f from step 2 is surjective. If this were not true, we
could construct a function g ∈ F with |g′(0)| > s. Indeed, suppose there exists
α ∈ D such that f(z) 6= α for all z ∈ U . Consider the automorphism of the unit
disk

ψα(z) :=
α− z
1− αz

that interchanges 0 and α. Since U is simply connected, so is f(U). With ψα is
nonzero on f(U), there exists h : f(U)→ D such that

h2 = ψα.

Now define

g := ψh(0) ◦ h ◦ f.
We claim g ∈ F . It is easy to see g is holomorphic and g(0) = 0. It is also clear
that g is injective, as each function in the composition is injective. Finally, by a
computation, we see |f ′(0)| < |g′(0)|. This is a contradiction with the definition of

f and thus f is surjective. If f ′(0) = r0e
iθ0 6= 0, define f̃ : U → D by

f̃(z) := e−iθ0f(z).

This function satisfies the condition f̃ ′(0) > 0 and thus satisfies the theorem. �

In Step 3, the use of the square root function is perplexing at first. We would
like the derivative to increase on U , so it is natural to consider the logarithm as
it’s derivative is greater than 1 on the unit disc. Doing the computations, we see
that we would like a function on ψα

(
f(U)

)
that has the reverse inequality in the

derivative inequality in the Schwartz-Pick lemma. The square root happens to have
this property.

Another interpretation is that ψh(0) ◦ h is injective on f(U), but it’s inverse is

not injective on D. So applying Schwartz lemma on Φ := (ψh(0) ◦ h)−1, we see
|Φ′(0)| < 1, which implies |g′(0)| > |Φ′(0)||g′(0)| = |f ′(0)|. Another proof of the
Riemann mapping theorem that expresses the desired map as a limit of functions
is in the appendix.

This next theorem extends the Riemann mapping theorem and motivates the
definition of quasiconformal maps (proof is based on page 110 of [9]).

Theorem 3.3 (Carathéodory’s Theorem). Let U ⊆ C be non-empty, bounded,
open, and simply connected, and let f : D → U be a biholomorphic map (shown to
exist by Theorem 3.1). Then f extends to a continuous homeomorphism from D to
U if and only if ∂U is a Jordan curve.

Proof. ⇒: This is easy to see as homeomorphisms send boundary to boundary and
Jordan curves to Jordan curves.
⇐: To prove the continuous extension to the boundary, we will first prove for any
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ζ ∈ ∂D we have that the diameters of the sets f
(
D ∩ Brn(ζ)

)
converges to 0 for

some sequence of radii rn → 0. If we prove this, we define the extension f̃ for
ζ ∈ ∂D as

(3.4) f̃(ζ) :=
⋂
n≥1

f
(
D ∩Brn(ζ)

)
with f̃ |D = f . This extension is sequentially continuous and hence continuous.
This is easy to see for a sequence in D converging to a point on ∂D, and for
a sequence in ∂D converging to a point on ∂D, we can apply a 3ε argument.
These two statements give sequential continuity. To prove the diameters of the
sets f

(
D ∩ Brn(ζ)

)
converges to 0, we first consider areas. Note that U is Borel

measurable with finite area (since it is open and bounded), and by a change of
variables, we see that

area(U) =

∫
D

|f ′(x)|2dxdy <∞.

By considering polar coordinates around ζ ∈ ∂D, we see that this integral is equal
to ∫ 2

0

(∫ 2π

0

1D(ζ + reiθ)|f ′(ζ + reiθ)|2dθ︸ ︷︷ ︸
:=g(r)

)
rdr <∞

Note that for any ε, ε′ > 0 there exists x ∈ (0,min{ε′, 2}) such that x2g(x) < ε

because, otherwise, we would contradict the divergence of the integral
∫ 2

0
dr
r near

r = 0. Thus there exists a strictly decreasing sequence 0 < rn < 2 converging to 0
such that r2

ng(rn) < 1/n. Expanding this out, we see∫ 2π

0

r2
n1D(ζ + rne

iθ)2|f ′(ζ + rne
iθ)|2dθ < 1

n
.

Hence, by Cauchy-Schwarz, we have∫ 2π

0

rn1D(ζ + rne
iθ)|f ′(ζ + rne

iθ)|dθ < 2π

n
.

If we define `n := {ζ + rne
iθ : 0 ≤ θ < 2π} ∩D = {ζ + rne

iθ : αn < θ < βn}, we
see that f(`n) is a rectifiable curve in U with length equal to the integral above.
In particular, the length of f(`n) goes to 0 as n → ∞. Unfortunately, an arc on
∂U connecting the endpoints of f(`n) need not be rectifiable, so we need to find
a bound for its diameter instead of its length. Since f(`n) has finite length, the
endpoints of this curve, defined as an and bn, are well-defined points. To see this,
we use the Cauchy condition for limits of functions. If we assume this Cauchy
condition doesn’t hold, then for any given number, we can find a partition P for
which the variation of f(`n) with respect to P exceeds this number, implying the
curve is not of finite length (another way to see this Cauchy condition holds is with
the absolute continuity of integrals). Because f is a proper map, we see that these
endpoints are in ∂U . By definition of rectifiable, we have |an − bn| < 2π/n and
hence the distance between an and bn goes to 0 as n→∞. We use the next claim
to bound the diameter of a certain arc connecting the endpoints of f(`n).

Lemma 3.5. Let γ be a Jordan curve. Then there is a function η(δ), defined for
all sufficiently small δ > 0, with η(δ) → 0 as δ ↘ 0, such that if a, b ∈ γ with
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|a − b| < δ then there is an arc of γ having endpoints a, b whose diameter is less
than η(δ) (we allow the single-point arc).

Proof. Denote the map γ : S1 → C the Jordan curve. Since γ is a bijective map of
compact Hausdorff spaces, it has a uniformly continuous inverse. We let δ0 > 0 be
small enough such that |γ(ζ)− γ(ζ ′)| < δ0 implies |ζ − ζ ′| < 2 where ζ, ζ ′ ∈ S1. If
ζ, ζ ′ ∈ S1 with |γ(ζ) − γ(ζ ′)| < δ0, we let σ(ζ, ζ ′) be the unique shorter arc of S1

having endpoints ζ, ζ ′. We claim

diam γ|σ(ζ,ζ′) → 0 uniformly as |γ(ζ)− γ(ζ ′)| → 0.

Indeed, by uniform continuity of γ, if ε > 0, there exists δ′ > 0 such that |γ(ξ) −
γ(ξ′)| < ε whenever |ξ− ξ′| < δ′. By uniform continuity of γ−1, there exists δ′′ > 0
such that |ζ − ζ ′| < δ′ whenever |γ(ζ) − γ(ζ ′)| < δ′′. Now if |γ(ζ) − γ(ζ ′)| <
min{δ′′, δ0}, we have |ζ − ζ ′| < min{δ′, 2}. Then clearly |ξ − ξ′| < δ′ for all
ξ, ξ′ ∈ σ(ζ, ζ ′), which implies |γ(ξ)− γ(ξ′)| < ε for all ξ, ξ′ ∈ σ(ζ, ζ ′), as desired.

If 0 < δ ≤ δ0, then we set

η(δ) := sup{diam γ|σ(ζ,ζ′) : |γ(ζ)− γ(ζ ′)| < δ}.
We then have the desired result as η(δ)→ 0 as δ ↘ 0. �

Now we are set to prove diam f
(
D ∩ Brn(ζ)

)
→ 0 as n → ∞. If we fix ε > 0,

let N be large enough so that for all n > N we have rn < 1/2 and 1/n is in the
domain of η in Lemma 3.5 (applied to an and bn) with

(3.6) π
(
ln + η(1/n)

)2
< A and ln + η(1/n) < ε

where ln is the length of f(`n) and A is the (positive) area of the image of f on
the ball of radius 1/2 centered at 0. Let γn be the arc guaranteed by Lemma 3.5,
and let Rn be the bounded region in D with boundary γn ∪ f(`n). Since f sends
connected components to connected components, either f

(
D ∩ Brn(ζ)

)
= Rn or

f
(
D ∩ Brn(ζ)

c)
= Rn. Note that the area of Rn is bounded by π

(
ln + η(1/n)

)2
since Rn is contained in the closed disc of radius ln + η(1/n) centered at an, where

we use the fact that diam f(`n) ≤ ln. Since B1/2(0) ⊆ D ∩Brn(ζ)
c

and the area of

f
(
B1/2(0)

)
is positive, we must have f

(
D ∩Brn(ζ)

)
= Rn. Finally, since

diamRn = diam ∂Rn ≤ ln + η(1/n)
(3.6)
< ε,

we have proved diam f
(
D ∩Brn(ζ)

)
→ 0 as n→∞.

We now prove that the extension f̃ (defined at (3.4)) is bijective. By definition

of f̃ and the properness of f , we see f̃(∂D) ⊆ ∂U . Since f̃ is proper (since it

is continuous on the compact set D), we see that f̃(D) is a compact subset of U

containing U , so we see f̃ is surjective. For f̃ not to be injective, there would be

distinct ζ, ζ ′ ∈ ∂D such that f̃(ζ) = f̃(ζ ′). If L is the line connecting ζ and ζ ′ in

D, we see that f̃(L) is a Jordan curve in U only intersecting ∂U at f̃(ζ) = f̃(ζ ′).
Note f maps one of the connected components separated by L in D to the interior

of the Jordan curve, and we deduce that f̃ is constant on a non-degenerate arc of
D. Composing with the Cayley transformation and applying the Schwarz reflection
principle, we see that f is a constant by uniqueness of analytic continuation. But
this contradicts the conformality of f . Thus the proof of injectivity is complete. �

We next define some notions involved with Jordan quadrilaterals.
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Definitions 3.7. • A Jordan quadrilateral is an open region Q ∈ C enclosed
by a Jordan curve with four distinct points p1, p2, p3, p4 called the vertices
of the quadrilateral (these points are in counterclockwise order).
• The a-sides are the arcs in ∂Q connecting p1 to p2 and p3 to p4, while the
b-sides are the arcs in ∂Q connecting p2 to p3 and p4 to p1.
• A vertex-preserving conformal map from one Jordan quadrilateral Q to

another Q′ is a conformal map that extends to a homeomorphism from Q
to Q′ that maps the corners of Q to the respective corners of Q′, and hence
maps a-sides to a-sides and b-sides to b-sides.

The next proposition gives regularity to these definitions.

Theorem 3.8. For every Jordan quadrilateral Q there exists a vertex-preserving
conformal map ψ : Q → R where R is a Euclidean rectangle. Furthermore, this
rectangle is unique up to complex affine transformations.

Proof of Existence. By Theorems 3.1 and 3.3, there exists a conformal map f : Q→
D that extends to a homeomorphism f̃ : Q→ D. If p1, p2, p3, p4 are the vertices of

Q counterclockwise order, their image points under f̃ are also in counterclockwise

order by the orientation preservation of conformal maps. By composing f̃ with a
Möbius transformation of the disk, we may assume p1 gets mapped to i, p2 gets

mapped to −1, and p4 gets mapped to −i. Since f̃ preserves the counter-clockwise
orientation, p3 gets mapped to eiθ0 for some θ0 ∈ (π, 3π/2). Note that the Möbius
transformations of the unit disc that fix −i and i are exactly

z 7→ z − ix
1 + ixz

, x ∈ (−1, 1).

We claim that there exists an x ∈ (−1, 1) such that the image of −1 and eiθ0 under
the above map are conjugate. Indeed, this is equivalent to finding a solution to

x2 − 2
sin θ0

1 + cos θ0
x+ 1 = 0

in (−1, 1). This quadratic has two distinct real solutions as seen from the discrimi-
nant, and the product of these solutions is 1. Thus one solution must be in (−1, 1)

as desired. After composing f̃ with this transformation, we may assume p1, p4 get
mapped to i,−i respectively, with v2 and v3 mapped to conjugates with arguments
in (π/2, 3π/2). We then compose with the inverse Cayley transformation,

g(z) =
z + 1

i(z − 1)
,

we see that p1, p2, p3, p4 are mapped to −1,−r, r, 1 respectively for some r ∈ (0, 1).
From Example 3 on page 233 of [8], we see that the Schwarz-Christoffel elliptic
integral

S(z) =

∫ z
r

0

dζ

[(1− ζ2)(1− r2ζ2)]1/2

maps the upper half-plane to a Euclidean rectangleR, mapping the points−1,−r, r, 1
to the vertices of R in a counterclockwise orientation, as desired. �

Proof of Uniqueness. If ψ : Q → R and φ : Q → R′ are two such maps, we
see that f := φ ◦ ψ−1 is a vertex-preserving conformal map from R to R′. By
composing with complex affine transformations, we may assume R = (0, r)× (0, 1)
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and R′ = (0, r′)× (0, 1) where r, r′ > 0. Without loss of generality, we may assume
r′ > r. If we consider the four congruent boundary rectangles to R, we see that f
can be extended to these rectangles by the Schwarz reflection principle. Continuing
this way, we extend f to an entire function, which we still call f . By construction,
we have

z ∈
[
ri, r(i+ 1)

]
× [j, j + 1] =⇒ f(z) ∈

[
r′i, r′(i+ 1)

]
× [j, j + 1]

for all i, j ∈ Z. Hence for any R > 0 we have

sup
|z|=R

|f(z)| ≤ sup
z∈[−R,R]2

|f(z)| ≤ sup

z∈
[
−Rr′r ,Rr

′
r

]2 |z| = Rr′

r

√
2.

By Cauchy’s differentiation formula, we see f ′′ = 0 and hence f is a complex affine
transformation. �

This proposition motivates the following definition.

Definition 3.9. The conformal modulus mod(Q) (or modulus for short) of a Jordan
quadrilateral with vertices p1, p2, p3, p4 is the ratio b/a > 0, where a, b are the
lengths of the a-sides and b-sides respectively of a rectangle R that is conformal to
Q in a vertex-preserving fashion.

Note that Theorem 3.8 makes this well-defined, as well as show that mod(Q) is
unchanged by vertex-preserving conformal maps. Also note that each cyclic per-
mutation of the vertices replaces the modulus with its reciprocal. This observation
will be key to understanding the next definition, the most important of this section.

Definition 3.10. Let K > 0. An orientation-preserving homeomorphism φ : U →
V between two non-empty, open, connected subsets U, V in C is said to be K-
quasiconformal if one has

mod
(
φ(Q)

)
≤ K mod(Q)

for every Jordan quadrilateral Q with Q ⊆ U (we use the notation Q ⊂⊂ U for
short).

If we cyclically permute the vertices of Q, we automatically obtain

1

mod
(
φ(Q)

) ≤ K 1

mod(Q)
,

which forces K ≥ 1. This also shows that φ−1 is K-quasiconformal. By the remark
after Definition 3.9, we see that if φ is conformal, then it is 1-quasiconformal. We
will show the converse of this statement later on. It is also worth noting that
the composition of a K-quasiconformal map with a K ′-quasiconformal map is a
KK ′-quasiconformal map. The next proposition gives an alternate definition to
Definition 3.9.

Proposition 3.11 (Alternate definition of modulus). Let Q be a Jordan quadri-
lateral with vertices p1, p2, p3, p4. Then mod(Q) is the smallest quantity with the
following property: for any Borel measurable ρ : Q→ [0,∞) there exists a rectifiable
curve γ in Q connecting one a-side of Q to another such that(∫

γ

ρ(z)|dz|
)2

≤ mod(Q)

∫
Q

ρ2(z)dxdy.
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More compactly,

mod(Q) = sup
ρ

inf
γ

( ∫
γ
ρ(z)|dz|

)2∫
Q
ρ2(z)dxdy

.

If we look back at the proof of Theorem 3.3, a similar inequality was a crucial
in bounding the length of the interior curve. Now for the proof.

Proof. If φ : Q→ Q′ is a vertex-preserving conformal map between Jordan quadri-
laterals Q and Q′ with γ a rectifiable curve connecting one a-side of Q to another,
we see that φ ◦ γ is a rectifiable curve connecting one a-side of Q′ to another. By
change of variables, we have the following:∫

φ◦γ
ρ ◦ φ−1(z)|dz| =

∫
γ

ρ(z)|φ′(z)||dz|,∫
Q′

(ρ ◦ φ−1)2(z)dxdy =

∫
Q

ρ2(z)|φ′(z)|2dxdy.

So if the proposition holds forQ, it also holds forQ′. Thus without loss of generality,
we may assume Q = (0,M)× (0, 1) where M = mod(Q) by Theorem 3.8. For any
measurable ρ : Q→ [0,∞), we have by Cauchy-Schwarz and Fubini’s theorem that∫ 1

0

(∫ M

0

ρ(x+ iy)dx

)2

dy ≤M
∫ 1

0

∫ M

0

ρ2(x+ iy)dxdy = M

∫
Q

ρ2(z)dxdy.

Thus there exists y ∈ (0, 1) such that(∫ M

0

ρ(x+ iy)dx

)2

≤M
∫
Q

ρ2(z)dxdy.

On the other hand, if we set ρ = 1, then
∫
Q
ρ2(z)dxdy = M , and for any curve γ

connecting an a-side of Q to another (we pick the side on the imaginary axis to be
one a-side), we have ∫

γ

ρ(z)|dz| = length(γ) ≥M,

and hence (∫
γ

ρ(z)|dz|
)2

≥M
∫
Q

ρ2(z)dxdy.

Thus M is the smallest constant with the required property, so we are done. �

We prove some results that follow easily from Proposition 3.11.

Proposition 3.12 (Rengel’s Inequality). Let Q be a Jordan quadrilateral with
Euclidean area A. If a is the shortest Euclidean distance from a point on a b-side
to another point on the other b-side, and b is the shortest Euclidean distance from
a point on a a-side to another point on the other a-side, we have

b2

A
≤ mod(Q) ≤ A

a2

with equality in either case if and only if Q is a rectangle.
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Proof. If we set ρ = 1 in Proposition 3.11, there exists a rectifiable γ inQ connecting
a-sides such that

b2 ≤
(∫

γ

|dz|
)2

≤ mod(Q)

∫
Q

dxdy = mod(Q)A.

To get the other inequality, we apply a cyclic permutation to the vertices to obtain

a2

A
≤ 1

mod(Q)
.

For the equality statement, if Q is a rectangle, equality is clear since A = ab and
mod(Q) = b/a. Conversely, suppose b2/A = mod(Q) (if we assume the other, we
may apply a cyclic permutation to the vertices to obtain this one). Let φ : R→ Q
be a vertex-preserving conformal map where R = (0,M)×(0, 1) with M = mod(Q)
(via Theorem 3.8). By change of variables, we have

A =

∫
R

|φ′(z)|2dxdy

and hence by assumption and Cauchy-Schwarz

(3.13) b2 =

∫
R

dxdy

∫
R

|φ′(z)|2dxdy ≥
(∫

R

|φ′(z)|dxdy
)2

.

However, we also have by Fubini’s theorem and the fundamental theorem of calculus
that ∫

R

|φ′(z)|dxdy =

∫ 1

0

∫ M

0

|φ′(x+ iy)|dxdy

≥
∫ 1

0

∣∣∣∣ ∫ M

0

∂φ

∂x
(x+ iy)dx

∣∣∣∣dy
=

∫ 1

0

|φ(M + iy)− φ(iy)|dy ≥ b(3.14)

where the last inequality we use the fact that |φ(M + iy) − φ(iy)| ≥ b since
φ(iy), φ(M + iy) are on opposite a-sides. Combining (3.13) and (3.14), we have(∫

R

|φ′(z)|dxdy
)2

=

∫
R

dxdy

∫
R

|φ′(z)|2dxdy,

so by the equality statement of Cauchy-Schwarz, |φ′| is constant. Hence φ is affine,
and thus Q is a rectangle. �

We now prove superadditivity of the modulus.

Proposition 3.15 (Superadditivity). If Q1, Q2 are disjoint Jordan quadrilaterals
that share a common a-side, then the Jordan quadrilateral Q1∪Q2 has the property

mod(Q1 ∪Q2) ≥ mod(Q1) + mod(Q2).

Moreover, if equality occurs and Q1∪Q2 is mapped by a vertex-preserving conformal
map to a rectangle, then Q1, Q2 are mapped to sub-rectangles. Similarly, if Q1, Q2

share a common b-side, we can perform a cyclic relabeling of the vertices to obtain

1

mod(Q1 ∪Q2)
≥ 1

mod(Q1)
+

1

mod(Q2)
.
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Proof. If we map Q := Q1 ∪Q2 to the rectangle R = (0,M)× (0, 1) with a vertex-
preserving conformal map, we see that there exists a curve connecting b-sides of R,
partitioning it into two Jordan quadrilaterals R1 and R2. By definition, we have

(3.16) area(R1) + area(R2) = area(R) = mod(Q).

Since our vertex-preserving map is a homeomorphism, it sends connected compo-
nents to connected components, so without loss of generality we may assume Q1, Q2

get mapped to R1, R2 respectively (in a vertex-preserving fashion). By Proposition
3.12, we have

(3.17) area(R1) ≥ mod(Q1) and area(R2) ≥ mod(Q2).

Thus by combining (3.16) and (3.17), we have the desired inequality. The equality
statement follows from the equality statement of Proposition 3.12. �

Now we prove the converse of an earlier statement.

Proposition 3.18. Every 1-quasiconformal map φ : U → V is conformal.

Proof. Suppose Q ⊂⊂ U is a Jordan quadrilateral. By composing φ with vertex-
preserving conformal maps on the left and right, we may assume both Q and φ(Q)
are rectangles. Since φ is 1-conformal, we can further assume Q = φ(Q) = (0,M)×
(0, 1) where M = mod(Q). If we subdivide Q into two rectangles by a vertical line
segment {x} × (0, 1) for a fixed x ∈ (0,M), the moduli of these rectangles are x
and M − x respectively. Applying φ and using Proposition 3.15, we have that φ
preserves these rectangles and hence preserves the x-coordinate. Similarly, we do
this process with a horizontal line segment, and we see φ preserves the y-coordinate,
and is thus the identity, which is clearly conformal. �

We next give an equivalent definition K-quasiconformal in terms of directional
derivatives. We first recall some facts from linear algebra. Suppose φ : U → V is
an orientation preserving diffeomorphism between open, connected sets U, V ⊆ C.
Then we have for z0 ∈ U and h ∈ C sufficiently small

(3.19) φ(z0 + h) = φ(z0) +
∂φ

∂z
(z0)h+

∂φ

∂z
(z0)h+ o(h)

where
∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
and o(h) is a quantity such that o(h)/|h| → 0 as h → 0. We can do this because
any linear transformation A : R2 → R2 can be represented as az + bz for some
a, b ∈ C where we use the ring isomorphism

a+ bi↔
(
a −b
b a

)
,

identifying C with a subspace of M2×2(R). Furthermore, if A = az + bz, then
through computation we see

det(A) = |a|2 − |b|2.

Thus, since φ is orientation-preserving, we have

detDφ(z0) =

∣∣∣∣∂φ∂z (z0)

∣∣∣∣2 − ∣∣∣∣∂φ∂z (z0)

∣∣∣∣2 > 0.
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Recall from singular value decomposition, there exists orthonormal bases (e1, e2)
and (f1, f2) in C with positive scalars s1, s2 such that

Dφ(z0)e1 = s1f1 and Dφ(z0)e2 = s2f2

with

(3.20) detDφ(z0) = |detDφ(z0)| = s1s2 > 0.

Suppose, without loss of generality, that s1 ≥ s2. If Duφ(z) := d
dtφ(z + ut)

∣∣
t=0

denotes the directional derivative, it can be seen that

sup
|u|=1

|Duφ(z0)| = sup
|u|=1

|Dφ(z0)u| = s1

inf
|u|=1

|Duφ(z0)| = inf
|u|=1

|Dφ(z0)u| = s2

by viewing the linear transformation as mapping the unit circle to an ellipse with
radii s1, s2. On the other hand, using (3.19), we see that by choosing suitable values
for u and the triangle inequality that

(3.21)

sup
|u|=1

|Duφ(z0)| = sup
|u|=1

∣∣∣∣∂φ∂z (z0)u+
∂φ

∂z
(z0)u

∣∣∣∣ =

∣∣∣∣∂φ∂z (z0)

∣∣∣∣+

∣∣∣∣∂φ∂z (z0)

∣∣∣∣
inf
|u|=1

|Duφ(z0)| = inf
|u|=1

∣∣∣∣∂φ∂z (z0)u+
∂φ

∂z
(z0)u

∣∣∣∣ =

∣∣∣∣∂φ∂z (z0)

∣∣∣∣− ∣∣∣∣∂φ∂z (z0)

∣∣∣∣.
Note that both of these are positive in this case since s1, s2 > 0. We will use these
relations extensively in the next two statements.

Theorem 3.22. Let K ≥ 1 and φ : U → V be an orientation preserving diffeo-
morphism between open, connected sets U, V ⊆ C. Then φ being K-quasiconformal
is equivalent to the property that for any z ∈ U and u, v ∈ S1 := {z ∈ C ; |z| = 1}
we have

|Duφ(z)| ≤ K|Dvφ(z)|.

Proof. We first prove that the desired property holds if φ is K-quasiconformal by
contrapositive. So there exists z0 ∈ U such that

sup
|u|=1

|Duφ(z0)| > K inf
|u|=1

|Duφ(z0)| > 0.

So by singular value decomposition, there exists v ∈ S1 such that

(3.23) DRvφ(z0) = λR
[
Dvφ(z0)

]
where λ > K and R : R2 → R2 is the counterclockwise rotation matrix of π/2. For
z sufficiently small, we define

ψ(z) :=
φ(z0 + zv)− φ(z0)

Dvφ(z0)
.

So we have by definition and (3.23) that

ψ(0) = 0,
∂ψ

∂x
(0) =

(
1
0

)
,
∂ψ

∂y
(0) =

(
0
λ

)
By the linearization of ψ, we have for sufficiently small h that

(3.24) ψ(h) =

(
1 0
0 λ

)
h+ o(h)
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where o(h) is a quantity such that o(h)/|h| → 0 as h → 0. If we let ε > 0 be
sufficiently small and R = (0, ε) × (0, ε), we see that by (3.24) and Proposition
3.12, we have that mod

(
ψ(R)

)
> K mod(R) = K, which implies ψ is not K-

quasiconformal and hence φ is not K-quasiconformal.
Conversely, suppose Q ⊂⊂ U is a Jordan quadrilateral and φ satisfies the prop-

erty that for any z ∈ U and u, v ∈ S1 := {z ∈ C ; |z| = 1} we have

|Duφ(z)| ≤ K|Dvφ(z)|.

One can check that this property is unchanged by composing φ with conformal
maps on the left or right, so we may assume that Q = (0,M)× (0, 1) and φ(Q) =
(0,M ′) × (0, 1) where M := mod(Q) and M ′ := mod

(
φ(Q)

)
. Then by change of

variables and Fubini’s theorem, we have

M ′ =

∫
φ(Q)

dxdy

=

∫
Q

detDφ(z)dxdy

(3.20)
=

∫
Q

sup
|u|=1

|Duφ(z)| inf
|u|=1

|Duφ(z)|dxdy

≥
∫
Q

1

K

∣∣∣∣∂φ∂x (z)

∣∣∣∣2dxdy
=

1

K

∫ 1

0

∫ M

0

∣∣∣∣∂φ∂x (x+ iy)

∣∣∣∣2dxdy
≥ 1

MK

∫ 1

0

∣∣∣∣ ∫ M

0

∂φ

∂x
(x+ iy)dx

∣∣∣∣2dy
≥ 1

MK

∫ 1

0

(M ′)2dy

where the penultimate inequality we use the Cauchy-Schwarz inequality. This gives
M ′ ≤ KM , and thus φ is K-quasiconformal. �

Corollary 3.25. Let K ≥ 1 and φ : U → V be an orientation preserving diffeo-
morphism between open, connected sets U, V ⊆ C. Then φ being K-quasiconformal
is equivalent to ∣∣∣∣∂φ∂z (z)

∣∣∣∣ ≤ K − 1

K + 1

∣∣∣∣∂φ∂z (z)

∣∣∣∣
for all z ∈ U .

Proof. The property described in Theorem 3.22 is equivalent to

sup
|u|=1

|Duφ(z)| ≤ K inf
|v|=1

|Dvφ(z)|,

for all z ∈ U . By (3.21), this is equivalent to the desired result. �

The next few statements cover extending quasiconformal maps to larger do-
mains. This includes analogs of Riemann’s removable singularity theorem and the
Schwartz reflection principle. To this end, we next prove a very technical property
of quasiconformal maps.
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Proposition 3.26 (Absolute Continuity on Lines). Let φ : U → V be a K-
quasiconformal map between two open, connected subsets of C. If (0,M)×(0, 1) ⊂⊂
U , then for almost every t ∈ [0, 1], the function φ(· + ti) is absolutely continuous
on [0,M ].

Proof. We first define

A(t) = area
(
φ
(
[0,M ]× [0, t]

))
for t ∈ [0, 1]. We see that A is a non-decreasing function and hence differentiable
almost everywhere. We claim that for t ∈ [0, 1] where A is differentiable, φ(· + ti)

is absolutely continuous on [0,M ]. Indeed, let ε > 0. Then we let δ := ε2

KA′(t)

if A′(t) 6= 0 (if A′(t) = 0, we can make δ anything greater than 0). Suppose
[x1, y1], . . . , [xm, ym] are disjoint intervals in [0,M ] with

∑m
j=1(yj − xj) ≤ δ. Now

let η > 0 be a small number that can depend on these intervals. We define

Rj := (xj , yj)× (t, t+ η)

for j = 1, . . . ,m. Note mod(Rj) =
yj−xj
η , and since φ is K-quasiconformal, we have

that

(3.27) mod
(
φ(Rj)

)
≤ Kyj − xj

η
.

On the other hand, using Proposition 3.12, we have

(3.28)
|φ(yj + ti)− φ(xj + ti)− o(1)|2

area
(
φ(Rj)

) ≤ mod
(
φ(Rj)

)
where o(1) is a quantity with the property that o(1) → 0 as η → 0. Combining
(3.27) with (3.28) and summing over j = 1, . . . ,m, we see

m∑
j=1

|φ(yj + ti)− φ(xj + ti)− o(1)| ≤

√
K

η

(
m∑
j=1

√
yj − xj

√
area

(
φ(Rj)

))
Squaring and using the Cauchy-Schwarz inequality, we have( m∑

j=1

|φ(yj + ti)− φ(xj + ti)− o(1)|
)2

≤ KA′(t)
m∑
j=1

(yj − xj) + o(1).

where we use the fact that
∑m
j=1 area

(
φ(Rj)

)
≤ A(t+ η)−A(t) = (A′(t) + o(1))η.

Finally, sending η → 0, we have

m∑
j=1

|φ(yj + ti)− φ(xj + ti)| ≤
√
KA′(t)δ < ε,

which concludes the proof. �

The next statement uses this proposition in a crucial part of the proof.

Proposition 3.29. Let φ : U → V be a K-quasiconformal map between two open,
connected subsets of C. If N ⊂ C is a closed set of Lebesgue measure 0 such that φ
is conformal on U \N , then φ is 1-quasiconformal, and hence by Proposition 3.18,
φ is conformal.
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Proof. Suppose Q ⊂⊂ U is a Jordan quadrilateral. Note that the image of a
Lebesgue measure zero sets under conformal maps is Lebesgue measure zero, since
conformal maps are locally Lipschitz (in literature, this condition is called Lusin’s
N-condition). So, by composing φ with conformal maps on the left and right, we
may assume Q = (0,M) × (0, 1) and φ(Q) = (0,M ′) × (0, 1) where M = mod(Q)
and M ′ = mod

(
φ(Q)

)
(with N still having Lebesgue measure 0). Following the

proof of Theorem 3.22, we have that by change of variables and Fubini’s theorem

M ′ ≥
∫
φ(Q\N)

dxdy

=

∫
Q\N

∣∣∣∣∂φ∂x (z)

∣∣∣∣2dxdy
=

∫
Q

∣∣∣∣∂φ∂x (z)

∣∣∣∣2dxdy
=

∫ 1

0

∫ M

0

∣∣∣∣∂φ∂x (x+ iy)

∣∣∣∣2dxdy
≥ 1

M

∫ 1

0

∣∣∣∣ ∫ M

0

∂φ

∂x
(x+ iy)dx

∣∣∣∣2dy
=

1

M

∫ 1

0

|φ(M + yi)− φ(yi)|2dy

≥ 1

M

∫ 1

0

(M ′)2dy

where the penultimate inequality we use Cauchy-Schwarz and the last equality we
use the Lebesgue’s fundamental theorem of calculus (utilizing Proposition 3.26).
This gives M ′ ≤M , and thus φ is 1-quasiconformal. �

Recall Hurwitz’s theorem which states that the locally uniform limit of conformal
maps is either conformal or constant. The next theorem is a weaker form of this for
quasiconformal maps. Before we do this, we state and prove a continuity property
of the modulus.

Proposition 3.30. Suppose Qn is a sequence of Jordan quadrilaterals which con-
verge to another Jordan quadrilateral Q where Qn ⊆ Q. By this, we mean the
vertices of Qn converge to their respective counterparts in Q and each a-side in Qn
converges to the a-side of Q in the Hausdorff sense, and similarly for the b-sides.
Then we have

mod(Qn)→ mod(Q)

as n→∞.

Proof. Since the Jordan quadrilateral convergence is preserved under vertex-preserving
conformal maps, we may assume Q = (0,M) × (0, 1) where M = mod(Q). By
Proposition 3.12, we have for all n ≥ 1 that

(3.31)
b2n
An
≤ mod(Qn) ≤ An

a2
n

where An is the area of Qn, an is the shortest Euclidean distance from a point on a
b-side to another point on the other b-side of Qn, and bn is the shortest Euclidean
distance from a point on a a-side to another point on the other a-side of Qn. By
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the definition of Hausdorff convergence, for any ε > 0 there exists N > 0 such that
for all n ≥ N we have the Hausdorff distances between the corresponding sides is
less than ε with

(ε,M − ε)× (ε, 1− ε) ⊆ Qn.
Thus we have

An ≤M
M − 2ε ≤ bn
1− 2ε ≤ an,

which, with (3.31), implies

(M − 2ε)2

M
≤ mod(Qn) ≤ M

(1− 2ε)2

for ε < 1/2. Thus mod(Qn)→ mod(Q) as n→∞. �

Now for Hurwitz’s theorem for quasiconformal maps.

Theorem 3.32 (Hurwitz). Let K ≥ 1 and φn : U → φn(U) be a sequence of K-
quasiconformal maps that converge locally uniformly to an orientation-preserving
homeomorphism φ : U → V . Then φ is also K-quasiconformal.

Proof. Let Q ⊂⊂ U be a Jordan quadrilateral. By composing the φn’s and φ with
a conformal map, we may assume Q = (0,M) × (0, 1) where M = mod(Q). Now
let

Qm :=

(
1

m
,M − 1

m

)
×
(

1

m
, 1 +

M − 2

mM

)
for m > 2/M . It is easy to see that mod(Qm) = mod(Q), and so

(3.33) mod
(
φn(Qm)

)
≤ K mod(Q)

for all m > 2/M and n ≥ 1. Now for all m > 2/M , Qm is compact and disjoint
from C \ φ(Q), which is closed, so there exists εm > 0 such that

(3.34) |φ(z)− w| ≥ εm
for all z ∈ Qm and w ∈ C \ φ(Q). On the other hand, we have φn → φ uniformly
on Qm and so there exists nm > 0 where

(3.35) |φnm(z)− φ(z)| < εm
2

for all z ∈ Qm. Combining (3.34) and (3.35), by the triangle inequality we have

|φnm(z)− w| ≥ εm
2

for all z ∈ Qm and w ∈ C \ φ(Q). Hence φnm(Qm) ⊆ φ(Q). Since Qm ↗ Q in the
sense of Proposition 3.30 and φnm → φ locally uniformly, we have φnm(Qm)→ φ(Q)
in the sense of Proposition 3.30. Thus mod

(
φnm(Qm)

)
→ mod

(
φ(Q)

)
. Substitut-

ing nm for n in (3.33), we have our result after letting m→∞. �

We next prove the quasiconformal analog to Riemann’s removable singularity
theorem.

Theorem 3.36. Suppose φ : U → V is K-quasiconformal and z0 is an isolated

boundary point of U . Suppose there is an orientation-preserving homeomorphism φ̃

that is an extension of φ on U ∪ {z0}. Then φ̃ is K-quasiconformal.
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Note that the assumption of the existence of an extension can be dropped (see
Theorem 8.1 on page 47 of [10]). We will, however, be only using this statement.

Proof. Let Q ⊂⊂ U ∪ {z0} be a Jordan quadrilateral. We can assume z0 ∈ Q
for otherwise the statement would follow from the K-quasiconformality of φ. By

composing φ̃ with a conformal map, we may assume φ̃(Q) = (0,M ′)× (0, 1). Now

consider Q′1 := (0,<φ̃(z0))× (0, 1) and Q′2 := (<φ̃(z0),M ′)× (0, 1). By Proposition
3.15, we have

mod
(
φ̃(Q)

)
= mod(Q′1) + mod(Q′2)

≤ K mod
(
φ−1(Q′1)

)
+K mod

(
φ−1(Q′2)

)
≤ K mod

(
φ−1(Q′1) ∪ φ−1(Q′2)

)
= K mod(Q),

as desired. �

Before we prove the analog of Schwarz’s reflection principle, we first prove an
easy but important consequence of Proposition 3.30. We first start with a definition.

Definition 3.37. An injective curve γ : [0, 1] → C is called analytic if it is the
image of [0, 1] under a conformal map defined in a neighborhood of [0, 1]. Similarly,
a Jordan curve γ : S1 → C is called analytic if it is the image of S1 under a
conformal map defined in a neighborhood of S1.

Lemma 3.38. Let φ : U → V be an orientation-preserving homeomorphism that
satisfies

mod
(
φ(Q)

)
≤ K modQ

for all Jordan quadrilaterals Q ⊂⊂ U with analytic sides whose mapping to a rec-
tangle (from Theorem 3.8) has a conformal extension to a domain containing Q.
Then φ is K-quasiconformal.

Proof. Let Q ⊂⊂ U be a Jordan quadrilateral. By Theorem 3.8, there exists a
conformal map f taking Q to a rectangle R = (0,M) × (0, 1). We approximate R
from the inside by

Rn :=

(
1

n
,M − 1

n

)
×
(

1

n
, 1− 1

n

)
.

Consider Qn := f−1(Rn). These Jordan quadrilaterals approximate Q in the sense
of Proposition 3.30 by the uniform continuity of f ’s extension to Q. Furthermore,
each canonical map of Qn has a conformal extension (notably f), and each side of
Qn is analytic. By assumption, we have

mod
(
φ(Qn)

)
≤ K modQn

for all n. Letting n→∞ and using the uniform continuity of φ, we have the desired
result. �

Now we are set to prove the analog to Schwartz’s reflection principle for quasi-
conformal maps.

Theorem 3.39 (Schwartz). Let K ≥ 1 and φ : U → V be an orientation-preserving
homeomorphism. Suppose γ : [0, 1] → U is an analytic curve lying in U except
possibly at its endpoints. Then if φ : U \ γ → φ(U \ γ) is K-quasiconformal, then
φ : U → V is K-quasiconformal.
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Proof. Let Q ⊂⊂ U be a Jordan quadrilateral with analytic sides whose mapping to
a rectangle has a conformal extension. Since each side of Q is analytic, we have that
Q ∩ γ is a finite union of disjoint closed analytic arcs γ1, . . . , γn. By composing φ
with conformal maps, we may assume Q = (0,M)×(0, 1) and φ(Q) = (0,M ′)×(0, 1)
where M = mod(Q) and M ′ = mod(Q′). If γj is not a horizontal segment, since it
is analytic, it can be divided into finitely many curves which intersect any horizontal
line at most once (this can be done by dividing at the finitely many points where
=γ′j = 0). We can partition Q into horizontal rectangles

Rk := (0,M)× (yk−1, yk)

where 0 = y0 < y1 < · · · < ym = 1 and such that for every k, j, Rk ∩ γj is a
finite union of curves joining b-sides of Rk. Note that if we refine this partition, the
maximum number of curves intersecting an Rk is invariant. So for any ε > 0, using
the uniform continuity of φ, we can find a refinement of the partition above such
that for every k, the sum of the diameters of the components of φ

(
Rk ∩ (

⋃
j γj)

)
is less than ε. Without loss of generality, we call this refinement the same as the
partition above. Note that in this partition, the γj divide each Rk into finitely
many (possibly degenerate) quadrilaterals Rk,h. Denote the images of Rk and Rk,h
in Q′ by R′k and R′k,h respectively. If dk,h denotes the distance between the a-sides

of R′k,h, then by the property gained from the refinement we have

(3.40) M ′ −
∑
h

dk,h < ε

For the nondegenerate Jordan quadrilateral R′k,h, we have by Proposition 3.12 that

d2
k,h

area(R′k,h)
≤ mod(R′k,h).

By summing over h and using mod(R′k,h) ≤ K mod(Rk,h), we have

1

K

∑
h

d2
k,h

area(R′k,h)
=

1

K

∑
h:R′k,h nondeg.

d2
k,h

area(R′k,h)

≤ 1

K

∑
h:R′k,h nondeg.

mod(R′k,h)

≤
∑

h:R′k,h nondeg.

mod(Rk,h)

3.12
≤

∑
h:R′k,h nondeg.

area(Rk,h)

≤
∑
h

area(Rk,h)

= area(Rk) = mod(Rk).

and hence by Cauchy-Schwarz

mod(Rk) ≥ 1

K

(∑
h dk,h

)2∑
h area(R′k,h)

.
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By (3.40), we have

mod(Rk) ≥ 1

K

(M ′ − ε)2

area(R′k)
=⇒ area(R′k) ≥ 1

K

(M ′ − ε)2

mod(Rk)

and summing over k and using Proposition 3.15, we obtain

M ′ ≥ 1

K

(M ′ − ε)2

M

After we let ε→ 0, we are done. �

We next define ring domains and their complex modulus.

Definition 3.41. Given any two Jordan curves γ1, γ2 where γ1 is contained in the
interior of γ2, we define the ring domain between γ1 and γ2 to be the open region
between these curves. An example of a ring domain is an annulus Ar,R := {z ∈
C ; r < |z| < R}.

We give regularity to this definition with the following theorem.

Theorem 3.42. For every ring domain A there exists a conformal map ψ : A →
A1,R for some R > 1. Furthermore, this R is unique.

Proof of Existence. Let A be a ring domain with boundary Jordan curves γ1, γ2

with γ1 in the interior of γ2. Since the interior of a Jordan curve is simply connected,
by applying a Riemann map, we can assume γ2 is the unit circle and γ1 is a Jordan
curve in D with 0 in it’s interior. From this, we can see A is homeomorphic to
the exterior of γ1, which implies A has fundamental group Z. Recall that the
exponential map exp : C → C \ {0} is a covering map. So A′ := exp−1A is
connected. Furthermore, A′ is simply connected. One can see this because by
covering space theory we have

exp−1{a} ∼=
π1(A, a)

exp∗ π1(A′, a′)

where ea
′

= a for some a ∈ A. Now exp−1{a} is infinite while π1(A, a) = Z, so this
implies exp∗ π1(A′, a′) = 0 and hence π1(A′, a′) = 0. It is easy to see that A′ is not
the whole plane since 0 /∈ A′. By the Riemann mapping theorem, there exists a
biholomorphic map f : A′ → D. Fix a′ ∈ A′, and consider the sequences

a+
n := a′ + 2πin

a−n := a′ − 2πin.

It is clear a+
n , a

−
n ∈ A′, and since f is proper, f(a+

n ) and f(a−n ) escape to infinity in
D. Since the sequences f(a+

n ) and f(a−n ) are bounded, there exists subsequences
of both converging to θ+, θ− ∈ ∂D respectively (note θ+ 6= θ− by continuity).
We claim that the original sequences f(a+

n ) and f(a−n ) converge to θ+ and θ−

respectively. Indeed, this follows from the continuity of f( 1
z ) on 1

A . By composing
f with an automorphism of the unit disc, we can assume θ+ = 1 and θ− = −1.
Now consider S := {z | −π < <(z) < 0} and g : D → S where

g(z) := i log
z + 1

i(z − 1)

with log being the principal branch. If h := g ◦ f , then it is easy to see that
=(h(a+

n )) → ∞ and =(h(a−n )) → −∞. Note that the function h′ : A′ → S where
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h′(z) := h(z + 2πi) has this same property. So h′ ◦ h−1 is an automorphism of S
that takes a sequence diverging to i∞ to a sequence diverging to i∞ and similarly
for −i∞. Note that the automorphism group of S is{

i log
ae−iz + b

ce−iz + d
| a, b, c, d ∈ R, ad− bc = 1

}
.

When looking at h′ ◦ h−1, the statement about i∞ forces c = 0, and the statement
about −i∞ forces b = 0. Thus h′ ◦ h−1(z) = z + i log a2 where a ∈ R 6=0. In other
words,

h(z + 2πi) = h(z) + yi =⇒ 2π

y
h(z + 2πi) =

2π

y
h(z) + 2πi

for some y ∈ R 6=0. So we have found a biholomorphic map 2π
y h from A′ to a vertical

strip that is invariant under adding 2πi. Then it is easy to see that the map

e
2π
y h(log z)

is a well-defined biholomorphic map from A to an annulus. Scaling if necessary, we
can assume the annulus is A1,R for some R > 1. �

Proof of Uniqueness. Suppose we have too such maps ψ : A→ A1,R and ψ′ : A→
A1,R′ . Note ψ′ ◦ ψ−1 : A1,R → A1,R′ . By a proof similar to Theorem 3.3, we see

ψ′ ◦ ψ−1 extends to a homeomorphism from A1,R to A1,R′ . By composing with an
inversion, we can assume ∂D maps to to ∂D and ∂DR maps to ∂DR′ . By Schwartz
reflection principle, we can extend ψ′ ◦ ψ−1 to an automorphism of C \ {0}. By
Riemann’s removable singularity theorem, we can finally extend this map to an
automorphism of the complex plane. Since 0 7→ 0 and ∂D maps to ∂D, we see that

ψ′ ◦ ψ−1(z) = eiθz

for some θ ∈ R (or ψ′ ◦ ψ−1(z) = 1
eiθz

if we had to compose with an inversion).
Since ∂DR maps to ∂DR′ , we see R = R′, as desired. �

Now for the definition of the modulus of a ring domain.

Definition 3.43. Let A be a ring domain. Then we define

mod(A) := logR

where R is as in Theorem 3.42.

Note that this definition agrees (up to a scaling) with the definition of the mod-
ulus of a quadrilateral in the following way: if we apply the principal branch of
the logarithm to A1,R \ (−∞, 0], we get a rectangle (0, logR)× (−π, π), which has
modulus 1

2π logR. We now prove an equivalence.

Proposition 3.44 (Alternate definition of modulus for ring domains). Let A be a
ring domain. Then we have the following two statements:

• mod(A) is the largest quantity with the following property: for any Borel
measurable ρ : A → [0,∞) there exists a rectifiable curve γ in A winding
once around the inner boundary such that(∫

γ

ρ(z)|dz|
)2

≤ 2π

mod(A)

∫
A

ρ2(z)dxdy.
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• mod(A) is the smallest quantity with the following property: for any Borel
measurable ρ : A→ [0,∞) there exists a rectifiable curve γ in A connecting
the disjoint boundary curves γ1, γ2 of A such that(∫

γ

ρ(z)|dz|
)2

≤ mod(A)

2π

∫
A

ρ2(z)dxdy.

Proof. Like in the proof of Proposition 3.11, after using Theorem 3.42 and a change
of variables, we may assume A = A1,R. We first prove the first statement. For this,
we first note that given ρ : A1,R → [0,∞), there exists t ∈ (1, R) such that

(3.45)

∫ 2π

0

t2ρ2(teiθ)dθ ≤ 1

logR

∫
A1,R

ρ2(z)dxdy

for otherwise, we would get a contradiction by dividing by t and integrating both
sides of the inequality. Letting γ(θ) = teiθ for θ ∈ [0, 2π), we see(∫

γ

ρ(z)|dz|
)2

=

(∫ 2π

0

tρ(teiθ)dθ

)2

≤ 2π

∫ 2π

0

t2ρ2(teiθ)dθ

(3.45)

≤ 2π

logR

∫
A1,R

ρ2(z)dxdy

where the first inequality follows from the Cauchy-Schwarz inequality. On the other
hand, if we set ρ(z) = 1/|z|, then for any rectifiable curve γ in A1,R winding once
around the inner boundary we have(∫

γ

1

|z|
|dz|

)2

≥
∣∣∣∣ ∫
γ

1

z
dz

∣∣∣∣2 = (2π)2

and ∫
A1,R

1

|z|2
dxdy =

∫ 2π

0

∫ R

1

1

t
dtdθ = 2π logR.

So we have (∫
γ

ρ(z)|dz|
)2

≥ 2π

logR

∫
A1,R

ρ2(z)dxdy.

The second statement in the theorem is very similar. Given ρ : A1,R → [0,∞),
there exists θ ∈ [0, 2π) such that

(3.46)

∫ R

1

tρ2(teiθ)dt ≤ 1

2π

∫
A1,R

ρ2(z)dxdy.

Letting γ(t) = teiθ for t ∈ [1, R], we have(∫
γ

ρ(z)|dz|
)2

=

(∫ R

1

ρ(teiθ)dt

)2

≤ logR

∫ R

1

tρ2(teiθ)dt

(3.46)

≤ logR

2π

∫
A1,R

ρ2(z)dxdy
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where the first inequality follows from the Cauchy-Schwarz inequality. On the other
hand, if we set ρ(z) = 1/|z|, then for any rectifiable curve γ in A1,R connecting the
boundary curves, we have(∫

γ

1

|z|
|dz|

)2

≥
(∫

γ

1

|z|
d|z|

)2

= (logR)2

and ∫
A1,R

1

|z|2
dxdy =

∫ 2π

0

∫ R

1

1

t
dtdθ = 2π logR.

So we have (∫
γ

ρ(z)|dz|
)2

≥ logR

2π

∫
A1,R

ρ2(z)dxdy.

�

Remark 3.47. It is clear from the first statement of the theorem that if A and
B are ring domains with A ⊆ B then we have mod(A) ≤ mod(B). Indeed, take
any arbitrary ρ : B → [0,∞). If we consider ρ|A, then there exists a rectifiable
γ ⊂ A ⊆ B where (∫

γ

ρ(z)|dz|
)2

≤ 2π

mod(A)

∫
A

ρ2(z)dxdy

≤ 2π

mod(A)

∫
B

ρ2(z)dxdy.

So 2π
mod(B) ≤

2π
mod(A) which implies our desired result.

The next proposition connects K-quasiconformal maps to ring domains.

Proposition 3.48. If φ : U → V is K-quasiconformal and A ⊂⊂ U is a ring
domain, then we have

mod
(
φ(A)

)
≤ Kmod(A).

Proof. By composing φ with a conformal map guaranteed by Theorem 3.42, we may
assume A = A1,R where R > 1. If we let Q1 be the upper Jordan quadrilateral with
vertices −R,−1, 1, R and Q2 the lower (where b-sides are (−R,−1) and (1, R)), we
see by Definition 3.43 we have

(3.49)
1

mod(Q1)
+

1

mod(Q2)
=

2π

mod(A)
.

We claim that

(3.50)
1

mod
(
φ(Q1)

) +
1

mod
(
φ(Q2)

) ≤ 2π

mod
(
φ(A)

) .
Indeed, suppose f is a conformal map sending φ(A) to an annulus A1,R. Then for
any rectifiable γ in A connecting the disjoint boundary curves with ρ := |f ′/f |, we
have∫

γ

ρ(z)|dz| =
∫
γ

|f ′(z)|
|f(z)|

|dz| =
∫
f◦γ

1

|z|
|dz| ≥

∫
f◦γ

1

|z|
d|z| = logR = mod

(
φ(A)

)
.

So by the second statement of Proposition 3.11, we have

1

mod
(
φ(Qj)

) ≤ 1

mod
(
φ(A)

)2 ∫
φ(Qj)

ρ2(z)dxdy
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for j = 1, 2. Thus

1

mod
(
φ(Q1)

) +
1

mod
(
φ(Q2)

) ≤ 1

mod
(
φ(A)

)2 ∫
φ(A)

ρ2(z)dxdy

=
1

mod
(
φ(A)

)2 ∫
f◦φ(A)

1

|z|2
dxdy

=
1

mod
(
φ(A)

)2 ∫
A1,R

1

r
drdθ

=
2π

mod
(
φ(A)

) .
Combining 3.49 and 3.50 along with the K-quasiconformality of φ, we see that

2π

K mod(A)
=

1

K mod(Q1)
+

1

K mod(Q2)

≤ 1

mod
(
φ(Q1)

) +
1

mod
(
φ(Q2)

)
≤ 2π

mod
(
φ(A)

) . �

We next state and prove two important results.

Proposition 3.51. If φ : C→ V is K-quasiconformal, then V = C.

Proof. By contradiction, assume V 6= C. Since φ is a homeomorphism, V is simply
connected and thus we may assume V = D (by composing φ with the Riemann map
mapping V to D). By Definition 3.43, the modulus log(R) of A1,R goes to infinity
as R → ∞. Now if we apply Proposition 3.48 to φ−1, we see that the modulus of
the ring domain φ(A1,R) also goes to infinity as R → ∞. But the inner boundary
of this ring domain is fixed while the outer boundary is bounded, so it is contained
in an annulus for all R, contradicting Remark 3.47. The fact that it maps the inner
boundary to the inner boundary and similarly for the outer boundary follows from
the properness of φ. �

Theorem 3.52 (Grötszch modulus theorem). Let 0 < r < 1 and G := D \ [0, r].
If B ⊂⊂ D is a ring domain whose inner boundary encloses both 0 and r, then

mod(B) ≤ mod(G).

Note G itself is not a ring domain, but it is conformal to one, so its modulus is
defined. One can see this by applying 1

z to G, translating 1
r to 0, and then applying√

z with a Cayley transformation.

Proof. This follows directly from Remark 3.47 after following the ring domain B
by the maps described above. �

We next prove the quasiconformal version of Montel’s theorem.

Theorem 3.53 (Montel). Let φn : U → φn(U) be a sequence of K-quasiconformal
maps for some K ≥ 1 where the φn(U) are uniformly bounded. Then there exists a
subsequence that converges locally uniformly.
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Proof. Since we have uniform boundedness, we know by the Arzelà-Ascoli theorem
(see page 222 of [11]) that we just need to show {φn}n≥1 is uniformly equicontinuous
on every compact set E ⊂ U . By scaling, we may assume φ(Un) ⊆ 1

2D. So if

E ⊂ U is an arbitrary compact set, let r = 1
3d(E, ∂U) with E ⊆

⋃
z∈E Br(z) an

open cover. By compactness, there exists a finite subcover
⋃n
i=1Br(zi). So if δ < r,

then |z − w| < δ implies that there exists i = 1, . . . , n such that z ∈ Br(zi) and
w ∈ B2r(zi). Then for all n ≥ 1 we have by K-quasiconformality that

1

K
log
(2r

δ

)
≤ 1

K
mod

(z + w

2
+Aδ,2r

)
≤ mod

(
φn

(z + w

2
+Aδ,2r

))
≤ mod

(
D \

[
0,
|φn(z)− φn(w)|
|1− φn(w)φn(z)|

])
where the last inequality follows from Theorem 3.52 and applying an automorphism
of the disk. If we define m(x) = mod(D \ [0, x]), then by Theorem 3.52 we see that
it is a decreasing function on (0, 1) where m(x)→∞ as x↘ 0. Thus we have

(3.54)
1

K
log
(2r

δ

)
≤ mod

(
D \ [0, 1

2 |φn(z)− φn(w)|]
)

for all n ≥ 1. Thus given ε > 0, we can make δ < r small enough so as to make
m( 1

2 |φn(z) − φn(w)|) in (3.54) large enough to imply |φn(z) − φn(w)| < ε for all
n ≥ 1. �
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4. Approximating Riemann Mappings

We return to circle packings, but in order to understand finite circle packing
more fully, we need to consider infinite circle packings. The following is an example
of an infinite circle packing that we will use throughout this section.

Definitions 4.1. The regular hexagonal circle packing (or honeycomb packing for
short) is the collection of circles

H := (z + S1)z∈Γ

where Γ is the hexagonal lattice

Γ := {2n+ 2e
2πi
3 m | n,m ∈ Z}

and z + S1 := {z + eiθ | θ ∈ [0, 2π)}. This circle packing comes with the counter-
clockwise orientation induced by the plane. Note that two circles z + S1, w + S1

in this packing are tangent if and only if z − w = 2e
π
3 k for some k = 1, 2, . . . , 5.

Between any three mutually tangent circles in this packing is an open region which
we define as the interstice. This interstice is inscribed in what we call the dual
circle formed by the three points of tangency. The interstice can be viewed as a
hyperbolic triangle in the dual circle, and by a calculation, we see that the radius
of any dual circle is 1/

√
3.

The next definition will be useful in the next two important lemmas from Rodin
and Sullivan.

Definition 4.2. Circles C1, . . . , Cn form a chain if they have disjoint interiors and
Ci is externally tangent to Ci+1 in a counterclockwise order for i = 1, . . . , n − 1.
We call this chain closed if Cn is externally tangent to C1. Given a circle C, an
external C-chain C1, . . . , Cn is a closed chain for which each circle in the chain is
externally tangent to C, and similarly, an internal C-chain C1, . . . , Cn is a closed
chain for which each circle in the chain is internally tangent to C.

Lemma 4.3 (Ring Lemma). Let C be a circle of radius r with an external C-chain
C1, C2, . . . , Cn. Then there is a constant cn only depending on n where the radii of
each Ci is at least rcn.

Sketch of Proof. By scaling and translating, we may assume C = S1. If n = 3, I
claim that all the circles have radius greater than 1. Indeed, if C1 = 2 + S1, then
C2 ⊂ {y ≥ 1} ∪ {y > |x − 1|} and C3 ⊂ {y ≤ −1} ∪ {y < −|x − 1|}. But then
C2∩C3 = ∅ and hence cannot be tangent. For the general case, by considering the
polygon surrounding C, we see that there is a radius greater than π/n. Without
loss of generality, we suppose C1 has the largest radius. Now the radius C2 cannot
be too small because if it was, the next n − 3 circles would be forced in the cusp
between C and C1, which would then reduce to the n = 3 case. A similar argument
can be given for the rest of the circles. �

A rigorous proof of this lemma with an explicit calculation of cn is given in
Appendix B of [9]. This uses Decartes’ circle theorem.

Lemma 4.4 (Honeycomb Length-Area Lemma). Let n ≥ 1 and define Hn :=⋃n
j=1(Cji )6j

i=1 where (C1
i )6
i=1 is the external S1-chain in H, (C2

i )12
i=1 is the chain

immediately afterwards, and so on. If Cn is a circle packing with the same nerve as
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Hn contained in a disk of radius R, then the circle C0 in Cn corresponding to S1

in Hn has radius at most 3 R√
log(n)

.

Proof. Let rji > 0 be the radius of the corresponding circle in Cn corresponding to

Cji ∈ Hn. Then by definition of Cn, we have

n∑
j=1

6j∑
i=1

π(rji )
2 ≤ πR2.

Since
∑n
j=1

1
j > log(n), there exists j = 1, . . . , n such that

6j∑
i=1

(rji )
2 ≤ R2

j log(n)
=⇒ 6j

6j∑
i=1

(rji )
2 ≤ 6R2

log(n)
.

By the Cauchy-Schwarz inequality,

6j∑
i=1

rji ≤
3R√
log(n)

.

Note that the left hand side is the semiperimeter of a polygon surrounding C0, so
after dividing by π, we have our desired bound. �

For next technical lemma, we first introduce some notations.

Notations 4.5. For any z0 + S1 in H, we can define the inversion map ιz0 :
C ∪ {∞} → C ∪ {∞} across this circle on the Riemann sphere by

ιz0(z0 + reiθ) := z0 +
1

r
eiθ

for 0 < r <∞ and ιz0(z0) :=∞, ιz0(∞) := z0. In other words,

ιz0(z) := z − z0
−1

+ z0.

Let G be the group of transformations from C ∪ {∞} to C ∪ {∞} generated by all
the inversions ιz0 of circles in H. If I is the union of all the interstices in H, then
we define

GI :=
⋃
g∈G

g(I)

as the union of the images of the interstitial regions I under all of the transforma-
tions in G.

Lemma 4.6. m(C \GI) = 0 where m denotes the Lebesgue measure.

Proof. Let GH denote all the circles formed by applying an element of G to the
circles in H. If z ∈ C \ GI, then it lies in one of the circles in H, and then after
inverting through that circle, it lies in another circle in H, and so forth. After
undoing the inversions, we see that z lies in infinitely many circles in GH. Let C
be one of these circles. By definition of GI, GI contains a union of six interstices
bounded by C that appear as the outline of an internal C-chain of six circles.
Applying the same argument used to establish Lemma 4.3, we see that the six
circles in this internal C-chain have radius comparable to C, and hence there exists
c > 0 independent of C such that

m(GI ∩DC) > c ·m(DC)
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where DC is the disk enclosed by C. In particular, this c is the same for each
circle in the nested sequence containing z. Since these circles’ radii decrease to zero
geometrically by Lemma 4.3, we see that the density of z satisfies

Θ2(C \GI, z) := lim
r↘0

m
(
Br(z) ∩ C \GI

)
m
(
Br(z)

) ≤ 1− c < 1.

But Lebesgue’s density theorem says Θ2(C \GI, z) = 1 for almost all z ∈ C \GI,
so we have our desired result. �

We next state and prove a quick lemma before a big theorem.

Lemma 4.7. Let C1, C2, C3 and C ′1, C
′
2, C

′
3 be two chains. Then there exists a

Möbius transformation φ that maps each Ci to C ′i and the interstice of C1, C2, C3

conformally onto the interstice of C ′1, C
′
2, C

′
3.

Proof. By first inverting the point of intersection of C1, C2, we can then apply
scaling and rigid motions to normalize to the configuration {y = ±1} ∪ S1 where
the interstitial region is mapped to {−1 < y < 1}∩{x > 0}∩{x2 +y2 > 1}. We call
this transformation φ1 and we let φ2 the corresponding transformation for C ′1, C

′
2.

We see φ := φ−1
2 ◦ φ1 is our desired transformation. �

Theorem 4.8 (Rigidity of the Honeycomb Packing). Let C be an infinite, oriented
circle packing in C with the same nerve as the honeycomb packing H. Then C is
equal to the honeycomb packing up to affine transformations and reflections.

Proof. Step 1: By applying a reflection, we may assume C and H have the same
orientation. For each interstice Ij of H, there is an associated interstice I ′j of C.
By Lemma 4.7, there is a Möbius transformation Tj : Ij → I ′j . These maps can be
combined to form a map φ0 that is conformal on the union of all the interstices of
H, which we denote I.

Step 2: We would eventually like to extend it to the entire complex plane by
first defining it on the (punctured) disks enclosed by circles in H. We first do this
on D \ {0}, as defining φ0 on the other disks is similar. Note S1 in H is bounded
by six interstices I1, . . . , I6 which map to six other interstices I ′1, . . . , I

′
6 that bound

the corresponding circle C0 and are bounded by an external C0-chain C1, . . . , C6.
By Lemma 4.3, all of the circles C1, . . . , C6 have radii comparable (both above and
below) to the radius of C0. As a consequence, using compactness and continuity
of the coefficients in Möbius transformations, the map φ0, viewed as a piecewise
Möbius map mapping S1 to C0, has derivative comparable to the radius of C0 also.
We extend φ0 on D \ {0} by

φ0(reiθ) = A
(
r · φ0(eiθ)

)
where 0 < r < 1 and A is an affine transformation mapping S1 to C0. By Corollary
3.25, we see φ0 is K-quasiconformal on D \ {0} for some K. By extending φ0 to
the other punctured disks in H in the same fashion, we see these K are uniformly
bounded above (which we abusively call K), and by many applications of Theorem
3.39, φ0 is now K-quasiconformal on C and conformal on I. By Proposition 3.51,
φ0(C) = C, and thus the circle packing C and all of its interstices cover the entire
complex plane.
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Step 3: We next use the circular version of the Schwarz reflection principle to
replace φ0 by another K-quasiconformal map that is conformal on a larger region
than I. Let zj + S1 be an arbitrary circle in H, and let Czj be the corresponding

circle in C. If ιzj and ι̃zj are the inversions across zj + S1 and C0 respectively, we
let

φ1(z) := ι̃zj ◦ φ0 ◦ ιzj (z)
for z ∈ zj + D and φ1 ≡ φ0 on or outside zj + S1. By Theorem 3.39, φ1 is still
K-quasiconformal. Also, it remains conformal on I, but is now also conformal on
an additional interstitial region inside the disks of H. Repeating this construction,
one can find a sequence φn : C→ C of K-quasiconformal maps that map each circle
zj + S1 to their counterparts C0 and which are conformal on a sequence of sets In
that increase up to GI. By Theorem 3.53, the restriction of φn to any compact
set forms a normal family (uniform boundedness follows from the fact that these
maps map zj + S1 to Czj ). Using a diagonalization argument, the φn themselves

are a normal family (and similarly for φ−1
n ). By passing to a subsequence, we may

assume φn converge locally uniformly to a limit φ, and that φ−1
n also converge locally

uniformly to a limit that inverts φ. So φ is a homeomorphism that happens to be K-
quasiconformal by Theorem 3.32. It is conformal on GI, and hence by Proposition
3.29 and Lemma 4.6, it is conformal. So φ ∈ Aut(C) = {az + b | a, b ∈ C}. �

Corollary 4.9 (Approximate Rigidity of the Honeycomb Packing). For any ε > 0,
there exists n > 0 such that

1− ε ≤ r1

r0
≤ 1 + ε

where r0 is the radius of the circle C0 in Cn associated to S1 in Hn and r1 is
the radius of an adjacent circle C1 of C0 (Cn and Hn are as in Lemma 4.4 where
R = 1).

Proof. After we normalize r0 = 1 and C0 = S1, we suppose the claim failed for
contradiction. Then there exists a sequence n tending to infinity where rn1 , the
radius of Cn1 which is adjacent to Cn0 = S1 in Cn, stays away from 1. By many
applications of Lemma 4.3, for each circle z + S1 in H, the corresponding circle
Cnz in Cn has radius bounded below by 0 and bounded above by 1. Passing to a
subsequence using Bolzano-Weierstrass and using the Arzelà-Ascoli diagonalization
argument, we may assume rnz → r∞z > 0 as n → ∞. By applying a rotation,
we may assume the circles Cn1 converge to a limit circle C∞1 (in the Hausdorff
sense), and we may assume the orientation of Cn does not depend on n. Induction
shows Cnz converges to a limiting circle C∞z , giving a circle packing C∞ with the
same nerve as H. But Theorem 4.8 guarantees C∞ is an affine copy of H, which,
among other things, implies r∞1 = r∞0 = 1. Thus rn1 → 1, contradicting our initial
assumption. �

We are now set to prove the main theorem of this thesis. Let U be a bounded,
simply connected open set in C with two distinct points z0, z1 ∈ U . By Theorem
3.1, there is a unique conformal map φ : U → D such that φ(z0) = 0 and φ(z1) > 0.
We wish to approximate this map, but first need to define some notions that will
aid in the proof.

Definitions 4.10. • For ε > 0, we let ε·H be the infinite honeycomb packing
scaled by ε. For every circle in ε · H, we define the flower to be the union
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of the closed disk enclosed by the circle, the six interstices bounding it, and
the six closed disks tangent to the circle.
• Let ε be small enough so that z0 lies in a flower of a circle, say C0, in
ε · Hn, and this flower lies in U . Let Iε be the set all circles in ε · H that
can be reached by a finite chain of consecutively tangent circles in ε · Hn
whose flowers all lie in U . Elements of Iε are called inner circles, and the
circles that are not in Iε but are tangent to inner circles are called border
circles. Note that because U is simply connected, the union of all the flowers
of inner circles is also simply connected. Therefore, one can traverse the
border circles by a closed chain of consecutively tangent circles, with the
inner circles enclosed by this chain.
• Let Cε be the circle packing consisting of inner and border circles. Applying

Theorem 2.12, one can find a circle packing C′ε in D with the same nerve
(and orientation) as Cε such that all the circles associated to border circles
are internally tangent to S1. Applying an automorphism of the disk, we may
assume the flower containing z0 in Cε is mapped to the flower containing 0 in
C′ε, and the flower containing z1 is mapped to a flower containing a positive
real (from the lemma proceeding the statement of the main theorem, z1

will lie in such a flower for ε small enough). Let Uε be the union of all
the solid equilateral triangles formed by the nerve of Cε, and let Dε be
the corresponding union of all the solid equilateral triangles formed by the
nerve of C′ε

Before the main theorem of this thesis, we prove two lemmas about convergence.

Lemma 4.11. Uε converges to U in the Hausdorff sense (In particular, z1 ∈ Uε
for sufficiently small ε).

Proof. Before we prove this for Uε, we first show a similar statement. Let δ be
small enough such that dist(z0, ∂U) > δ, and define open sets

Vδ := {z ∈ U | dist(z, ∂U) > δ, z and z0 are in the same connected component of Vδ}.
We claim ⋃

δ>0

Vδ = U.

Indeed, if z ∈ U , we connected it to z0 via a path γ in U . This path is compact,
the function dist(z, ∂U) has a minimum δ0 on γ. Thus every point in γ is in Vδ0/2,
in particular, z ∈ Vδ0/2.

We claim that Vδ converges to U in the Hausdorff sense as δ → 0. Let ε > 0.
Denote (·)ε the ε-neighborhood of a set. Since U is compact, the cover

U ⊆ (U)ε =
⋃
δ>0

(Vδ)ε

has a finite subcover,

U ⊆ (Vδ1)ε ∪ · · · ∪ (Vδn)ε = (Vmin{δ1,...,δn})ε.

So picking δ < min{δ1, . . . , δn}, we see U ⊆ (Vδ)ε. On the other hand, it is clear
that Vδ ⊆ U ⊆ (U)ε. So we have shown Vδ → U in the Hausdorff distance as δ → 0.

Now we claim V7ε ⊆ Uε. Indeed, let z ∈ V7ε and consider ε · H on the entire
plane. By construction of ε · H, z is within 2ε of the c0 center of the nearest
circle of ε · H. The flower of the circle contains z and is contained in B3ε(c0).
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The union of the flowers of the circles in the flower of c0 is contained in B5ε(c0).
Since dist(z, ∂U) > 7ε and |z − c0| < 2ε, we see all of these circles mentioned are
contained in

B5ε(c0) ⊆ B7ε(z) ⊆ U.
So z is contained in the flower of an inner circle, and every circle in this flower is
in inner circle. We can apply this argument on every point on a path connecting z
and z0 in V7ε, so we have z ∈ Uε.

Finally, since V7ε ⊆ Uε ⊆ U and V7ε → U in Hausdorff distance as ε → 0, we
have Uε → U in Hausdorff distance as ε→ 0. �

Lemma 4.12. Dε converges to D in the Hausdorff sense.

Proof. We first show that the radii of the circles in Dε tend to 0 uniformly as
ε → 0. Indeed, let η > 0 and let n be large enough so that 3√

logn
< η. Now let

δ > 0 be small enough such that if ε < δ, then there exists a circle packing Pε as
a subset of C′ε centered at 0 with the same nerve as H2n (defined in Lemma 4.4).
By construction, every circle in Hn ⊂ Pε is the center of a circle packing with the
same nerve as Hn. By Lemma 4.4, the radii of these circles are bounded above by

3√
log n

< η.

For each other circle C of C′ε, these exists a sequence of disjoint chains

(C1
i )k1i=1, . . . , (C

n
i )kni=1, each such that

• (Cji )
kj
i=1 separates C from the origin and from a point on the unit sphere

• kj ≤ 6j.

Let rij be the radius of the circle Cji . Then by Cauchy-Schwarz, we have( kj∑
i=1

rij

)2

≤ kj
kj∑
i=1

r2
ij .

Let `j := 2
∑kj
i=1 rij denote the length of chain (Cji )

nj
i=1. Then the above gives

`2j
nj
≤ 4

kj∑
i=1

r2
ij =⇒

n∑
j=1

`2j
kj
≤ 4

n∑
j=1

kj∑
i=1

r2
ij ≤ 4.

If ` := min{`1, . . . , `n}, we have

`

2
≤ 1√

1
k1

+ · · ·+ 1
kn

≤ 1√∑n
k=1

1
6k

≤ 3√
log n

< η.

The first property of the chains guarantees that the radius of C is less than `/2,
proving the desired claim.

Now we show Dδ → D in Hausdorff distance as δ → 0. Indeed, let ε > 0 and let
δ > 0 be small enough to guarantee the radii of Dδ are less than ε/2. Note that
border circles of Dδ form an internal S1-chain, with each circle having a radius less
than ε/2. Connecting each center of these circles with a straight line segment to
the centers of adjacent border circles, we obtain a closed curve in Dδ that is within
ε of S1. Since Dδ is simply connected, it contains the inner region of this curve. In
particular, it contains (1− ε)D. Thus

(1− ε)D ⊆ Dδ =⇒ D ⊆ (Dδ)ε.
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On the other hand, it is clear that Dδ ⊆ D ⊆ (D)ε. So we have shown Dδ → D in
the Hausdorff distance as δ → 0. �

Theorem 4.13 (Rodin-Sullivan-Thurston Theorem). Let U be a bounded, simply
connected open set in C with two distinct points z0, z1 ∈ U . If φε : Uε → Dε be
the piecewise affine map each triangle in Uε to the associated triangle in Dε. Then
φε converges locally uniformly to φ as ε→ 0 where φ is the unique conformal map
from U to D such that φ(z0) = 0 and φ(z1) > 0, as guaranteed by Theorem 3.1.

Proof. By Corollary 4.9, if we fix a compact set K ⊂ U , as ε → 0 the circles
in C′ε corresponding to adjacent circles of Cε in K have radii differing by a ratio
of 1 + o(1). This implies that for any compact K ′ ⊂ D, adjacent circles of C′ε
in K ′ also have radii differing by a ratio of 1 + o(1). By basic trigonometry, the
triangles of Dε in K ′ are approximately equilateral (in the sense that each angle is
π
3 + o(1)). By Theorem 3.22, φε is 1 + o(1)-quasiconformal on the corresponding
triangles, and so by Theorem 3.39, it is 1+o(1)-quasiconformal onK. Note Theorem
3.53 guarantees every sequence of φε has a subsequence which converges locally
uniformly on U , and whose inverses converge locally uniformly on D. This limit
is thus a homeomorphism from U to D that maps z0 to 0 and z1 to a positive
real number. By Theorem 3.32, the limit is locally 1-quasiconformal and hence
conformal (by Proposition 3.18). By uniqueness, it must equal φ. As φ is the
unique limit point of all subsequences of the φε, this implies that φε converges
locally uniformly to φ. �
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Appendix

The proof presented obtains the Riemann map as an abstract supremum of a
family of functions. This next proof realizes the Riemann map as the limit of
compositions of expansions, expanding the domain U in Step 1 of the original proof
to the entire disc. We begin with some definitions.

Definition 4.14. The inner radius of a region U ⊂ D that contains the origin is
defined by

rU := sup{ρ > 0 : D(0, ρ) ⊆ U}.

Lemma 4.15. Given a region U ⊂ D that contains the origin, we have

D(0, rU ) ⊆ U.
Furthermore, there exists z ∈ ∂U such that rU = |z|.

Proof. For the first statement, suppose z ∈ D(0, rU ). Then since d := |z|+rU
2 < r,

by definition of supremum, we have z ∈ D(0, d) ⊆ U . For the second statement, by
definition of supremum, there exists z1 ∈ D(0, rU +1) with z1 /∈ U . Similarly, there
exists z2 ∈ D(0,min{rU + 1/2, |z1|}) with z2 /∈ U . Continuing this way, we obtain
a bounded sequence zn where zn ∈ D(0,min{rU + 1/n, |zn−1|}) with zn /∈ U which
has a convergent subsequence (which we also call zn with limit point z). Since

rU ≤ |zn| ≤ rU +
1

n
,

we see |z| = rU . As a limit of a sequence outside of U , we see z ∈ C \ U , but

z ∈ D(0, rU ) ⊆ U , so z ∈ ∂U as desired. �

Now for the definition of expansion.

Definition 4.16. A holomorphic injection f : U → D (where U is a region that
contains 0) is an expansion if f(0) = 0 and |f(z)| > |z| for z ∈ U − {0}.

Lemma 4.17. An expansion f : U → D has the properties rf(U) ≥ rU and |f ′(0)| >
1.

Proof. The second inequality is an easy consequence of the Riemann removable
singularity theorem with the maximum modulus principle applied to z/f(z). For
the first statement, it suffices to show D(0, ρ) ⊆ f

(
D(0, ρ)

)
for 0 < ρ < rU . Suppose

there exists w ∈ D(0, ρ) for which f(z) 6= w for all z ∈ D(0, ρ). Then

1

f(z)− w
is holomorphic on D(0, ρ) and extends continuously to the boundary (this is because

|f(ρeiθ)| > ρ > |w| so f(z) 6= w for z ∈ D(0, ρ)). By the maximum modulus
principle, we have

max
z∈D(0,ρ)

1

|f(z)− w|
= max
z∈∂D(0,ρ)

1

|f(z)− w|

≤ max
z∈∂D(0,ρ)

1

|f(z)| − |w|

≤ max
z∈∂D(0,ρ)

1

ρ− |w|
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which implies
min

z∈D(0,ρ)
|f(z)− w| ≥ ρ− |w|.

Thus f
(
D(0, ρ)

)
⊆ D −D(w, ρ− |w|). One can repeat this argument with finitely

many points on the line segment between 0 and w to deduce that 0 is not in
f
(
D(0, ρ)

)
, a clear contradiction with f(0) = 0. �

Proof of Existence in Theorem 3.1 via expansions. Using step 1 in the previous proof
of this theorem, we can assume U is a Koebe domain U , that is, an open, simply
connected set in D that contains the origin. We wish to produce an expansion
f : U → D. Indeed, let α ∈ ∂U be such that |α| = rU , which can be done by
lemma 4.15. If

ψα(z) =
α− z
1− αz

,

we see that ψα is nonzero on U , and so there exists h : U → D such that

h2 = ψα

on U . We claim f : U → D defined by f := ψh(0) ◦h is an expansion. It is clearly a

holomorphic injection that fixes the origin. Note that f−1 = ψα ◦ ψ2
h(0) is defined

on D and satisfies the conditions for Schwartz lemma. Since f−1 is not injective
on D, we have |f−1(z)| < |z| on D−{0}, and in particular, we have |z| < |f(z)| on
U − {0}, as desired. Note that by the chain rule, we have

(4.18) |f ′(0)| = 1 + rU
2
√
rU

.

Now we define U0 := U and f0 : U0 → D an expansion as above. Note that
U1 := f0(U0) is also a Koebe domain, so we can define the expansion f1 : U1 → D
the same way. Inductively, we have Un := fn−1(Un−1) and fn : Un → D an
expansion. Define Fn : U → D by Fn := fn ◦ · · · ◦ f0. Since Fn are uniformly
bounded, there exists a subsequence (which we also call Fn) that converges to a
function F : U → D uniformly on compact subsets of U . Note that F is an
expansion because clearly F (0) = 0 and

|F (z)| ≥ |F1(z)| > |f0(z)| > |z|
for z ∈ U−{0}. By a corollary of Hurwitz’s Theorem, since Fn are injective, F must
also be injective (for otherwise F = 0, a contradiction with the above inequality).
We wish to show F is surjective. It suffices to show rF (U) ≥ 1. Indeed, note

|F ′n(0)| =
n∏
k=0

|f ′k(0)|

is a strictly increasing sequence greater than 1 (by Lemma 4.17), and it is bounded
above by 1/rU by the Schwartz lemma. So it converges, and after taking logarithms,
we see limn→∞ |f ′n(0)| = 1. Using 4.18, we see limn→∞ rFn(U) = 1 (note rFn(U)

converges since is nondecreasing by Lemma 4.17 and it bounded above by 1). Note
that for all n, there exists an expansion Gn : Un+1 → D such that F = Gn ◦ Fn.
So by Lemma 4.17, we have rF (U) ≥ rFn(U) for all n, and hence rF (U) ≥ 1 as
desired. �
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