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Gamma functions and F1 Lecture 1

Lecture 1: February 14

The topic of this course is the Γ function. You use this as an extra factor when you write
down ζ functions and L-functions. The question is why is that the thing to put there? The
answer is rather more complicated than I expected. This is inspired by a rather mysterious
program by Lars Hesselholt, and by the end of the semester I’ll be able to connect this to
algebraic topology.

The course begins with the Mellin transform. Let

〈α, β〉 = {s ∈ C : Re(s) ∈ [α, β]}
〉α, β〈 = {s ∈ C : Re(s) ∈]α, β[}

Definition 1.1. Suppose f : R>0 → C is integrable and f(t) = O(t−α) as t → 0 and
f(t) = O(t−β) as t→∞. Then the Mellin transform of f is

M{f}(s) =

∫
R>0

tsf(t)d log t.

(This is a Fourier transform w.r.t. the usual multiplicative Haar measure d log t.) This
converges on the open strip 〉α, β〈, and it defines a holomorphic function there.

Let’s begin with a nonexample: polynomials don’t admit Mellin transforms (the integral
doesn’t converge).

Example 1.2. For a > 0 we have

M{χ[a,+∞[}(s) = −a
s

s

and the strip of definition is 〉 −∞,−a〈. Similarly, M{χ]0,1[}(s) = 1
s .

Example 1.3. If f(x) = (1 + x)−1 then M{f}(s) = π csc(πs). This is a fun exercise.

If f(x) = (1 − x)−1 then M{f}(s) = π cot(πs). In both of these, the strip of definition is
〈0, 1〉.

Example 1.4. If f(x) = tan−1(x) then M{f}(s) = −π
2 s
−1 sec(π2 s).

I want you to see that you get sophisticated functions out of simple functions.

Example 1.5. If f(x) = log
∣∣∣1+x

1−x

∣∣∣ then M{f}(s) = πs−1 tan(π2 s).

It is clear from the definition that the Mellin transform is linear. In the following, I’m going
to leave the strip of definition out, but a good exercise is to put it in.
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Gamma functions and F1 Lecture 1

g(x) M{g}(s)

f(ax) (for a > 0) a−sM{f}(s)

xzf(x) (for z ∈ C) M{f}(z + s)

f(xa) (for a > 0) a−1M{f}(a−1s)

f(xa) (for a < 0) −a−1M{f}(a−1s)

f ′(x) (1− s)M{f}(s− 1)

log x · f(x) d
dsM{f}(s)

Definition 1.6 (Mellin inversion formula). If ϕ is holomorphic on 〉α, β〈, then

M−1{ϕ}(x) =
1

2πi

∫ c+i∞

c−i∞
ϕ(s)x−sds for x > 0, c ∈〉α, β〈.

Theorem 1.7.
f = M−1{M{f}}

Question 1.8. Is there a decent analytic continuation of the Mellin transform? If so, what is
it?

Proposition 1.9. Suppose f : R>0 → C
• is rapidly decreasing at +∞ (i.e. a Schwartz function)

• admits an asymptotic expansion f(x) ≈
∑

n∈N anx
αn as x→ 0 where limn→∞Re(an) =

+∞ (note this doesn’t mean the sum converges – it probably doesn’t).

Then M{f} is meromorphic on C with simple poles at s = −αn with residue res−αnM{f} =
an.

Proof. We’ll prove this when αn = n to reduce subscripts. Write

M{f}(s) =

∫
R>0

tsf(t)d log t =

∫ 1

0
tsf(t)d log t+

∫ ∞
1

tsf(t)d log t.

By the “rapidly decreasing” hypothesis, the second piece is an entire function, so we focus on
the first piece. ∫ 1

0
. . . =

∫ 1

0
ts
(
f(t)−

N−1∑
m=0

amt
m
)
d log t+

N−1∑
m=0

am
m+ s

.

The first part converges for Re(s) > −N , and the second piece introduces the poles. Since N
is arbitrary we conclude. �

Definition 1.10. If f(x) = exp(−x). Then Euler’s Γ function is

Γ(s) := M{f}(s) =

∫
R>0

ts exp(−t)d log t.
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Gamma functions and F1 Lecture 1

Thanks to the proposition, we see that it admits an analytic continuation to C, which is

meromorphic with simple poles at 0,−1,−2,−3, . . . , and res−n(Γ) = (−1)n

n! .

Some facts:

• Γ(1) = 1

• Γ(1 + s) = sΓ(s)

• Γ(1 + n) = n! (using the first two facts)

I want a better functional equation. You could use the Weierstrass product formula and use
facts about sec. I’m going to do it in a way that gives an excuse to talk about the beta
function.

Definition 1.11.

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)

This isn’t the normal way it’s defined.

Exercise 1.12. If u, v ∈〉0,∞〈 , then show that B(u, v) = M{fv}(u) where fv = χ
]0,1[(x)(1−

x)v−1.

Proposition 1.13. For s ∈ C\Z, we have

B(s, 1− s) = Γ(s)Γ(1− s) = π csc(πs).

Proof. Reduce to the strip 〉0, 1〈 and see that if f(x) = 1
1+x , we have M{f}(s) =

B(s, 1− s). �

Example 1.14.

Γ(1
2) =

√
π

Γ(m+ 1
2) =

(2m− 1)!!

2m
√
π

These are the values that appear when you compute the volume of the n-ball.

I’m going to define a partial Γ function:

Γm(s) =
msm!

s(1 + s)(2 + s) . . . (m+ s)
=

ms

s(1 + s
1)(1 + s

2) . . . (1 + s
m)
.

Theorem 1.15 (Euler product).

Γ(s) = lim
m→∞

Γm(s).
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Gamma functions and F1 Lecture 1

Proof. Note that both sides satisfy the functional equation. So it’s enough to check for
Re(s) > 0. So now write

exp(−t) = lim
m→∞

(1− t
m)m

Since stuff converges absolutely here,

Γ(s) = lim
m→∞

∫ m

0
(1− t

m)mtsd log t

= lim
m→∞

m!

s(s+ 1) . . . (s+m− 1)mm

∫ m

0
ts+m−1dt = lim

m→∞
Γm(s)

(by integration by parts). �

We can make this look nicer:

Γ(s) =
1

s

∏
n∈N

(1 + 1
n)s

1 + s
n

.

Notation 1.16. For m ∈ N0, let

hm =
m∑
k=1

1

k
.

Definition 1.17. There is a constant γ such that

hN = γ + logN +O( 1
N )

for all N . This is the Euler-Mascheroni constant.

Theorem 1.18 (Weierstraß).

Γ(s) =
exp(−γs)

s

∏
n∈N

exp
(
s
n

)
1 + s

n

Proof.

ms = exp(s logm)

= exp(s logm− shm) · exp(shm)

Γm(s) = 1
s exp(s logm− shm)

m∏
n=1

exp
(
s
n

)
1 + s

n

.

Now let m→∞. �

Exercise 1.19 (Gauss).

m−1∏
k=0

Γ(s+ k
m) = (2π)

m−1
2 m

1
2−msΓ(ms).

(Just use the Weierstraß formula.)
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Gamma functions and F1 Lecture 2

We’re going to use Tate’s thesis to write down a new form of the Gamma function. That
will give us functional equations for L-functions. Every time, Γ-factors will turn up. There
will be some choice in this; we want to make this more canonical. We’ll look at regularized
determinants and regularized products to get one (err. . . three) choice(s) that is more canonical.
By learning more about F1, you can use it to find a relevant cohomology that forces a particular
normalization for the Γ function, which is not the one that usually appears in the literature.

Along the way, I’ll prove the Ramanujan master theorem.

Definition 1.20.

Ψ(s) =
d

ds
log Γ(s)

Proposition 1.21.

Ψ(s) = lim
m→∞

(
logm−

m∑
k=0

1

k + s

)
= −γ +

∑
n∈N

s− 1

n(s− 1 + n)

Ψ(1 +m) = hm − γ
There are two functional equations (immediately obtained from the functional equations for
the gamma function):

Ψ(1 + s) = 1
s + Ψ(s)

Ψ(s)−Ψ(1− s) = −π cot(πs).

Exercise 1.22. Let f(t) = t
et−1 . Compute M{f}(s) in terms of Γ(s).

Lecture 2: February 16

Last time, we analytically continued the Γ-function.

Here is an extremely cheap way to compute the volume of the n-ball vn = V ol(Bn).

πn/2 =

(∫
R

exp(−x2)dx

)n
=

∫
Rn

exp(−x2
1 − x2

2 − · · · − x2
n)dx1 . . . dxn

Now use the fact that
∫
X fdµ =

∫ +∞
0 µ{x ∈ X : f(x) > t}dt (here µ means “measure”).

=

∫ 1

0
vn(− log t)n/2dt

= vn

∫ ∞
0

sn/2 exp(−s)ds

= vnΓ(1 + n/2)
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Gamma functions and F1 Lecture 2

Theorem 2.1 (Ramanujan’s Master Theorem). For f(t) =
∑

m∈N0
(−t)mϕ(t) then M{f}(s) =

π csc(πs)ϕ(−s). If λ(s) = ϕ(s)Γ(1+s) then Γ(s)λ(−s) = M{g}(s) where g(t) =
∑

m∈N0

(−t)m
m! λ(m).

Ramanujan’s original proof was purely formal – he didn’t talk about the convergence issues.
Hardy wrote the “proof for mortals” that addresses convergence.

Definition 2.2 (Hardy class). If A,P, δ ∈ R are constants such that A < π and δ ∈]0, 1]
then define H(A,P, δ) to be the set of holomorphic functions ϕ on 〉 − δ,∞〈 such that
ϕ(s) = O(exp(−P Re(s) +A| Im(s)|)).

Theorem 2.3. If ϕ ∈ H(A,P, δ) then f(t) =
∑

m∈N(−t)mϕ(m) converges for t ∈]0, exp(P )],
admits an analytic extension to 〉0,∞〈, and for any s ∈〉0, δ〈,

M{f}(s) = π csc(πs)ϕ(−s).

Proof. Use the Cauchy residue theorem

f(t) =
1

2πi

∫ c+i∞

c−i∞
π csc(πs)ϕ(−s)t−sds

for any c ∈]0, δ[. Now we’re done by Mellin Inversion. �

Example 2.4. Take

f(t) =
1

exp(t)− 1
=
∑
m∈N0

Bm
m!

tm−1

where Bm is a Bernoulli number. This is a nice function with rapid decay at ∞, the power
series converges in a disc around the origin, so the Mellin transform is meromorphic on C
with simple poles at s = 1−m for m ∈ N0. The residues are

res1−mM{f} =
Bm
m!

.

If t > 0 then exp(t) > 1, so we can also write

f(t) =
∑
m∈N

exp(−mt).

Using the rules from last time,

M{f}(s) =
∑
m∈N

Γ(s)m−s = Γ(s)ζ(s)

where ζ(s) =
∑

m∈Nm
−s. So ζ extends to a meromorphic function on C with a simple pole

at s = 1. For m ∈ N0,

ζ(−m) = (−1)m
Bm+1

m+ 1
.

Definition 2.5 (Hurwitz zeta function).

ζ(s, q) =
∑
m∈N

(m+ q)−s
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Gamma functions and F1 Lecture 2

If

f(t) =
exp(−qt)

1− exp(−t)
− 1

t

(the 1
t is just for normalization), then M{f}(s) = Γ(s)ζ(s, q). We have the power series

expansion
t exp(qt)

exp(t)− 1
=
∑
m∈N0

Bm(q)

m!
tm.

So ζ(1−m, q) = −Bm(q)
m . (Recall Bm(1) = Bm but Bm(0) = ±Bm.)

This is a special case of a Dirichlet series.

Definition 2.6. A Dirichlet series is a series

L(s) =
∑
m∈N

amm
−s

for some coefficients am. A generalized Dirichlet series is

L(s) =
∑
m∈N

amλ
−s
m

where λ1 < λ2 < . . . and λj →∞ faster than jr for some r > 0.

Theorem 2.7. A generalized Dirichlet series L(s) admits an abscissa of convergence σc ∈
R ∪ {±∞} such that if s ∈〉σc,∞〈 then L(s) converges and if s ∈〉 −∞, σc〈 then L(s) does
not converge.

It’s really hard to figure out what happens on the line z = σc.

Example 2.8. If L(s) is a generalized Dirichlet series, then

f(t) =
∑
m∈N

am exp(λmt) t > 0.

If f admits an asymptotic expansion

f(t) ≈
∑

bmt
m

as t→ 0 then we can take the Mellin transform

M{f}(s) = Γ(s)L(s).

So L(s) admits a meromorphic continuation to C with a simple pole at s = 1, and L(−m) =
(−1)mm!bm.

Definition 2.9. A Dirichlet character of modulus k is a homomorphism χ∗ : (Z/k)× → C×.
Extending this to zero gets a character χ : Z/k → C with

Z/k
χ
// C

Z

OO >>

But I’ll probably just call both of these χ.
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Gamma functions and F1 Lecture 3

Definition 2.10 (Dirichlet L-series). Define

L(s, χ) =
∑
m∈N

χ(m)m−s.

It is an L-function: you can come up with an asymptotic expansion and use the recipe in the
example to produce a meromorphic continuation.

Write f(t, χ) =
∑

m∈N χ(m)e−mt. Then M{f(−, χ)}(s) = Γ(s)L(s, χ). We have

L(1−m, χ) = −Bm,χ
m

where Bmχ is defined by ∑
m∈N

χ(m)
temt

emt − 1
=
∑
m∈N0

Bmχ

m!
tm.

In general, these things are fairly hard to compute.

Subexample 2.11. χ4 has modulus 4 and is defined by +1, 0,−1, 0, . . . . Genuinely unhelpful
form:

L(s, χ4) =
∑
m∈N

(−1)m+1(2m− 1)−s.

Think of the previous expression for f(t, χ) as a geometric series, and get in this case

f(s, χ4) = 1
2 sech t = const · −e−t

1−e−2t . This is helpful because we know things about the power
series expansion:

−e−t

1− e−2t
=

1

2

∑
m∈N0

Em
m!

tm

where Em are Euler numbers.

Now we know

L(1−m, χ4) =
Em
2
.

(Since we have the analytic continuation we can call L(s, χ) an L-function as opposed to just
an L-series.) Bm,χ is related to torsion in algebraic K-theory of the integers (although part of
that story is conjectural).

Exercise 2.12. Write L(s) =
∑

m∈N amm
−s and A(t) =

∑
m≤t am. Also write f(t) = A(1

t ).

Show that if s ∈ 〈max{0, σc},+∞〉, then M{f}(s) = L(s)
s .

Lecture 3: February 23

I want to talk about a proof that Riemann gave for the functional equation for the ζ function,
and generalize it to Dirichlet characters.
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Definition 3.1. Jacobi’s theta function is

θ(z) :=
∑
n∈Z

eiπn
2z.

As written, this converges on the upper half-plane H = {z ∈ C : Im(z) > 0}; it defines a
holomorphic function there. This is not the right kind of function to do a Mellin transform to,
but we can fix it up and renormalize so we get the kind of convergence at∞ that we need. Set

f(x) = 1
2(θ(ix)− 1)

and define
Z(s) = M{f}

(
s
2

)
.

You can begin by trying to understand one summand

gn(x) = e−πn
2x.

Then
M{gn}(s) = π−sΓ(s)n−2s.

But f(x) =
∑

n∈N gn, and so

Proposition 3.2. Z(s) = π−s/2Γ
(
s
2

)
ζ(s).

Key point 3.3. ϕ(t) = exp(−πt2) is its own Fourier transform.

Theorem 3.4 (Poisson summation). For any Schwartz function ψ, we have∑
m∈Z

ψ(m) =
∑
m∈Z

ψ̂(m).

If x > 0, write

γx(t) := ϕ(
√
xt) = exp(−πxt2)

so

γx(n) = gn(x)

γ̂x(y) =
1√
x
γx
( y
x

)
(using the Key Point).

Corollary 3.5.

θ
(
−1
z

)
=
(
z
i

)1/2
θ(z)

For f , we get
f(x) = x1/2f

(
1
x

)
+ 1

2x
−1/2 − 1

2

and
M{f}(s) = M{f}(1

2 − s).

(What’s with that (−)1/2? I literally mean
(
z
i

)1/2
= e1/2 log( zi ) using the principal branch of

the logarithm – remember this is all going on in the upper half plane.) The last two terms in
f(x) are just there to make it converge, but the integral behaves according to the first term.
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Corollary 3.6 (Functional equation).

Z(s) = Z(1− s)

Let χ be a nontrivial primitive Dirichlet character of modulus k. (It’s the modulus that’s
primitive, not the character.)

Definition 3.7. The exponent of χ is ε = ε(χ) ∈ {0, 1} such that

χ(−1) = (−1)ε χ(1).

Define
θ(χ, z) =

∑
m∈Z

χ(m)mε exp(iπm
2

k z).

As before, I want to contemplate

f(χ, x) = 1
2θ(

χ, ix).

If you want a general formula that works for everything, you might want 1
2(θ(χ, ix)− χ(0)),

but χ(0) = 0 since the character is nontrivial.

Exercise 3.8. The Mellin transform is

M{f(χ,−)}
(
s+ε

2

)
= 2

(
k
π

) s+ε
2 L(χ, s)Γ

(
s+ε

2

)
.

Now we want to produce a functional equation. We want to express θ(χ,−1
z ) in terms of

something involving θ-functions. Actually, I’ll show

θ(χ,−1
z ) = coefficient · θ(χ, z).

Definition 3.9 (Gauss sum).

τ(χ) =
k−1∑
m=0

χ(m) exp(i2πmk )

|τ(χ)| =
k−1∑
m=0

k−1∑
n=0

χ(n) exp(i2πmn/k) exp(−i2πm/k) = k

=

k−1∑
n=0

χ(n)

k−1∑
m=0

exp(i2πm(n− 1)/k)

The contributions from n 6= 0 cancel out because you’re adding up roots of unity so this is
just the contribution from n = 0. I claim

θ(χ,−1
z ) =

τ(χ)

iε
√
k

(z
i

)ε+1/2
θ(χ, z).
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Corollary 3.10. If

Λ( χ, s) =

(
k

π

)s/2
L( χ, s)Γ

(
s+ε

2

)
then

Λ( χ, s) =
τ(χ)

iε
√
k

Λ( χ, 1− s).

I won’t prove this because I’ll give a massive generalization when we do Tate’s thesis.

This is another way to prove that this admits an analytic continuation.

I want to begin the process of generalizing this picture.

Let (S, σ) be a finite Z/2-set (where σ stands for the nontrivial automorphism). We can
create some nice vector spaces

CS = Map(S,C).

This has a Z/2-action: send z 7→ z ◦ σ. Define

RS := (CS)Z/2 ∼= Map(S,R)

(i.e. Z/2-fixed points of CS). In the case where S = Hom(K,C), RS ∼= K ⊗Q R. This is the
C2-fixed points of the isomorphism CS ∼= K ⊗Q C.

If K is a number field, a typical setting is

S = Hom(K,C).

Then CS ∼= K⊗QC and RS ∼= K⊗QR. I’m going to try to define an analogue of the θ-function.
We need an analogue of Z. It is convenient to consider not just the square lattice in RS , but
any lattice.

If W ⊂ RS is a Z-structure (free abelian group in RS such that W⊗ZR = RS – a.k.a. complete
lattice), then we can form

θW (z) =
∑
w∈W

exp(iπ(wz,w))

where (wz,w) is the Hermitian form on CS defined by

(z, w) =
∑
s∈S

zs · ws = tr(zw).

(Warning: some textbooks use w to mean the complex conjugation composed with σ, not just
the complex conjugation.) This is invariant under the Z/2-action, so gives rise to an inner
product on RS .

Fact 3.11. θW (z) converges absolutely and uniformly on a compactification of

HS = {z ∈ CS : z = z ◦ σ and 1
2i(z − z ◦ σ) > 0}.

(That second condition is supposed to be the analogue of “Im(z) > 0”.)
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All of Fourier analysis on LCA groups goes here. I’m really thinking of Schwartz
functions ϕ : RS → C. Here’s the key example:

ϕ(x) = exp(−π(x, x))

is its own Fourier transform.

Theorem 3.12. If W ⊂ RS is a Z-structure, and

W∨ = {v ∈ RS : (w, v) ∈ Z ∀w ∈W}
(the dual lattice) then for any Schwartz function RS → C∑

w∈W
ψ(w) =

1

covolW

∑
v∈W∨

ψ̂(w).

If W = Z{w1, . . . , wn} then covol(W ) = |det(w1, . . . , wn)| (it’s the volume of the fundamental
domain). This is the analogue of the Poisson summation formula.

Corollary 3.13.

θW (−1
z ) =

√
N(z/i)

covol(W )
θW∨(z)

where N is the norm:
N(w) =

∏
s∈S

w(s).

(Again, this square root involves the principal branch of the logarithm.) We’re going to do
this next time; the story is the same in each case. This will allow us to access situations for
bigger number fields than just Q.

Lecture 4: February 28

We had a C2-set (S, σ) (i.e. σ is the nontrivial automorphism). You’re supposed to imagine
S = Hom(K,C) with σ as the Galois action. We built CS which is what you think it is; there’s
a C2 action on this which uses both σ and complex conjugation: z 7→ z ◦ σ. We discovered
RS (which in our special case coincides with the Minkowski space) is the C2-fixed points for
this action.

Last time we were looking at the analogue of the upper half plane. You think I would define
HS = {z ∈ CS : Im(z) > 0}. But instead, we also added this extra condition that z = z ◦ σ.
Why? If you think of the example, it’s the difference between the set of embeddings of K into
C and the set of places.

Definition 4.1. For a Z-structure W ⊂ RS ,

θW (z) =
∑
w∈W

exp(iπ(wz,w))

where (−,−) is the Hermitian inner product given by (x, y) =
∑

s∈S x(s) · y(s). (Here z ∈ HS

and wz is the product formed pointwise (so CS is an algebra).)

17
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This converges absolutely and uniformly on the compactification of HS .

Definition 4.2. The dual of the lattice is

W∨ = {v ∈ RS : ∀w ∈W, (w, v) ∈ Z}.

This is important for the Poisson summation formula: if ϕ is a Schwartz function,∑
w∈W

ϕ(w) =
1

covol(W )

∑
v∈W∨

ϕ̂(v).

Corollary 4.3 (Functional equation for generalized θ-function).

θW (−1
z ) =

√
N
(
z
i

)
covol(W )

θW∨(z)

where N(z) =
∏
s∈S zs.

The idea is to sum up (integrate) a bunch of θ-functions, take the Mellin transform, and then
you get a completed form of the ζ-function; the functional equation for the ζ-function comes
from this functional equation for the θ-function.

We also need Gamma-functions, so you need to take the Mellin transform, i.e. you need to
integrate along a ray. We need to define

(RS)>0 = {x ∈ RS : x = x ◦ σ and x > 0}.
The idea is that this is the same condition for HS , where you’re ignoring the distinction
you normally have between conjugate embeddings. This is equal to the product of a bunch
of R>0’s, but I want to think of it as the specific product indexed as

∏
p∈S/C2

R>0. Pick

the isomorphism (RS)>0 →
∏
p∈S/C2

R>0 sending x 7→ (
∏
s∈p xs)p∈S/C2

. This specifies a

normalization of the Haar measure: d log x gets sent to π∗(
∏
d log).

Note that RS isn’t literally the real numbers embedded in C, but the condition x = x ◦ σ
forces x to be real so x > 0 makes sense as a condition. (In textbooks this is sometimes called
R and C instead of RS and CS .)

Definition 4.4. For z ∈ CS ,

ΓS(z) =

∫
(RS)>0

N(exp(−x)xz)d log x.

Here xz is done pointwise.

Here’s an easy proposition:

Proposition 4.5.

ΓS(z) =
∏

p∈S/C2

Γp(zp) where Γp(zp) =

{
Γ(zp) p real

21−tr(zp)Γ(tr(zp)) p complex.

18
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Possible wrong factor of 2 somewhere? We’re breaking up S as S =
⊔
p∈S/C2

p, where p is a

coset that has either one or two elements. If #p = 1, say p is real. If #p = 2, say p is complex.
(You should think of this as the set of places of the number field.)

This is supposed to be an origin story for the Gamma-factors at infinity.

Definition 4.6. Let z ∈ CS (call this a generalized complex number). Then define

LS(z) = N(π−z/2)ΓS
( z

2

)
=

∏
p∈S/C2

Lp(zp)

where

Lp(zp) =

π
−zp/2Γ

(
zp
2

)
p real

2(2π)− tr(zp)/2Γ
(

tr(zp
2)

)
p complex.

Let s ∈ C. Break up S as S = r1(C2/C2) t r2(C2/e). Let n = #S = r1 + 2r2. For z ∈ C,
ΓS(z) := ΓS(constz). Now

ΓS(s) = 2(1−2s)r2Γ(s)r1Γ(2s)r2

LS(s) = π−ns/2ΓS(s/2)

LR(S) := LC2/C2
(s) = π−s/2Γ( s2)

LC(s) := LC2/e(s) = 2(2π)−sΓ(s)

LS = Lr1R L
r2
C

Here are some identities (analogues of formulas that relate the Gamma function to factorials):

LR(1) = 1

LC(1)
1

π

LR(2 + s) =
s

2π
LR(s)

LC(1 + s) =
s

2π
LC(s)

LR(1− s)LR(1 + s) = sec(π2 s)

LR(s)LR(1 + s) = LC(s)

LC(1− s)LC(s) = 2 csc(πs)

Here is a general functional equation for LS :

LS(s) = cos(π2 s)
r1+r2 sin(π2 s)

r2LC(s)nLS(1− s).
All of this is obvious from recent stuff and stuff from last class.

Let K be a number field.

ζK(s) =
∑

06=a⊂IOK

N(a)−s =
∏

06=p∈SpecOK

(1−N(p)−s)−1.

This converges on the strip 〉1,∞〈. (Here ⊂I means ideal.)
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For each Φ ∈ Cl(K), define

ζK(Φ, s) =
∑
a⊂IOK
a∈Φ

N(a)−s

Z(Φ, s) = |dK |s/2LX(s)ζ(Φ, s)

where X = Hom(K,C).

First we need to cut out a hypersurface in (RS)>0. Define

SS := {x ∈ (RS)>0 : N(x) = 1}.
Note O×K/µK ⊂ SS , and after taking log it’s a lattice in the trace-0 hyperplane. I have the
decomposition

(RS)>0
∼= SS × R>0.

On the left the measure is d log x, the measure on SS is d×x, and the measure on R>0 is
d log x. I can consider the log

(RS)>0
log

// {x ∈ RS : x = s ◦ σ}

SS
?�

OO

// {s ∈ RS : x = x ◦ σ and Tr(x) = 0}
?�

OO

O×K/µK ∼= |O
×
K |

?�

OO

// log |O×K |
?�

OO

By the Dirichlet unit theorem, |O×K | is a maximal Z-structure (lattice) in {s ∈ RS : x =
x ◦ σ and Tr(x) = 0}. (See Milne’s notes in algebraic number theory.)

We also have a⊂IOK is a Z-structure in R× with covol(a) =
√
da where da = N(a)2|dK |. You

want to integrate over SS a theta-function, define a function using that, perform a Mellin
transform, and get this completed ζ-function. That’s almost true, but if you try to write
down the integral you realize you’re counting too many times: a representative a of a class ϕ,
look at the action of O×K and you’re counting that stuff multiple times. So you have to look at

a fundamental domain of (twice) log |O×K |, and you need to integrate over that instead. Then
we’ll make the θ-functions more complicated, and define Hecke L-functions.

Lecture 5: March 2

Recall we had O×K/µK ∼= |O
×
K | ⊂ SS ⊂ (RS)>0, where S = Hom(K,C).

(RS)>0
log

// {x ∈ RS : x = s ◦ σ}

SS
?�

OO

// {s ∈ RS : x = x ◦ σ and Tr(x) = 0}
?�

OO

O×K/µK ∼= |O
×
K |

?�

OO

// log |O×K |
?�

OO
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Define F as the inverse image in SS of any fundamental domain of 2 log |O×K |.

Exercise 5.1. vol(F ) = 2r1+r2−1RK , where RK is the Dirichlet regulator, which is defined
by the equality covol(log |O×K |) =

√
r1 + r2RK .

What measure? We had a Haar measure d log x on R>0 and a product measure on (RS)>0;
since (RS)>0 decomposes as SS × R>0, this induces a measure on SS .

Recall Φ ∈ Cl(K) was an ideal class, and a ∈ Φ was an integral ideal.

Theorem 5.2. Write

fF (a, t) =
1

#µK

∫
F
θa(ix( t

da
)1/n)d×x− vol(F )

#µK
.

Then
Z(Φ, s) = M{fF (a,−)}.

Proof. Let Y denote the quotient of the action of O×K on a and form

g(x) =
∑
y∈Y

exp(−π(y
(
x
da

)1/n
, x)).

Recall da = N(a)2|dK | where dK is the discriminant. This exercise is just a definition chase.

Exercise 5.3. Check that

|dK |sπ−nsΓX(s)ζ(Φ, 2s) =

∫
(RS)>0

g(x)N(x)sd log x.

Rewriting the exercise content,

Z(Φ, 2s) =

∫
R>0


∫
SS

∑
y∈Y

exp(−π(yx
(
t
da

)1/n
, x))d×x


A(t)

tsd log t.

A(t) =
∑

η∈|O×K |

∫
η2F

∑
y∈Y

exp(−π(yx
(
t
da

)1/n
, x))d×x

=
1

#µK

∑
η∈O×K

∫
η2F

∑
y∈Y

exp(−π(yx
(
t
da

)1/n
, x))d×x− 1

#µK

∫
F

(θa(ix
(
t
da

)1/n
)− 1)d×x

�

Corollary 5.4. Z(Φ, s) admits a meromorphic continuation to C with simple poles at s = 0
and s = 1, and

ress=0 Z(Φ, s) = −2r1+r2

#µK
RK
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ress=1 Z(Φ, s) =
2r1+r2

#µK
RK

It satisfies
Z(Φ, s) = Z(Φ−1 ⊗ ω, 1− s)

where ω is the codifferent ideal:

ω := {x ∈ K : trK/Q(xOK) ⊂ Z}.

Powers of ω are like a twist, and ω ⊗ ω = OK in Pic(?).

Proof. In order to use the Poisson summation formula, we have the understand the dual
lattice a∨. It’s almost b := a−1 ⊗ ω = {x ∈ RS : xa ⊂ ω}. What’s true instead is that

a∨ = {x ∈ Rs : tr(xa) ⊂ Z}
= {x ∈ RS : ∀r ∈ a, trK/Q(xrOK) ⊂ Z}
= {x ∈ RS : xa ⊂ ω} = b

Remember that RS isn’t necessarily conjugation-invariant. �

Here’s another definition-chase exercise:

Exercise 5.5. Check:

• db = 1
da

• θW = θW for a Z-structure W ⊂ RS (here W means take complex conjugate pointwise;

one also has W = σ∗W )

fF (a, 1
t ) =

1

#µK

∫
F
θa(ix(tda)

−1/n)d×x− vol(F )

#µK
Using the functional equation for θ

=
1

#µK

(tda)
1/2

covol(a)

∫
F−1

θb(ix(tda)
1/n)d×x− vol(F )

#µK

Last time, we saw covol(a) =
√
da.

= t1/2fF−1(b, t) +
vol(F )

#µK
t1/2

By the usual Mellin stuff,

Z(Φ, s) = M{fF (a,−)}(s) = M{fF−1(b,−)}(1− s) = Z(Φ−1 ⊗ ω, 1− s)
I ignored the analytic continuation part, but it follows from the same Mellin stuff as before.
Let

ZK(s) := |dK |s/2LS(s)ζK(s).
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Corollary 5.6. ZK(s) admits a meromorphic continuation to C with simple poles at s = 0
and s = 1 with residues

ress=0 ZK(s) = −2r1+r2

#µK
RK · (#ClK)

ress=1 ZK(s) =
2r1+r2

#µK
RK · (#ClK)

Moreover,
ZK(s) = ZK(1− s).

LS(s) came from a machine. It came from creating Minkowski spaces, but there’s no a
priori reason why LS(s) should be “the correct factor at ∞”. We’ve seen it’s true, but we’ll
eventually get a better reason.

There has been a basic series of steps, which we’ll imitate once we get to the Tate world:

(1) find a Fourier self-dual function

(2) sum it up over a lattice to get a θ-function

(3) “simple” integral transform to get the functions we’ve been calling fF

(4) Mellin transform (multiplicative Fourier transform) gives the completed ζ, L, whatever
function (i.e. the one described in terms of Dirichlet series)

We’ve done it three times – for the ζ-function, for L-functions of Dirichlet characters, and for
the Dedekind ζ-functions.

Lecture 6: March 7

Here are some locally compact abelian groups:

• finite (or discrete) abelian groups (e.g. Z)

• T := R/Z
• Tn

• R, C
• Any finite-dimensional vector space over R or C, with the obvious topology (sometimes

called vector groups)

• not Q (with the subspace topology)

• Given a family {Aα}α∈Λ where Aα is LCA where all but finitely many are compact, then∏
α∈ΛAα is LCA. (The product and sum coincide, so we write ⊕ for this.)

• Limits of LCA groups where all but finitely many are compact, with continuous homo-
morphisms.

◦ Ẑ = limm∈Φop Z/m where Φ is the poset N ordered by divisibility

◦ Zp = limn∈N0 Z/pn

◦ Ẑ×, Z×p
◦ the solenoid Ŝ1 := limm∈Φop R/mZ
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◦ S1
p = limn∈N0 R/pnZ ∼= (R × Zp)/Z ∼= (R × Qp)/Z[1

p ] (with Z, Z[1
p ] as the diagonal

copy)

• any quotient of an LCA group is LCA

• any closed subgroup of an LCA group is LCA

• filtered colimits of open continuous homomorphisms
◦ Q/Z = colimm∈Φ Z/m (this has the discrete topology)

◦ Qp = colimn∈N0 p
−nZp

◦ Fact: Qp/Zp ∼= colimn∈N0 Z/pn (this is sometimes called the Prüfer group); it is
sometimes called Z/p∞ or Zp∞ . More helpful notation is Z[1

p ]/Z.

Fact: torsion LCA groups are discrete.

Exercise 6.1. Describe the topology on an infinite compact Hausdorff ring. (They are all
homeomorphic.)

“Idèle” appeared first; it is (in French) short for “ideal element”. Then “adèle” was defined; it
is short for “additive idèle”.

Definition 6.2. The rational finite idèles are:

AQ,fin := Ẑ⊗Q ∼= colimm∈Φm
−1Ẑ.

The rational adèles are:
AQ = R× AQ,fin.

If you glom all the p’s together in S1
p, you get Ŝ1 ∼= AQ/Q. (These are topological isomor-

phisms.)

Given a family αα∈Λ, you have a map
⊔
α∈ΛAα →

∏
α∈ΛAα. Warning: in terms of the

topology, this is not the inclusion of a subspace.

Definition 6.3. Say we have a family {Aα}α∈Λ a family of LCA groups, and a finite subset
J∞ ⊂ Λ, and for all β ∈ Λ\J∞, suppose Kβ ⊂ Aβ is open and compact. In this setting, we
can define the restricted product

{Kβ}â
α∈Λ

Aα = colim S finite
J∞⊂S⊂Λ

∏
α∈S

Aα ×
∏

β∈Λ\S

Kβ


This is a filtered colimit of open inclusions.

We have

{Kβ}â
α∈Λ

Aα =
⊕
α∈J∞

Aα ⊕

 ∏
β∈Λ\J∞

Aβ ×∏
β Ab/Kβ

⊔
β

Aβ/Kβ

 ↪→
∏
α∈Λ

Aα.

Warning: this map is a continuous homomorphism and a set inclusion, but not a subspace
homomorphism.
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Now we can define the adèles in general. We had

AQ,fin := {Zp}â
p∈Π

Qp

where Π is the set of primes, and

AQ ∼= {OQv} â
places v

Qv.

This makes sense for any number field, so we can write

AK ∼= {OKv} â
places v

Kv.

Then J∞ in the definition of restricted product is the set of infinite places. There’s also

AK,fin
∼= {OKv} â

finite places v

Kv.

We also have a K-solenoid
Ŝ1
K := AK/K.

Define the idèles are
IK ∼= {O×Kv} â

places v

K×v .

Warning: the topology on the idèles is not the subspace topology from IK → AK . It is the
canonical topology on the invertible elements: it can be written as a subspace âK ⊂ AK×AK
via the map x 7→ (x, x−1). (The problem is that formation of the inverses might not be
continuous.) We have

IQ ∼= R>0 ⊕Q× ⊕ Q̂×.
Let I1 denote the norm-1 idèles. There is an exact sequence I1K → IK → R>0.

Definition 6.4. Define Â := Hom(A,T). (Sorry, this conflicts with Ẑ etc.)

Theorem 6.5 (Pontryagin). The functor A 7→ Â is an equivalence LCAop
∼→ LCA and it is

its own inverse.
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A Â

Z T

V V ∨

Z/p Z/p

finite finite

discrete compact

Ẑ Q/Z

Zp Qp/Qp

profinite ind-finite (i.e. torsion)

R R

Qp Qp

{Kβ}âα∈ΛAα
{K⊥β }âα∈Λ Âα

AQ,fin AQ,fin

AQ AQ

AK AK
K AK/K = Ŝ1

K

K× I1K/K×

I1K I1K
IK IK
OKv Kv/OKv = S1

Kv

O×Kv ??

Gal(F ab/F ), F local
̂̂
F× (one is completion, one is dual) (???)

Gal(F ab/F ) I0F \ÎF /F× (???)

Gal(Qab/Q) Q×

All the proofs I’ve found of Ẑ being dual to Q/Z are really complicated. But you can just “take
the corresponding colimit to the limit”. Qp is canonically its own dual (there is a preferred
choice of pairing), Qp ×Qp → T sending (x, y) 7→ {xy}p ∈ Qp/Zp. This relates to R being its
own dual, as R is the completion of Q at the infinite prime.

Suppose I have a closed subgroup B ≤ A. Then B̂ = Â/B⊥ (where B⊥ is the set of characters

(i.e. things in Â) that annihilate B).

The idèle class group is IK/K×.
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Lecture 7: March 9

Today we will give a maximally offputting proof of the Pontryagin duality theorem, i.e. one
that does not use the classification theorem.

We begin with the category of discrete abelian groups. Then we’ll look at S1, regarded as a
discrete abelian group. Then we’re going to do a formal construction that has the duality
properties we want. Then we embed the category of LCA groups into this.

Let Ab be the category of abelian groups (with no topology). Note T is an object here,
but we’ll write Tδ to emphasize there is no topology (i.e. the discrete topology). This is
additive, symmetric monoidal, has internal Homs, etc. There’s a general procedure, given
such a category, that produces a category that has duality with respect to a certain object
(here, T). The resulting category will be called D(Ab,Tδ); its objects are triples (A,A′, η)
where A,A′ ∈ Ab and η is a pairing A⊗ A′ → Tδ that is nondegenerate. (For every a ∈ A
there exists a′ ∈ A′ such that η(a, a′) 6= 1, and the other way around as well.) A morphism

(A,A′, η)→ (B,B′, θ) is a pair (A
ϕ→ B,B′

ψ→ A′) such that η(a, ψ(b′)) = θ(ϕ(a), b′).

Properties:

(1) It is easy to see that this is an additive category, and self-opposite. The obvious functor
D(Ab,Tδ)op → D(Ab,Tδ) will be an extension of the duality between LCA and LCAop.

(2) D(Ab,Tδ) is presentably symmetric monoidal:

(A,A′)⊗ (B,B′) =
(
A⊗B,Hom(A,B′)×Hom(A⊗B,Tδ) Hom(B,A′)

)
and this has a right adjoint that you can write down (but I won’t). So it has internal
Homs.

(3) There is a natural dual object D := (Tδ,Z, obvious pairing). It is dual in the sense that
the natural map

A→ Hom(Hom(A,D), D)

is an isomorphism in this category.

(4) The unit is (Z,Tδ, obvious pairing). Call this “1”. Then I have a duality functor

Hom(−, D) : Dop → D
(where D is short for D(Ab,Tδ)). Also we have D = Hom(1, D) (this is a stupid
observation).

Now I’m going to show this category is equivalent to a category of topological abelian groups
with a certain property, and that that contains the category of LCA groups. The dual will go
to the dual, and since the dual of an LCA group is LCA, we have our theorem.

First let’s throw out some obviously terrible topological abelian groups.

Definition 7.1. Say that a topological abelian group is admissible if it can be exhibited as a
topological subgroup (not necessarily closed) of a product (not necessarily finite)

∏
α∈ΛAα

where the Aα’s are all LCA.
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This gives me access to infinite limits and colimits of LCA groups.

Definition 7.2. If A is a topological abelian group, then a topology τ on the underlying set
|A| is A-characteristic if

• (|A|, τ) is admissible, and

• Homcts(A,T) = Homcts((|A|, τ),T) (where Homcts is the set of continuous homomor-
phisms).

Proposition 7.3. For any admissible topological abelian group A, there is a coarsest A-
characteristic topology on |A| and a finest A-characteristic topology on |A|.

(The poset of all topologies on A, and look only at the ones that agree with the original one
about what the characters are, there is a maximal and a minimal object.)

Proof. The coarsest one is formal – take this as an exercise. (This is the same argument
for compactly generated spaces.) Call this one τ+∞.

Let’s build the finest one; this is really not formal. Let {τα}α∈Λ be the set of all A-characteristic
topologies on |A|. Take

∏
α∈Λ(|A|, τα). These are all no coarser than the coarsest one, so we

can map each one to τ+∞, and so we can get a map∏
α∈Λ

(|A|, τα)→ (|A|, τ+∞)Λ.

Now define τ−∞ by the pullback

(|A|, τ−∞) //

��

∏
α∈Λ(|A|, τα)

��

(|A|, τ+∞)
∆ // (|A|, τ+∞)Λ

It’s obviously finest, but you do have to check that it’sA-characteristic, i.e. Homcts((|A|, τ−∞),T) =
Homcts(A,T). (That’s an exercise, which is critically going to use the admissibility crite-
rion.) �

Definition 7.4. Say that an admissible topological abelian group A is T-cogenerated if its
topology is τ−∞. Say that A is T-generated if its topology is τ+∞.

We have
T-cogenerated ⊂ Admissible ⊃ T-generated.

We’ve produced adjoint functors to these inclusions, namely the one taking an admissible
topological abelian group A to (|A|, τ+∞) (this is a left adjoint) or (|A|, τ−∞) (this is a right
adjoint). What this is really doing is inverting a class of weak equivalences: we’re inverting
the maps A→ B such that Homcts(B,T)→ Homcts(A,T) is an isomorphism.

Note that the categories of T-cogenerated and T-generated objects are equivalent.
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Exercise 7.5. LCA groups are already T-cogenerated. (This is easy, and trivial if you use
the classification of LCA groups, but the whole point is we’re trying to do without that.)

Now we’ll show that the category of T-cogenerated things (or, equivalently, T-generated
things), is equivalent to the category D from above, and moreover this equivalence sends the
dual to the dual. Then we’ll be done.

Theorem 7.6. T-cogen ' D under a functor sending T 7→ D, and moreover we have

T-cogen

Hom(−,T)

��

' // D

Hom(−,D)

��

T-cogenop
' // Dop

Proof. Let’s construct a functor T-cogen→ D. Given a T -cogenerated object A, we asso-

ciate the triple (|A|, |Â|, ev). (Note: the assignment Ab→ D sending A 7→ (A,Hom(A,Tδ), ev)
is a fully faithful functor.) In the other direction, we have to say what the functor D→ T-
cogen does, i.e. we have to say what happens to (A,B, η). Give A the subspace topology in

B̂ = Hom(Bδ,T). This is not T-cogenerated, but instead send (A,B, η) 7→ τ−∞(A). �

Let A be an LCA group, and define M (A) to be the set of regular countably additive complex
Borel measures. Also define H (A) to be the collection of actual Haar measures. (These do
not embed into M (A) because Haar measures are infinite, and complex measures are never
infinite.)

Fact 7.7. H (A) is an R>0-torsor.

Definition 7.8. If µ ∈M (A) then define µ̂ : Â→ C as follows:

µ̂(χ) =

∫
A

χ(a)dµ(a).

Fact 7.9. µ̂ is bounded and uniformly continuous.

This is usually called the Fourier-Stieltjes transform.

We have a functor
(̂−) : M (A)→ Cu(Â)

(where Cu means uniformly bounded continuous functions). If λ ∈H (A), and if µ is absolutely

continuous w.r.t. λ, then dµ = fdλ for some f ∈ L1(A). We write f̂ for µ̂, the Fourier
transform.
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There’s an inverse Fourier transform which is sort of dual to this thing. Suppose µ ∈M (Â).
Then define

qµ(a) =

∫
Â

χ(a)dµ(χ).

If dµ = fdλ for λ ∈H (Â), then qf = qµ, and this is the inverse Fourier transform.

Aside: the image of

L1(A)
(̂−)→ C0(Â)

is called the Wiener algebra, written W0(Â). (Here C0 is compactly supported continuous
functions.)

Theorem 7.10. There are isomorphisms

M (A)
∼=→ Cu(Â)

M (Â)
∼=→ Cu(A)

Technical fact 7.11. If λ ∈H (A), then there exists a Haar measure µ ∈H (A) such that
for all f ∈ L1(A, λ) ∩ L2(A, λ), we have

• f̂ ∈ C0(Â) ∩ L2(Â, µ)

• ‖f̂‖2 ≤ ‖f‖2 (relative to µ)

Lecture 8: March 16

At some point in your career you might feel that you’re just not famous enough. Here is a
recipe for becoming more famous.

(1) Locate A and B (maybe classes of objects) that appear to be “in duality” (a procedure
that turns an A thing into a B thing, and essentially the same procedure turns it back
into an A thing)

(2) Discover C, a thing that contains A and B and is self-dual (and the duality should
extend the duality between A and B).

(3) Call the duality a Fourier-someone transform. (It should be someone relatively classical,
not someone who actually worked on this stuff.)

(4) ???

(5) Profit.

A lot of the big hits in number theory work like this. (E.g. Scholze’s theorem.)

This is a recipe that you see if you think about the relationship between discrete and compact
groups – the common generalization is LCA groups. We’re going to try to run this more
globally, working with Fourier transforms on more general LCA groups (on the adèles).

Now and forever A means some LCA group.
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Lemma 8.1. If λ ∈H (A) is a Haar measure, there’s a Haar measure µ ∈H (Â) such that:

(1) For all f ∈ L1(A) ∩ L2(A), then f̂ ∈ L1(Â) ∩ L2(Â), and furthermore ‖f̂‖2 ≤ ‖f‖2.

(2) (dual sentence) For all ϕ ∈ L1(Â ∩ L2(Â)), then qf ∈ L1(A) ∩ L2(A) and ‖ qf‖2 ≤ ‖ϕ‖2.

If λ and µ are as over there, L1(A) ∩ L2(A) ⊂ L2(A) is dense, and similarly L1(Â) ∩ L2(Â) ⊂
L2(Â). We have maps

L1(A) ∩ L2(A) ⊂

��

L2(A)

��

L1(Â) ∩ L2(Â)

OO

⊂ L2(Â)

OO

and them being dense produces maps (̂−) : L2(A) � L2(Â) : }(−).

Theorem 8.2 (Fourier Inversion/ Plancherel). For all λ ∈ H (A), there exists a unique

µ ∈H (Â), as previously, such that

(1) For all f ∈ L2(A),
q

f̂ = f ;

(2) For all ϕ ∈ L2(Â), q̂ϕ = ϕ.

(3) The assignments (̂−) and }(−) give an isometric (rel ‖−‖2) isomorphism L2(A) ∼= L2(Â).

Notation: λ will always be a Haar measure, and λ̂ = µ will be the dual.

This is supposed to be background; if you’ve never seen this stuff, it’s in Hewitt and Ross,
Abstract Harmonic Analysis.

Theorem 8.3 (Parseval’s identity). For all f, g ∈ L2(A),∫
A
fgdλ =

∫
Â
f̂ ĝdλ̂.

This is really the same as point (3) above.

We started with a function that was its own Fourier transform, put a bunch of them together
into a θ-transformation, which satisfies a functional equation that comes from the Poisson
summation formula; when you Mellin it up, you get a functional equation for zeta functions,
L-functions, etc.

What we need is a Poisson summation formula. It required some intense growth conditions on
our functions – we need an analogue of Schwartz functions. This class is the Schwartz-Bruhat
functions. In the literature, these things are effectively described using a classification theorem.
I’m not going to do that (but I’ll tell you enough to be able to relate them to the definition
you might already know).
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Definition 8.4. A function f ∈ L∞(A, λ) is of brisk decay if there exists a compact subset
K ⊂ A such that, for every n ≥ 1, there exists a constant Cn > 0 such that for all m ≥ 1, one
has

‖f |(A\Km)‖∞ <
Cn
mn

.

(Here Km means the set of all m-fold products.)

Observations:

(1) f vanishes almost everywhere outside 〈K〉 (this means the group generated by K).

(2) Functions of brisk decay are translation-invariant.

(3) Functions of brisk decay are closed under convolution.

(4) (Exercise!) A function of brisk decay is Lp for all p > 1.
(Protip: bound

∫
Km\Km−1 |f |.)

Functions of brisk decay are in L1(A) ∩ L2(A), so their duals are in L1(Â ∩ L2(Â)). The

Fourier transform is a map L1(A)→ C0(Â), so the duals are also in C0(Â).

Definition 8.5. A Schwartz-Bruhat function (or function of rapid decay) is a briskly decaying
function f whose Fourier transform f is also briskly decaying. I’ll write S (A) for the set of
all Schwartz-Bruhat functions.

Fact 8.6. S (A) is a Fréchet space, and is dense in L2(A). I suspect it is also nuclear. (What’s
the topology? We’ll see soon.)

Notice that S (A) and S (Â) are in duality by definition.

Examples 8.7.

• If F is a finite abelian group, S (F ) is the set of all functions.

• S (Zm) is the set of functions that decay faster than any polynomial. That is, these are
functions f such that for every k ∈ Zm>0, supn∈Zm |nkf(n)| < +∞.

• S (Tm) = C∞(Tm).

• S (Rm) is the set of Schwartz functions.

Exercise 8.8. Characterize S (F × Zm × Tn × Rp).

({f ∈ C∞ : ‖P (δ)f‖∞ < +∞} where P (δ) is a polynomial differential operator in the Zm
and Rp variables)

Bruhat defined Schwartz-Bruhat functions on the above classes, and then used this to
approximate other ones.

If A ∈ LCA, then
S (A) = colim(U,K) S (U/K)
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where the colimit is taken over K < U < A with K compact, U open, and U/K a Lie group.
(In particular, the Lie group has to be of the form F × Zm × Tn × Rp.) And now you see
what the topology has to be. It’s a countable filtered colimit of Fréchet spaces, which is still a
Fréchet space.

There is a topological isomorphism S (A) ∼= S (Â). Also,
̂̂
f(x) = f(x−1).

Example 8.9. If A is totally disconnected, S (A) is the set of locally constant functions of
compact support.

So we know what this is for the adèles: for the finite places, we know what to do (because it’s
totally disconnected), and for the infinite places, we also know what to do, because it’s the
original Schwartz functions.

We were looking for groups that were their own Pontryagin dual. We’re looking for functions
on them that are their own Fourier transform, and using them to produce our θ-functions.
For this, we need the Poisson summation formula.

Here’s a theorem I think is true (but can’t find a proof):

Theorem 8.10 (Poisson summation). If 0→ A′ → A→ A′′ → 0 is a short exact sequence
of LCA groups, then

(1) (easy – exercise) For all λ ∈ H (A) and χ′ ∈ H (A′), then there exists a unique
λ′′ ∈H (A′′) such that∫

x∈A
f(x)dλ(x) =

∫
z∈A′′

∫
y∈A′

f(yz)dλ′(y)dλ′′(z)

(this is like a Fubini theorem).

(2) For all Schwartz functions f ∈ S (A), define (for all z ∈ A′′)

π∗(f)(z) =

∫
y∈A′

f(xy)dλ′(y)

where x is a lift of z. Then π∗f ∈ S (A′′) and

π̂∗f = f̂ |(A′)⊥

under the identification Â′′ ∼= (A′)⊥.

(3) For any x ∈ A, ∫
y∈A′

f(xy)dλ′(y) =

∫
χ∈Â′′

f̂( χ) χ(x)dλ̂′′( χ).

I’ll prove it next time. But I’ll give the most interesting case: if Λ ⊂ A is discrete, then∑
x∈Λ

f(x) =
1

covol(Λ)

∑
χ∈Λ⊥

f̂(χ).
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Lecture 9: March 21

Proof of the Poisson summation formula from last lecture. (2) If χ ∈ (A′)⊥

and x ∈ A, y ∈ A′, then you’ll always have χ(xy) = χ(x) (by definition of ⊥). So:

π̂∗f(χ) =

∫
A′′
π∗f(z)χ(x)dλ′′(z)

=

∫
A′′

∫
A′
f(yz)χ(yz)dλ′(y)dλ′′(z) x is a lift of z

=

∫
A
f(x)χ(x)dλ(x) using (1)

(3) We’re going to use the Fourier inversion formula. I won’t bother checking the thing is still
Schwartz – it is. If x ∈ A, z = π(x) ∈ A′′ then∫

y∈A′
f(xy)dλ′(y) = (π∗f)(z) =

­

(̂π∗f)(z)

=
­

(f̂ |(A′)⊥)(z)

=

∫
χ∈(A′)⊥

f̂(χ)χ(x)dλ̂(χ)

For the special case, use the counting measure for the discrete groups. �

The theory behind F1 is that all of these constructions (functional equation for the ζ function)
come from structures that are not specialized to the field involved. In fact, it seems independent
of the characteristic of the local field, and of the completion of the local field. F1 is telling
you why that’s true.

Let k be a local field. We define | − | on k by choosing a Haar measure λ and a measurable
set U of finite measure. Then write

|x| = λ(xU)

λ(U)
.

This doesn’t depend on λ or U .

Examples:

(1) If k = R, this is just the ordinary absolute value.

(2) If k = C, |z| = zz.

(3) If k is non-archimedean but characteristic zero, let o ⊂ k be the ring of integers. Let
p ⊂ o be the maximal ideal, and π a uniformizing parameter. Let F ∼= Fq be the residue
field. Then |π| = 1

q .

Let k+ refer to the additive (as opposed to multiplicative) group. We know we have k̂+ ∼= k+.
How many isomorphisms are there? You can specify one by specifying any nontrivial character
χ of k+: the map is x 7→ (y 7→ χ(xy)). Let’s just pick a character for the moment and think
about Haar measures – the set is an R>0-torsor. We can choose a unique Haar measure µk
that is self-dual w.r.t. the chosen χ.
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Exercise 9.1. This does not depend on the choice of χ.

So we have a canonical choice of Haar measure for a local field. We’re going to do a
multiplicative Fourier transform (Mellin transform) to something that’s self dual.

In his thesis, Tate says he’s not going to identify k̂× because he didn’t know how. We have
canonical exact sequence

1→ Uk → k×
|−|→ Vk → 1

where

Vk = {t ∈ R>0 : ∃x ∈ k×, t = |x|}
Uk = {x ∈ k× : |x| = 1}

This is split, but the splitting (in the non-archimedean characteristic zero case) depends on π.

VR = R>0 UR = {±1}

VC = R>0 UC = S1

VQp = pZ UQp = Z×p
Uk = o×

To tell the whole story, we need a multiplicative Haar measure.

If g ∈ Cc(k×) is a compactly supported continuous function, then g(x)
|x| ∈ Cc(k

+\0). The idea

is to use the additive Haar measure µ+ to get a multiplicative Haar measure. Define

Φ(g) :=

∫
k+\0

g(x)

|x|
dµ+.

This is translation-invariant (and a positive nontrivial functional) on Cc(k
×), so there exists a

unique corresponding Haar measure, which we will write as log |µ+|. (I am reserving µ× for
something later.)

Here I’m going to use a characteristic zero assumption. We’re going to renormalize; you’d
expect the normalization would make Uk have measure 1, but that’s not the choice we make.
I don’t understand why Tate made this choice.

If k is archimedean, then define µ× = log |µ+|. If k is nonarchimedean, then define µ× =
q
q−1 log |µ+|. (where q is the size of the residue field). (These definitions don’t require

characteristic zero, but the stuff that follows does, and I’m worried these definitions don’t
agree with later characteristic > 0 definitions.)

Exercise 9.2. Compute vol(Uk, µ
×).

The answer is 1√
dk

.

Definition 9.3. A quasicharacter on k× is a homomorphism ψ : k× → C×.
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Any quasicharacter ψ on k× factors as

ψ(x) = χ(x)|x|s.
How canonical is this? χ is determined by ψ. In the archimedean case, s is determined by
ψ; in the nonarchimedean case, s modulo 2πi

log qZ is determined by ψ. Its real part σ = Re(s)

(called the exponent) is determined by ψ.

Definition 9.4. A quasicharacter is unramified if its restriction to Uk is the trivial character
(i.e. χ = 1).

We have

S :=

{
QChar/Unram ∼= C

/
2πi
log qZ nonarchimedean

C archimedean.

So it’s a Riemann surface.

Definition 9.5. If f ∈ S (k+) and ψ ∈ QChar has exponent σ > 0, then

z(f, ψ) =

∫
k×
f(x)ψ(x)dµ×(x)

is the local zeta function.

Define
D = {ψ ∈ S : σ > 0}.

Lemma 9.6. z(f, ψ) is a regular function on D.

Theorem 9.7 (Functional equation). Fix χ ∈ k̂+.1 Then ψ(f, ψ) admits an analytic contin-
uation to all quasicharacters by means of the following functional equation:

z(f, ψ) = ρ(ψ)z(f̂ , ψ̂)

where ψ̂(x) = |x|
ψ(x) and ρ(ψ) is independent of f and analytic on σ ∈ (0, 1) (to be defined more

precisely next time).

Lecture 10: March 23

I want to try to go through most of Tate’s thesis today if I can. We were working on the
local story – we imagined our global field completed at some place. Remember k is the local

field. We had an identification k+ ∼= k̂+, with one identification for every character. Fix a
nontrivial character:

(1) If k ∼= R, take χR : R (−1)→ R→ R/Z ∼= S1.

(2) If k ∼= Qp, take χQp : Qp → Qp/Zp ⊂ Q/Z ⊂ S1.

1unclear if we need this? The statement relies on having a chosen identification k+ ∼= k̂+. We know the

identification S (k+) ∼= S (k̂+) without choosing χ. . .
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(3) If k ∼= Fp((t)), then take χFp((t)) : Fp((t))→ Fp ⊂ S1 where the map Fp((t))→ Fp takes

the coefficient on t−1 and the embedding Fp ⊂ S1 hits the primitive roots of unity.

(4) In the remaining case, k is a finite extension of some k0 of type (1), (2), or (3). Then
define χk = χk0 ◦ trk/k0

.

The answer to Exercise 9.2 was µ×(Uk) = 1√
dk

. Then for almost all places v, you have

µ×(Ukv) = 1.

Let Qk be the set of quasicharacters, i.e. continuous homomorphisms ψ : k× → C×. Given

a character χ ∈ Ûk, you can always write ψ(x) = χ(x)|x|s. This s is uniquely determined if
our field is archimedean; if it’s nonarchimedean, s is determined up to an ambiguity of 2πi

log qZ
where q is the size of the residue field. (You can think of Qk (in the nonarchimedean case) as

a bunch of cylinders (copies of Sk for the discrete points of Ûk)).

Write Sk for the set of quasicharacters modulo unramified quasicharacters. We saw that

Sk =

{
C k archimedean

C
/

2πi
log qZ k nonarchimedean.

Then we have a map Qk → Ûk × Sk sending ψ 7→ (χ, s). Uk is compact so Ûk is discrete.

This is the space on which our zeta function is defined. First we define the zeta function using
something that might not converge anywhere, and then we have an analytic continuation. We
need to be able to specify where it does(n’t) converge. We will be exceptionally coy and write
Re(s) =: Re(ψ). Now we can talk about our old friend the strip 〉a, b〈 but this time it’s

〉a, b〈= {ψ ∈ Qk : Re(ψ) ∈]a, b[}.

Definition 10.1. If f ∈ + and ψ ∈〉0,+∞〈, define the local zeta integral

z(f, ψ) =

∫
k×
f(x)ψ(x)dµ×(x).

We claim this is well-defined and holomorphic on that region.

For the functional equation, we need to see the analogue of s 7→ 1− s, but for the space of

quasicharacters. We’ll define an involution ψ 7→ ψ̂, defined by

ψ̂(x) =
|x|
ψ(x)

.

Check that Re(ψ̂) = 1− Re(ψ).

Exercise 10.2. For ψ ∈〉0, 1〈, use Fubini to show

z(f, ψ)z(ĝ, ψ̂) = z(g, ψ)z(f̂ , ψ̂).

This isn’t hard.

Recall given the data (χ, s) we’re making the quasicharacter χ(x)|x|s.
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Fix χ ∈ Ûk (so we’re restricting to one cylinder). If we can find one Schwartz function
f ∈ S (k+) such that

(1) ψ 7→ z(f̂ , ψ̂) is not identically zero on 〉0, 1〈,

(2) ρ(ψ) = z(f,ψ)

z(f̂ ,ψ̂)
admits a meromorphic continuation to {χ} × Sk,

then for any g ∈ S (k+), z(g, ψ) admits a meromorphic continuation to all of {χ} × Sk, and

z(g, ψ) = ρ(ψ)z(γ̂, ψ̂).

Case 1a: k ∼= R and χ = 1. Then take f1 = exp(−πx2). Then ψ(x) = |x|s and s is uniquely
determined by ψ. We proved in the first week that

z(f1, ψ) = π−s/2Γ( s2).

Moreover,

z(f̂ , ψ̂) = π(s−1)/2Γ(1−s
2 ).

(I’m being sloppy about whether I’m writing ψ or s, but there’s no difference so it’s OK.)
We’ve also seen before

ρ(s) = 21−sπ−s cos(π2 s)Γ(s).

Case 1b: k ∼= R and χ = −1. Take f−1 = x exp(−πx2). Then ψ(x) = sgn(x)|x|s, and

ρ(s) = i21−sπ−s sin(π2 s)Γ(s).

Case 2a: k ∼= Qp and χ = 1 (unramified case). Choose f1 = the indicator function of Zp ⊂ Qp.
Then

f̂1(x) =

∫
Zp

exp(−2πi{xy})dµ(y) = f1(x).

(So this is Fourier self-dual.) In order to get our zeta function, we’re supposed to do a Mellin
transform:

z(f1, ψ) =

∫
Q×p

f1(x)|x|sdµ×(x)

=
p

p− 1

∫
Zp\0
|x|s−1dµ(x)

=
+∞∑
r=0

p−rs =
1

1− p−s
.

where {−} is the fractional part of a p-adic number. Because f1 is Fourier self-dual, we also
have

z(f̂1, ψ̂) =
1

1− ps−1
.

This shows that

ρ(s) =
1− ps−1

1− p−s
which has a meromorphic continuation.

Case 2b: k ∼= Qp and χ 6= 1 (ramified case). Then you need to modify f :

fχ(x) =

{
0 if |x| > pn

e2πi{x} if |x| ≤ pn.
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Here n is the conductor, the smallest n such that χ factors through (Z/pn)× → S1. Then the
Fourier transform is

f̂χ(x) =

{
0 |1− x| > pn

pn |1− x| ≤ pn.
Then the Gauss sum appears in the zeta function

z(fχ, ψ) =
pns+1−n

p− 1

pn−1∑
r=1

χ(r) exp(2πir
pn )

and ρ(ψ) = pn(s−1)
∑pn−1

r=1
χ(r) exp(2πir

pn ) so

z(f̂χ, ψ̂) =
p

p− 1
.

Exercise 10.3. Do this for Fp((t)). (You get a similar thing with an indicator function.)

For a finite extension, the trace gets involved and the numbers get uglier but it’s not too hard.
So the theorem holds.

Now K is a global field (eventually I’ll be lazy and make K a number field). We have

AK ∼= ÂK . There’s a norm on the LHS that is canonical because it came from the specified
norms on our finite things; these mostly agree that the volume of the unit thing is 1, and
so there aren’t convergence issues preventing you from applying that here. You can product

together all your chosen Haar measures to get ÂK .

On the multiplicative part of the story, we had IK . Given µ and | − | on AK , we have µ× on
IK . We have a short exact sequence 0→ K → AK → AK/K → 0. Put the counting measure
on K (it’s discrete so we can do this). Then the first step of the Poisson summation formula
gives a measure on AK/K, and this has the property that µ(AK/K) = 1. (This is a good
reason to choose that weird normalization from before.)

Define VK using the exact sequence 1→ I1K → IK → VK → 1 (here I1K is the compact piece –
it’s the difference between R\0 and {±1}). There is also an exact sequence 1→ K× → I1K →
I1K/K → 1. Then K× is discrete and I1K/K is compact (this is called the idèle class group).
We have

VK =

{
R>0 number field

pZ function field.

In the first case, use d log t as a measure. In the second case, use log where q is the order of
the biggest extension of the finite field contained in K.

We have a theory of quasicharacters here, as in the local case.

Definition 10.4. A quasicharacter (or Hecke character, or größencharakter, or idèle class
character) is a map

χ : IK/K× → C×.
The set of these is called H.
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We have H ∼= (K×)⊥×C. (This is a topological decomposition, not something group-theoretic.)

We have to think about s 7→ 1− s on this set of complex planes. The analogue of this sends

ψ 7→ ψ̂ where

ψ̂(x) =
|x|
ψ(x)

.

Definition 10.5. The global zeta function is

Z(f, ψ) =

∫
IK
f(x)ψ(x)dµ×(x).

Main theorem 10.6. This integral converges for Re(ψ) > 1, and Z(f, ψ) extends to a
meromorphic function on H with poles only at:

• (1, 0), with residue
resψ=(1,0) Z(f, ψ) = − covol(K×)f(0),

• (1, 1), with residue

resψ=(1,1) Z(f, ψ) = covol(K×)f̂(0).

The functional equation is

Z(f, ψ) = Z(f̂ , ψ̂).

Proof. I’m going to skip all the parts of the story that are of the form “take all the local
pieces and glom them together”. There’s just one piece of this story (really, the main point)
not of this form. Recall the proof for the Dedekind zeta function. (Instead of integrating over
the whole region, we restricted to the norm one piece.) Everything works in both cases, but
I’ll write this out just in the number field case. We’re going to decompose

Z(f, ψ) =

∫
IK
f(x)ψ(x)dµ×(x)

=

∫ +∞

0
Zt(f, ψ)d log t

where Zt(f, ψ) =
∫
I1K
f(ty)ψ(ty)dµ1(y) (here µ1 is the measure on I1K). We’re not going to

analyze Zt by breaking it into local pieces.

Let E be a fundamental domain for the lattice K× ⊂ I1K . Then

Zt(f, ψ) =

∫
E

( ∑
α∈K×

f(αty)
)
ψ(ty)dµ1(y).

We’re really close to having something we can use Poisson’s summation formula on – if that
sum were over K, instead of K×, we could use Poisson in the additive world. Do this anyway:∫

E

( ∑
α∈K

f(αty)
)
ψ(ty)dµ1(y) =

∫
E

∑
α∈K

f̂(αyt )ψ̂(yt )

So now we have

Zt(f, ψ) + f(0)

∫
E
ψ(ty)dµ1(y) = Z1/t(f̂ , ψ̂) + f̂(0)

∫
E
ψ̂(yt )dµ

1(y)
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There are two cases to contemplate: ψ is either unramified or it isn’t. If it’s unramified, then
this integral ends up being ∫

E
ψ(ty)dµ1(y) = tsµ1(E).

In the ramified case, it’s 1 (exercise – definition chase).

The unramified case is harder, but not in any meaningful way, so let’s just do the ramified
case. We have

Z(f, ψ) =

∫ ∞
1

Zt(f, ψ)d log t+

∫ +∞

1
Zu(f̂ , ψ̂)d log u

= Z(f̂ , ψ̂)

and victory is ours.

We’ve already computed µ1(E) in terms of the regulator (though we didn’t say it out loud).

Next week I’ll start introducing things relevant to F1. �

Lecture 11: April 4

I’m going to talk about the field with one element F1. There’s a tendency not to take the
mathematics too seriously; none of the things had good definitions for 50 years, and the names
are kind of playful, but there is plenty of meaning. For X a scheme, you’re supposed to make
sense out of limq→1X(Fq), which works better or worse depending on the situation. The first
place in print I know of is J. Tits’ article from the 50’s, where he does this with algebraic
groups. The attempt to prove the Riemann hypothesis with this involves imitating Deligne’s
proof (for curves) over SpecZ instead, but not sure how it relates to this older story.

Idea: if I want to give you an R-vector space, then a good way to do that is to give you a
C-vector space and a C2-semilinear action (it acts by complex conjugation on C, and also
acts on the vector space, giving a canonical real structure). Instead of doing this for the finite
extension R→ C, we’ll try to do this descent story for a much bigger extension along the lines
of Fq → Fq[t]. Actually, we’ll look at the extension F1 → Z. (This is not a finitely presented
map – it’s big.)

But there’s a big difference between these – in the Fq[t] case, you have the rationality of the
zeta function as proved by Deligne, but you’re not going to get that in the F1 case.

I’m going to present this following work of Jim Borger. The data you need to descend from
Z to F1 is a Λ-structure (here this means the structure of a module over Λ, which will be
defined shortly; this is the same Λ-structure that shows up in representation theory etc.).

Definition 11.1. An F1-algebra S is a ring (commutative with unit) along with a Λ-structure.

My goal is to tell you what these words mean, and I’m going to do this in a strange way.
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Definition 11.2. Suppose k is a ring. Then a k-algebra affine scheme is a functor CAlgk →
CAlg (CAlg means commutative algebras) such that the composite

CAlgk
X→ CAlgk → Set

is corepresentable: it is Homk(R,−) for some R.

This is a k-algebra object in the category of affine schemes. But purely algebraically, you
have a k-algebra R and a big co-k-algebra structure: there is

• a co-zero ε+ : R→ k,

• a co-addition ∆+ : R→ R⊗k R,

• a co-unit ε× : R→ k,

• a co-multipilication ∆× : R→ R⊗k R,

• an antipode σ : R→ R

subject to some axioms. There is also an algebra map k → Homk(R, k). (This is now a
k-algebra because of all the previous structure.)

You can extract a Hopf algebra by just taking the additive structure (it’s an additive antipode).
You can also take the (co)-invertible things and then you get a Hopf algebra structure using
the multiplicative structure. This is more structure than a Hopf ring.

This is an incredibly inefficient way to think about all this structure.

Example 11.3. The constant functor on the zero ring CAlgk → CAlgk is a k-algebra affine
scheme. This is co-representable by the initial object, namely k.

Example 11.4. The identity map CAlgk
I→ CAlgk is a k-algebra affine scheme [from now

on, “kaas”] co-represented by k[t]. (The analogy is that this is like the integers.)

Example 11.5. Given a group (or even monoid) G, I can talk about the functor CAlgk →
CAlgk sending R 7→ RG (this is G many copies of R). This is a kaas co-represented by k[G]
(this is the polynomial ring generated by elements of G, not the group ring).

This is a monoidal category – you can compose the functors.

Definition 11.6. A comonad is a coalgebra in End(CAlgk). This is the data:

• (counit) X
ε→ 1

• (comultiplication) X → X ◦X
satisfying the usual sort of axioms (so it corresponds to a monoid structure that is associative
and unital).

Definition 11.7. A kaas X : CAlgk → CAlgk is a plethory if X is a comonad.
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The comonad corresponds to a noncommutative product on R (the co-representing object),
often called a plethysm.

What happens to your kaas when you upgrade it to a plethory? You get an additional
structure map ◦ : R×R→ R called a plethysm.

Example 11.8. The identity map is a comonad, so there must be an operation k[t]×k[t]→ k[t].
This is just composition of polynomials.

Example 11.9. Back in Example 11.5, the co-representing object is the polynomial ring
generated by the elements of G (note this is not the group ring, but rather the symmetric
algebra on the group ring kG). This has a comonad structure.

Example 11.10. Set k = Z. Consider CAlg→ CAlg sending S 7→W(S) (where W(S) is the

big Witt vectors). This is a plethory, corepresented by Λ, the subring of Z[[x1, x2, . . . ]]
Aut(N)

consisting of power series with bounded degree monomials. (This is in pretty much every
Hazewinkel paper.)

Theorem 11.11 (“Fundamental theorem of symmetric function theory”). We have Λ =
Z[λ1, λ2, λ3, . . . ] where the λi’s are the elementary symmetric functions:

λ1 = x1 + x2 + x3 + . . .

λ2 = x1x2 + x1x3 + x2x3 + . . .

...

This can be found in MacDonald’s book. Of course, there are other choices of generators. For
example, there are Adams generators

ψn := xn1 + xn2 + xn3 + . . .

which are only a generating set over Q, but over Z it’s true that Λ = Z[w1, w2, . . . ] where the
wi’s are uniquely determined by:

ψn =
∑
d|n

dw
n/d
d .

These are the Witt components of W(R). To believe this is a plethory, you need a map
W(R)→W(W(R)); this is the Artin-Hasse map. The plethory structure is composition of
symmetric functions.

We’ll think of CAlgk as modules, and plethories as the ring acting on them.

Definition 11.12. Given a plethory P , a P -algebra is a k-algebra A which is a coalgebra for
the comonad P .

P applied to A is Homk(R,A). A coalgebra is a map A→ Homk(R,A).
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Example 11.13. Every k-algebra is an I-algebra (here I is the identity map). (This is just
a fancy way of saying the following statement: “giving a map k[x]→ R is the same thing as
giving an element of R.”)

Example 11.14. If G is a group, then we had a plethory FG : CAlgk → CAlgk sending
R 7→ RG. Then FG-algebras are the same as G-k-algebras.

Example 11.15. A W-algebra is a special λ-ring.

This picture is general enough that it didn’t depend on working in algebras – you just need
algebras in some category.

Suppose K is a symmetric monoidal category (not an ∞-category) that has all finite colimits
and the tensor product preserves those colimits separately in each variable. (Nobody needs
this much generality; we’ll apply this to the category of finite-dimensional Q-vector spaces.)

Now look at algebras over K (not algebras in K!): CAlg(K) is the category of symmetric
monoidal categories B as above, along with a symmetric monoidal functor K → B. (If
K = Vect(Q), and X is a Q-variety, then Coh(X) (coherent sheaves) is in CAlg(K).)

(I’m categorifying the whole thing.)

I can do the whole plethory story again.

Definition 11.16. A K-plethory is a comonad CAlg(K)→ CAlg(K) such that CAlg(K)→
CAlg(K) → Cat is co-representable (it’s Fun⊗K(R,−) for some R, i.e. symmetric monoidal
K-linear functors out of R).

The comonad is a (2,1)-functor. (I don’t care about the non-invertible morphisms.)

But the only example I care about is the identity functor.

Example 11.17. Suppose K = Vect(Q). Then I : CAlg(Vect(Q)) → CAlg(Vect(Q)) is co-
representable by the categorical analogue of polynomials over Q, which we’ll call Vect(Q)[x].
This is the category of functors Σop → Vect(Q) that are eventually zero. Here Σ is the
category of finite sets and bijections, and P : Σop → Vect(Q) is “eventually zero” if there is
some N for which P is zero on finite sets of cardinality > N .

(Why not the category of natural numbers? A map of rings k[x]→ R is the same as specifying
some r ∈ R. Our thing is also supposed to be free on one generator: a functor Vect(Q)[x]→ C
should be the same as specifying an object. This says you’re writing down a functor Σ→ C
sending the disjoint union of finite sets to the sum inside C. What is the free symmetric
monoidal category on one generator? It’s Σ, not N.)

What’s the de-categorification procedure? Take the Grothendieck groupK0 : CAlg(Vect(Q))→
CAlg(Z). It turns out that K0(Vect(Q)[x]) is the algebra Λ of symmetric functions, with all
of its structure. (The map is just taking characters.) Exercise – use Maschke’s theorem.
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There is also a version of this story with Z instead of Q, but it’s harder. In general, K0(Coh(X))
is a Λ-algebra.

Definition 11.18 (Borger). An F1-algebra is a commutative ring R along with a Λ-structure
(the structure of a Λ-algebra).

The idea is that the Λ-structure is providing you with the descent data to go down to F1. The
stupid equation to have in your head is

“Λ = Z[Gal(Z/F1)].”

But Z is not really a field extension of F1. Another moral statement:

“Λ = Z⊗F1 Z”

(but we’ll define things so this one is actually true.) This is Frobenius descent with all Frobenii
simultaneously. For something flat over Z, an F1 structure is the data of a whole bunch of
Frobenius maps.

We want a forgetful functor CAlg(F1)→ CAlg(Z) which is a left adjoint; this functor should
be like −⊗F1 Z. This has a right adjoint: W : CAlg(Z)→ CAlg(F1) (Witt vectors). It seems
like the forgetful map is on the wrong side, but if you go back to thinking about the adjunction

Forget : CAlg(C) � CAlg(R) : −⊗R C,
you notice that the identification CAlg(C)σ ∼= CAlg(R) allows you to think of the “tensor up”
map as forgetting as well.

Lecture 12: April 6

Definition 12.1 (Borger). An F1-algebra is a Λ-algebra over Z.

We explained that this is a coalgebra for the comonad of big Witt vectors. The thing that
represents it is Λ, the algebra of symmetric functions.

Recall
Λ = K0(Fun(Σop,Vect(Q))fin).

(Here Σ is the category of finite sets and bijections, and “fin” means it’s zero on big enough sets.)

Various kinds of functors are giving you elements in Λ ⊂ Z[[x1, x2, . . . ]]
Aut(N). The operations

λn =
∑

i1<···<in xi1xi2 . . . xin correspond to Λn, the nth exterior power (it’s a representation
of Σn. . . think of this acting on Fun(−,−)). Similarly, σn =

∑
i1≤i2≤···≤in xi1xi2 . . . xin ∈ Λ

acts as Symn on the RHS.

(In the literature, λn is sometimes called en (“elementary”), and σn is called hn (for “homoge-
neous”?).) We also had the Adams symmetric functions ψn = xn1 + xn2 + . . . .

It is a standard fact that Λ is generated by the λn’s. But you could also write Λ ∼= Z[w1, w2, . . . ]
where the wi’s are defined by

ψn =
∑
d|n

dw
n/d
d .
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If R is a Λ-algebra, the Witt components are given by the map

w : R→ RN

given by the wi.

There is a subring Ψ ⊂ Λ generated by ψn (for n ∈ N). This co-represents a plethory
WΨ : CAlg → CAlg that takes R 7→ RN (here RN is a ring, as opposed to the Witt stuff
above, where we talked about RN as a set that you then put a weird ring structure on).

What’s the comonad structure? Define ψn : RN → RN that sends to a = (a1, a2, . . . ) 7→
(an, a2n, a3n, . . . ). A comonad structure is a map WΨ(R)→WΨWΨ(R), and we define this
to send a 7→ (ψ1(a), ψ2(a), . . . ).

You can check this is compatible with the comonad structure on Λ.

Definition 12.2. A Ψ-algebra is a coalgebra for WΨ.

This is actually really simple: it’s an action of N× on a ring. It’s equivalent to specifying a
collection of ψn’s compatible with multiplication; alternatively, you can just specify the ψp’s
for p prime that commute. (This thing about just specifying ψp works in the 1-categorical
setting, but in the world of E∞-rings you want to keep track of the whole N× structure.)

Lemma 12.3 (Newton formula). For all k ≥ 1,

k∑
m=1

(−1)k−mλk−mψm = (−1)k+1kλk.

Proof. Exercise. (Use induction.) �

Corollary 12.4. If R is flat over Z, then any Ψ-algebra structure lifts to at most one Λ-algebra
structure on R.

What are the conditions required for there to exist a lift?

Theorem 12.5 (Wilkerson). If R is flat over Z then a Ψ-algebra structure on R in which

ψp(x) ≡ xp (mod pR)

lifts uniquely to a Λ-algebra structure (i.e. an F1-algebra structure).

Actually, this is an iff – you get all the F1-algebra structures this way. So if R is flat over Z, a
Λ-algebra structure is the same as a family of compatible lifts of Frobenius maps.

Proof. We define a Λ-algebra structure on R⊗Q as follows:

−t d
dt

log(
∑
m∈N0

λm(x)tm) =
∑
n∈N

(−1)nψn(x)tn.
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(Exercise (or. . . go look it up) – show this defines a Λ-algebra structure.) For every p, we’ll show
the λm’s carry R(p) to R(p) – that is, for any prime p and any x ∈ R⊗(p), λk(x) ∈ R⊗ Z(p).

Do this by induction. This is true for k = 1 because λ1 = 1. Now assume it’s true for i < k.

Case 1: p - k. We can divide by k, and then Newton’s formula + the induction hypothesis
wins the day.

Case 2: k = p. Note that

ψp(x)− xp = p((−1)p+1λp(x) + P (λ1(x), . . . , λp−1(x)))

where P is some polynomial with integer coefficients. (This is something for you to check.
I’m using flatness, that R→ R⊗Q is injective.)

Case 3: k = mp for m ≥ 2. Then note that

λk(x) = (−1)(p+1)(m+1)λm(λp(x)) +Q(λ1(x), . . . , λp−1(x)).

(Again, Q is a polynomial with integer coefficients.) Now we’re done by the induction
hypothesis. �

Examples of F1-algebras:

(1) F1 itself is Z = K0(Q) with its unique Λ-structure. (Or alternatively just write ψp = 1.)

This has λk(n) =
(
n
k

)
and σk(n) =

(
n+k−1
k−1

)
. To get these, take the vector space with

dimension n and do the corresponding operation, e.g. ⊗.

(2) Given a monoid M , ZM is an F1-algebra with the following descent data: for x ∈M ,
define ψp(x) = xp. For example, Z[x]/(xm − 1) with this structure is called F1m .
You’re supposed to think of this as a cyclotomic extension of F1. You can write
Z[x]/(xm − 1) ∼= F1m ⊗F1 Z.

Categorifying A1. Look atK0(Rep(SL(2,C))). This contains the standard (2-dimensional)
representation which we’ll call [V ]. Because this is the ring of a symmetric monoidal Ψ-
linear idempotent-complete category, this comes with a Λ-structure. Look at representations

via the characters on

(
a
−a

)
; this gives a map K0(Rep(SL(2,C))) → Z[a, a−1] sending

[V ] 7→ a+ a−1. You get an isomorphism

K0(Rep(SL(2,C))) ∼= Z[a, a−1]C2 ∼= Z[x]

where the C2 action sends a 7→ a−1 and x = a+ a−1.

This is not the F1-structure of ZN0 using the monoid example. I claim that Z[x] is the
interesting one. For the (n+ 1)-dimensional representation Symn(V ) we get

[Symn(V )] = an + an−1 + an−4 + · · ·+ a4−n + a2−n + a−n ∈ Z[a, a−1].

If a = exp(iθ) then x = a + a−1 = 2 cos θ. Then [Symn(V )] = Un(x/2) where the Un’s are
the Chebyshev polynomials of the second kind. This is σn. This is a much more interesting
F1-structure on the affine line than the usual one.

ψ1(x) = x
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ψ2(x) = x2 − 2

Exercise: compute the rest of the ψp(x)’s. To get the higher ones, use ψp(x) = ap + a−p ≡
(a+ a−1)p (mod p).

Z[a, a−1] = ZZ (using that horrendous group ring notation).

Remark 12.6. − ⊗F1 Z : CAlg(F1) → CAlg(Z) has a right and left adjoint and so this is
closed under limits and colimits.

I think there are only 2 Λ-structures on Z[x] – boring or Chebyshev.

Non-examples:

(1) Curves of genus g ≥ 1

(2) Flag varieties that aren’t Pn. (No Grassmannians.) This is a hard theorem of Paranjape-
Srinivas: if a flag variety admits a single Frobenius lift of any sort, it’s Pn for some n.
Idea: flag varieties involve some bit of linear algebra over a specific field in a non-trivial
way.

Next time: more about the geometry of these things, including the module theory for these
things. (There’s a notion of field extensions and étale maps, and F1 is purely inseparable
(because Z is purely inseparable – there aren’t any nontrivial étale extensions of Z).)

Lecture 13: April 11

I’ll talk more about F1-algebras, and then start talking about the module theory of these
things.

Last time, Denis asked why we didn’t define the affine line over F1 as the free F1-generator
on one variable. Suppose F ⊂ E is a G-Galois extension. There is a forgetful functor
Alg(F ) → Set and there is a left adjoint F [−] : Set → Alg(F ) (the free algebra functor).
The point is that we don’t know about F ; we know about Alg(E) with some Galois descent
information. Note Alg(F ) ' Alg(E)G where G denotes a semi-linear action.

What does this equivalence mean? There is a forgetful functor Alg(E)G → Alg(E). The
“tensor-up-to-E” map Alg(F )→ Alg(E) factors through this.

Alg(F )

��

// Alg(E)G

xx

'oo // Alg(E)

Set

F [−]

OO
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In the F1 case, the analogous thing is F1 ⊂ Z (a “Λ-Galois extension”). We have

Alg(F1) = Alg(Z)Λ
//

?
��

Alg(Z)
Woo

Set

OO

It’s not clear what the forgetful functor does – you can’t just forget the Λ-algebra structure
and then forget the Z-algebra structure. The idea is that it should be like G-fixed points,
but it’s not clear what the G is. You could try to restrict attention to the flat things2 (i.e.
when you tensor up to Z it’s free). Then we’re looking at things with an N× action subject
to certain relations. Then you could try to take the N×-fixed-points functor as the forgetful
functor Algflat(F1)→ Set.

We had a comonad CAlg(Z)
W→ CAlg(Z). Dually, there is a monad Aff

W→ Aff (where Aff
means affine schemes), and algebras for this monad are Spec of things that are coalgebras for
the comonad. Importantly, you can extend this

Aff� _

��

W // Aff� _

��

Shv(Z)
W̃
// Shv(Z)

Moo

where Shv(Z) (also written Ãff ét) is the big étale topos, the category Shvét(Aff,Set) (feel free

to mentally work with space-y things like ∞-topoi). (You can even call Shvét(Aff,Set) = SpZ,
the “category of spaces”, but this is not good notation.) So I Kan extended my monad and
got a new monad. There is a canonical equivalence of categories

Alg(W̃) ∼= Coalg(M).

(There’s a set-theoretic issue: W doesn’t take finitely presented things to finitely presented
things. There exists a regular cardinal κ with the property that W carries κ-generated things
to κ-generated things.)

M preserves filtered colimits. This implies:

Proposition 13.1. Alg(W̃) =: Shv(F1) is a topos. Moreover, the adjunction

Shv(F1)
v∗ // Shv(Z)
v∗
oo

is a geometric morphism. Here v∗ is application of M.

(These functors are coming from the cofree/forgetful adjunction on M, not the free/forgetful

adjunction from W̃.)

2If A is a reduced Z-algebra with a Λ-structure, then A is flat over Z.
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Proof. Look up Marc Hoyois’ answer about this on mathoverflow (it’s for ∞-topoi but
works in this setting just fine). �

Definition 13.2. Shv(F1) is the big étale topos of F1.

Furthermore, there is a third adjoint v! : Shv(Z)→ Shv(F1).

Sidebar 13.3. Given a morphism of rings f : A→ B, you get a morphism SpecB
f→ SpecA.

Then you get functors

Ét(B)
f∗
// Ét(A)

f∗
oo

where Ét(A) is the big étale topos (and f∗ is called a Weil restriction). There is an additional

adjunction Ét(B)
f!→ Ét(A). This produces an identification Ét(B) ' Ét(A)/SpecB with

Ét(B)

'
f! // Ét(A)

Ét(A)/ SpecB

88

This is called an étale morphism of topoi (as opposed to a geometric morphism (f∗, f∗)). A
geometric morphism (f∗, f∗) is étale if

• f! exists (“essential”)

• f! is conservative

• (some base-change condition) f!(M ×f∗P f∗N) ' f!M ×P N

In our case,

v∗(SpecA) = Spec(Λ�A)

v!(SpecA) = SpecW(A)

Exercise 13.4. Is v! a v∗ a v∗ étale? Clark thought it wasn’t because (2) fails, but maybe it’s
OK?

I’m going to use the Beck/ Quillen definition of module. If C is a category with all finite
limits and A ∈ C, then define

Mod(A) := Ab(C/A)

to be the category of abelian group objects in the slice category of C over A. (Prototypical
example: C is the category of commutative algebras.)

For example, this is where derivations come from. If M ∈ Mod(A), then a derivation
d : A→M is a map in C/A. Call the set of these Der(A,M); it has an abelian group structure.

Proposition 13.5. [Beck] If C = CAlg, then

Mod(A) = Modcl(A).
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(That is, the above category Mod(A) is the same as the usual category Modcl(A) of modules
over A.)

Proof. Exercise. (There is a functor Modcl(A)→ Mod(A) sending M 7→ A⊕M where
A⊕M is given a commutative algebra structure by giving it the square-zero multiplication (i.e.

(a,m) · (a′,m′) = (aa′, am′ + a′m)). In the other direction, the functor Mod(A)→ Modcl(A)
sends a morphism f : B → A to ker(f). You just have to check it’s an equivalence of
categories.) �

If C is a presentable category, then there is a free-forgetful adjunction Ab(CA) � C/A. In
particular, there exists a universal derivation d : A→ ΩA that induces an isomorphism

MorMod(A)(ΩA,M) ∼= Der(A,M).

In the example, this is exactly the usual module of Kähler differentials.

The objective is to write down Mod(A) when C is the category of F1-algebras.

Fact 13.6. In the comonad W : CAlg→ CAlg, the polynomials co-representing the comonad
structure have zero constant term. This means that this comonad extends to a comonad
W : CAlgnu → CAlgnu (here CAlgnu denotes non-unital coalgebras).

So if M is an abelian group, then you can talk about W(M) (with the zero multiplication).

Lemma 13.7. We have
W(A⊕M) ∼= W(A)⊕W(M)

(where A⊕M has a square-zero multiplication).

This is a square zero extension of W(A).

You can probably do this with lots of kinds of plethories, but you need to know something
about W to be able to push this through.

We have
W(M) ∼= MN

in Ab. (We’re just taking the components of the Witt vector.) But I’d like to give this a
W(A)-module structure. Given a ∈W(A) and m ∈W(M), the action is

(a ·m)k = ψk(a)mk.

(This comes from some general fact.)

Definition 13.8. If A is a Λ-ring, I have a unit λA : A→W(A). Then a Λ-module over A is

• an A-module M

• an A-linear map λM : M → W(M) (where the A-module structure comes from the
W(A)-module structure above and the map λA)

such that
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(1) M
λM→ W(M)

ε→M is the identity (here ε comes from the counit for the comonad W)

(2)

M //

��

W(M)

W(λM )

��

W(M)
∆ //W(W(M))

(Here ∆ is from the comonad structure on W.) This ensures that A⊕M has a Λ-ring structure.

(This just means that M is a nonunital Λ-ring.)

Proposition 13.9. If A is an F1-algebra, then

ModΛ(A) = ModF1(A)

where the first Mod(A) is Λ-modules on A and the second one is Beck-Quillen modules.

Moreover, you get

ModΛ(A)

��

ModF1(A)Beck

��

Modcl(A) Mod(A)Beck

Proof. This is completely formal. Lift the proof of Proposition 13.5. �

So now I can use Mod(A) unambiguously.

Corollary 13.10. Under this equivalence, a derivation from an F1-algebra to a Λ-module M
over A, is a map d : A→M such that

(1) d(a+ b) = d(a) + d(b)

(2) d(ab) = a db+ b da

(3) λn(da) =
∑

k|n λk(a)n/k−1d(λk(a))

I could have taken this as a definition of an F1-derivation. But I’m showing that this comes
from a universal machine.

Suppose X ∈ Shv(F1) (an object of the étale topos on F1). We might want to define
quasi-coherent sheaves QCoh(X). You can do this extremely formally:

QCoh(X) = lim(((Aff /F1)/X)op → Cat)
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where the functor we’re taking the limit over sends SpecA→ X to Mod(A). Here Aff /F1 is
the opposite to the category of Λ-rings. So you’re just right-Kan-extending Mod(A):

(Aff /F1)op
Mod //

� _

��

Cat

Shv(F1)

QCoh

99

Aside: the Zariski topology is not the right thing to use. There are no problems defining it,
but some things you want to be sheaves, aren’t.

Lecture 14: April 13

I’ll define the (big) de Rham-Witt complex (which is actually not a complex), and then see
that it arises naturally from TR, a thing you get out of THH and friends. We’ll see that the
de Rham-Witt complex behaves as a cotangent complex in the F1-world.

Today I’ll try to write out some examples of F1-rings and modules over them.

Example 14.1. Recall the Chebyshev line; this was defined as K0(Rep(SL(2,C))) ∼= Z[x],
with a certain Λ-structure. We expressed

σn(x) = un(x/2)

ψp(x) = 2Tp(x/2)

(This is a monic version of the usual Chebyshev polynomials.)

Recall: a module over an F1-algebra A is

• an A-module (in the classical sense)

• λM : M →W(M)

Recall the λM ’s had to be A-linear (recall W(M) is naturally a W(A)-module). What is
this really? Look at AΨN×, the twisted monoid ring (when you commute one of the monoid
generators past one of the elements of A it picks up a ψ). This is a noncommutative ring.

Exercise 14.2. ModF1(A) = LMod(AΨN×).

n ∈ N× acts by picking out the nth component of λM .

If A = F1, then an F1-module is an abelian group with an action of N×. (Don’t you need
some compatibility with the Adams operations for F1? Those are trivial!) So the functor
Mod(F1)→ Mod(Z) is just forgetting the N×-structure.

Note that this isn’t the same F1 story as the one where F1-vector spaces are just pointed sets.
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Let X be a commutative monoid. Then F1X is just ZX with ψp(x) = xp. This is giving an
action ψ : N× → End(X). Then

{F1X-modules} ∼=
{

abelian groups with an X nψ N×-action
}
.

In particular, F1N0-modules are the same as abelian groups M with endomorphisms σ : M →
M and λp : M →M such that λp ◦ σ = σp ◦ λp. And F1n-modules are abelian groups M with
σ, λp as above such that σ has order dividing n. We have

F1n
∼= F1Cn

F1
∼= F1Q/Z

If you believe that F1N0 is the correct affine line, then this is really the algebraic closure (you
have a notion of algebraic extensions F1[x]/(f) (where f is irreducible and monic), and the
system of all of these has F1 as the biggest one).

The map from F1-modules to Z-modules is just the “forget the Λ-structure” map. To see this,
interpret these things as Beck modules:

Ab(F1-Alg/F1) // Ab(Z-Alg/Z)

F1-Mod // Z-Mod

(Z⊕M,λ) � //

_

��

Z⊕M_

��

(M,λM ) � // M

We can denote this “forget the Λ-structure” functor as −⊗F1 Z.

Considering Z as an F1-algebra, we can consider W(Z). What are W(Z)-modules? The
claim is that this “had better be” just Z-modules. There’s a functor from Z-modules to
W(Z)-modules that sends M 7→ M ⊗Z W(Z) where the N× action acts on W(Z). (This is
the free object; the cofree object would be W(M).) The functor in the opposite direction
should be the formula from faithfully flat descent (or, more generally comonadic descent – see

a paper by Hess): N 7→ coeq(N
λN
⇒
triv

W(N)).

F1-points. Let’s go back to the case where X is a commutative monoid. We can ask
about SpecF1n → SpecF1X. These are maps

AlgF1
(F1X,F1Cn) = Mon(X,Cn,+).

For example, AlgF1
(F1N0,F1Cn) = Cn,+. This is one way to define F1n .

What about the other affine line? (Write A1
Ch to denote it’s the Chebyshev one.)

A1
Ch(F1n) =

{
f ∈ Z[t]/(tn − 1) : ∀p, f(tp) = 2Tp(

f(t)
2 ) (mod tn − 1)

}
.

I don’t know how many of these there are.

Next time, I’ll talk about the de Rham-Witt complex and how it relates to the cotangent
complex in the F1 world. Later, I’ll relate this to THH and friends.

Lecture 15: April 20
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We’ve been talking about the functor R 7→W(R) (I mean the big Witt vectors here); this is
the comonad corepresented by Λ. A Λ-algebra (a coalgebra for this comonad) is the same
thing as an F1-algebra; we were thinking of this as descent data. But there are other flavors
of Witt vectors out there, e.g. p-typical Witt vectors, or p-typical of length n.

There was an awful lot of structure on Λ – a ring structure, a co-ring structure, and a plethysm.
But there’s even more structure. There’s a lot of nice combinatorics that drive this picture,
and a lot of it is not written down correctly in the literature.

Hesselholt has the following view of these things – instead of thinking of the single ring W(R)
attached to R, he has a whole family of rings.

Definition 15.1. A truncation set is a sieve in the divisibility poset Φ. That is, it’s a set
S ⊂ Φ of natural numbers such that if n ∈ S and d | n then d ∈ S.

Given the multiplication map n : Φ→ Φ, I can pull back S ⊂ (the second copy of) Φ to get a
sieve we call S/n:

Φ
n // Φ

S/n
?�

OO

// S
?�

OO

S/n is literally the pullback in sets; explicitly, S/n = {k ∈ N : kn ∈ S}.

Hesselholt defines WS(R) for each S: as a set, WS(A) = AS , but with the unique ring structure,

natural in A, such that the ghost map WS(A)
w→ AS sending (an)n∈S 7→ (

∑
d|n da

n/d
d )n is a

ring homomorphism (i.e. using the product ring structure on AS). It is a theorem that these
things exist.

Example 15.2. If S = {1, p, p2, . . . }, then this leads to the p-typical Witt vectors. I could
stop at pn, and then you get the n-truncated p-typical Witt vectors.

The construction WS(R) comes with the following maps:

• (Restriction) If T ⊂ S, then I have a restriction map RST : WS(R)→WT (R).
This is literally restriction.

• (Frobenius) Given n ∈ N, there is a ring map Fn : WS(R)→WS/n(R).

Recall we have ghost components WS(R)
w→ RS . There is a map Fwn : RS → RS/n where

Fwn (x) = (xnd)d∈S/n. Then Fn is the unique ring map making the following diagram
commute:

WS(R) //

w
��

WS/n(R)

w
��

RS
Fwn // RS/n

• (Verschiebung) For every n ∈ N, there is a (not necessarily ring) map Vn : WS/n(R)→
WS(R).
Explicitly, Vn((ad)d∈S/n) has mth component ad if m = dn and 0 otherwise.
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There are also a bunch of compatibilities (e.g. what happens when you compose). Hesselholt
writes all of this down.

I’d like to package up all this information in a coherent way, by getting an indexing category.
I want to minimize the abstract nonsense while getting the naturality across.

Idea: we have 〈n〉 = {d ∈ Φ : d | n}, the sieve generated by n. Regard 〈n〉 as the “basic opens”
of some space. Then general truncation sets are the general opens. The idea is, if I know
W〈n〉(R) for all n, I should be able to recover WS(R) for all S. When m | n, I have a Frobenius
map Fm|n : W〈n〉(R)→W〈m〉(R). In the other direction we have Vm|n : W〈m〉(R)→W〈n〉(R).

Given m | n and k | n, you have to make sense of the composite

W〈m〉(R)
Vm|n→ W〈n〉(R)

Fk|n→ W〈k〉(R).

You can write down a diagram

W〈(m,k)〉

$$

W〈m〉

Vm|n $$

::

W〈k〉

W〈n〉
Fk|n

::

but it doesn’t commute. But, the claim is that it almost commutes.

Fk|nVm|n =
n

[m, k]
V(m,k)|kF(m,k)|m

This looks like the restriction-induction formulas in representation theory. Suppose G is a
finite group and H1, H2 are finite subgroups of K, a finite subgroup of G. Then we have maps
of orbits

[G/H1]

��

[G/H2] // [G/K]

The pullback (in the category of G-sets) is not a single orbit; it’s a disjoint union of them:⊔
g∈H1\K/H2

[G/H1 ∩ gH2].

(Here gH2 means conjugate, but I haven’t told you which one. . . )

If you think of the Witt vectors for each R as an assignment of cyclic groups to abelian groups
(i.e. for every R, to 〈n〉 you assign W〈n〉(R)), then you want to see this kind of decomposition.

The idea is: ⊔
[G/H1 ∩ gH2]

Frobenius // [G/H1]

[G/H2]
Frobenius

//

Verschiebung

OO

G[K]

Verschiebung

OO
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where the red maps (Verschiebung) are the “wrong way” maps. We want to achieve a similar
diagram ⊔

??? //W〈k〉

W〈m〉

OO

V
//W〈n〉

F

OO

Let C = Q/Z. Let OC be the category of C-orbits of the form Q/ 1
mZ = 〈m〉. Notice that I’m

indexing this using the size of the stabilizer: Q/ 1
mZ = (Q/Z)

/
( 1
mZ/Z).

Consider formal products of the form N =
∏
p prime p

vp(N) where vp(N) ∈ N0 ∪ {+∞}, and

define CN = 1
NZ/Z. For example, if N is finite, you get the finite cyclic group on N elements,

but we also have Cp∞ = Qp/Zp and C∞ = C.

In the group example, if we tried to take a pullback in the category of single orbits, we would
have failed – you need general G-sets (disjoint unions of orbits). Similarly, in the W example
we need more things than just 〈n〉.

Pass to FCN , the category of CN -sets with finitely many orbits, all of the form 〈m〉N =

CN/(
1
mZ/Z) (this is the same as saying the stabilizers are finite).

The Witt vector construction R 7→ (〈n〉 7→W〈n〉(R)) is

W : Ring→ BiFun(FCN ,Ab).

(Bifunctors are both covariant and contravariant.) The Frobenius and Verschiebung blend in
a way that gives a pullback diagram. We’re going to construct a yet bigger category than
FCN to contain our pullback.

Definition 15.3. The effective Burnside category Aeff(FCN ) is described as follows:

• objects are the objects of FCN

• 1-morphisms from X to Y are spans X ← U → Y

• Composition is given by pullbacks:

U ×Y V
zz $$

U
�� $$

V

zz ��

X Y Z

• 2-isomorphisms from X ← U → Y to X ← U ′ → Y are diagrams

U

~~   

∼=
��

X U ′oo // Y

This is a (2,1)-category – a category enriched in groupoids.
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Ordinarily I would just quotient out by these isomorphisms. But I’m about to enlarge FCN
into a 2-category, and then I’ll need to use this extra data.

Now our Witt vector construction can be seen as a functor

W : Ring→ Fun(Aeff(FC),Ab).

But I want orbits to be running the show. A disjoint union of orbits gives a product on Aeff.
But Aeff is its own opposite. So now Witt vectors are

W : Ring→ Fun⊕(Aeff(FC),Ab).

(I.e. these are additive functors – they preserve direct sums. This means W〈m〉t〈n〉(A) =
W〈m〉(A)⊕W〈n〉(A).)

But I have an issue: Fun⊕(Aeff,Ab) is too much structure – it suggests you have an action of
the stabilizer on everything. There’s no action like this on actual Witt vectors.

We took the orbit category OCN and added formal coproducts to get to FCN . Then we formed
the effective Burnside category. I’m going to define O c©N

such that we get analogous categories

OCN
� � //
� _

��

O c©N� _

��

FCN

��

� � // F c©N

��

Aeff(FCN ) �
�

// Aeff(F c©N
)

What is O c©N
? The objects and 1-morphisms are the same as those in OCN . A 2-isomorphism

between u, v : 〈m〉N ⇒ 〈n〉N is an intertwiner, an element r ∈ 1
NZ such that v(t) = r + u(t)

(mod 1
nZ). This takes the generator for 〈n〉N = ( 1

NZ/Z)
/

( 1
nZ/Z). and contracts it to the

identity.

Example 15.4. Take N = 1. Then OC1 has one object and one morphism. What’s O c©1
? It

has one object and one 1-morphism, and a Z’s worth of 2-morphisms. This is sometimes known
as BBZ = BS1 = CP∞. (We’re identifying 2-types (spaces with no π>2) with 2-groupoids,
and will continue to do that without fear.)

Lecture 16: April 25

No class Thursday.

We’ve constructed this cyclonic orbit category, which is supposed to pick up some of the maps
we’re seeing in the Witt vectors. We were looking at W〈n〉(R).

We’ve produced this (2,1)-category O c© that we call the cyclonic orbit category. We took
a category of Q/Z-orbits and enlarged it by introducing some 2-morphisms which formally
interpolated between the generator of a cyclic group and the identity. For any supernatural
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number N we had the N -cyclonic category O c©N
. We saw last time that O c©1

= BBZ. The
picture is the following.

Idea: there’s some stratified space X c© such that constructible sheaves3 Cnstr(X c©,Set) '
Fun(Oopc©, Set). Recall we had a procedure

O c© ↪→ F c© ↪→ Aeff(F c©)

where the objects of Aeff are finite disjoint unions of things in O c© and the morphisms are
spans. This is picking up some basic structure we saw on the Witt vectors.

The Witt vectors
W(−)(R) : Aeff(F c©)→ Ab

is a Mackey functor for each value of −: it carries direct sums to direct sums. In addition to
direct sums, I have try to product together cyclonic sets. Problem: there’s no terminal object.
But you can pretend as if the product existed: looking at X × Y ← U → Z is the same as
the collection of maps (U → X,U → Y,U → Z). So I don’t know what it means to have a
product of X × Y but I still know how to talk about maps from X × Y to Z. This gives the
structure of of a symmetric promonoidal category. This is exactly the structure you get on
a subcategory of a symmetric monoidal category (which might not preserve ⊗, but embeds
fully faithfully as a multicategory into a symmetric monoidal category).

This is not all the structure on the Witt vectors, though. We’re going to see an action of
the monoid N on O c© which will extend to an action on all of Aeff. Then you’ll see that
W is naturally fixed points for that action. Under this analogy, W is more than just a
constructable sheaf – it’s a bi-constructable sheaf. You’re supposed to be rigging it so that

Bicnstr(X c©,Ab) ' Mack(F c©,Ab).4 But actually what we want is Mack(F c©,Ab)N
×

(this is
fixed points in the categorical sense – objects that are fixed up to some equivalence). You
should think of this as

Bicnstr(X c©/N×,Ab) ' Mack(F c©,Ab)N
×

where X c©/N× is now some stack. The opens are the truncation sets.

The idea is that the orbit category O c© is completely running the show. There is a map
O c© → Φ (N ordered by divisibility); you’re supposed to think of this as giving rise to a
stratification of a space attached to O c©.

If C and D are symmetric monoidal and D has all colimits and ⊗D preserves them separately
in each variable, then Fun(C,D) has a natural symmetric monoidal structure. Suppose
X,Y ∈ Fun(C,D); I need to define (X ⊗ Y )(x) for x ∈ C. Define

(X ⊗ Y )(x) = colima⊗b→xX(a)⊗D Y (b) =

∫ a,b∈C
Hom(a⊗ b, x)⊗X(a)⊗D Y (b)

3When you restrict to the strata, you get locally constant sheaves. I also need a convergence hypothesis.
4Recall Mack(F c©,Ab) = Fun⊕(Aeff(F c©),Ab) (these are both covariant and contravariant).
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(the first ⊗ in the coend is a co-power). Equivalently, I could take the Kan extension of

C × C
(X,Y )

//

⊗C
��

D ×D
⊗D
��

⇐=

C
X⊗Y

// D

The following exercise is genuinely unfair.

Exercise 16.1. The unit in Mack(Aeff(F c©),Ab) is W(Z). (I only know really expensive
proofs of this.)

Proof. Nothing I’ve done relies on the fact I’m working with Ab; I can replace it with
the ∞-category of spectra and everything will be the same. There, I know by Barratt-Priddy-
Quillen that the unit is the (cyclonic) sphere spectrum. I can take π0 of this and get the
Grothendieck groups that appear in W(Z). There’s an old paper of Dress-Siebeneicher from
the 70’s that (presumably) gives a more reasonable proof. Dress invented Mackey functors. �

This all seems excessive, but I’m telling a story with an analogue in spectra, and then it’s
related to THH.

First, for any n ∈ N define ιn : O c© → O c© by sending 〈m〉 7→ 〈mn〉. On objects, this

is pullback along Q/Z −×n→ Q/Z. Suppose we have a 2-morphism between two morphisms
u, v : 〈m〉 → 〈m′〉 (a rational number that intertwines these maps); send this to the 2-morphism
given by r

n .

Fact 16.2. ιn is fully faithful, and extends to a fully faithful functor ιn : F c© → F c© preserving
finite coproducts.

ιn admits a right adjoint pn, with

pn(〈m〉) =

{〈
m
n

〉
if n | m

∅ otherwise.

(Note ∅ isn’t an orbit but it exists in F c©.) This is fully faithful; pnιn = 1. This exhibits F c©
as a localization of itself.

Furthermore, both ιn and pn preserve pullbacks (pn does because it’s a right adjoint; ιn you
have to check, and this is exactly where we got the definition on 2-morphisms). They also
preserve finite coproducts. Then you get

Aeff(ιn) : Aeff(F c©)→ Aeff(F c©)

Aeff(pn) : Aeff(F c©)→ Aeff(F c©)

These are not adjoint anymore, but Aeff(pn)Aeff(ιn) = 1. It’s no longer a localization, but it
is a retraction.

(The “effective” in Aeff is a reference to effective divisors in all divisors.)
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Now let’s pass to Mackey functors. These functors preserve direct sums, and pulling back a
Mackey functor along such a functor is still a Mackey functor:

in,∗Mack(F c©,Ab)
Aeff(pn)∗→ Mack(F c©,Ab).

I’m calling this in,∗ because it corresponds to the pushforward along a closed immersion.

Recollement. We’re thinking about the covering of a space by a closed piece and its open
complement. There are a bunch of adjunctions relating constructible sheaves on the pieces
and on the whole thing. Convention: i : Z ↪→ X is the closed piece, and j : U = X\Z ↪→ X is
the open complement.

Sh(Z)
i∗=i! // Sh(X)

i∗

��

i!

__

j!=j∗
// Sh(U)

j∗

__

j!

��

Which things are adjoint? i∗ a i∗ a i! and j! a j∗ a j∗. This is a recollement if

(1) i∗ and j∗ are fully faithful. (Exercise: j∗ is fully faithful iff j! is fully faithful.)

(2) j∗i∗ = 0 (we’re talking about sheaves of vector spaces here)

(3) Sh(Z) = ker(j∗)

Suppose you’re in this situation and you want to specify a sheaf on X, but all you have is a
sheaf FZ on Z and a sheaf FU on U . This is sufficient, provided you add the data of a gluing
map FZ → i∗j∗FU . I’m saying that Sh(X) is equivalent to triples consisting of a sheaf on
Z, a sheaf on U , and a map as mentioned. This is sometimes called Artin gluing. Reference:
Beilinson, Bernstein, and Deligne on perverse sheaves.

There’s a wrong way recollement in algebraic geometry. Let X be a nice scheme, Z ⊂ X
a closed immersion, and U = X\Z ⊂ X the open complement. We’ll be working with the
derived categories of quasi-coherent sheaves:

Dqc(U) j∗ // Dqc(X)

j∗

tt

j×
jj

i∗ // Dqc(x on Z)

complete

kk

torsion
ss

“X on Z” means quasi-coherent sheaves on X whose set-theoretic support is on Z. There are
two ways to embed this into Dqc(X) – as torsion objects (left adjoint), or as complete objects
(right adjoint). For example, the category of p-torsion abelian groups is equivalent to the
category of p-complete abelian groups. In our case, j∗ is fully faithful. It has a left adjoint j∗

and a right adjoint j×. This is the one that shows up in K-theory (localization sequences); the
other one is the one that shows up in constructible sheaves. They are Tannaka dual pictures.

I have a functor
in,∗ : Mack(F c©,Ab)→ Mack(F c©,Ab)

which I want to think of as pushforward along a closed immersion F c© → F c©; this is pullback

− ◦Aeff(pn). This has adjoints i∗n, i!n which are left and right Kan extensions, respectively.

61



Gamma functions and F1 Lecture 17

In the following, if you don’t like spectra you can imagine the dg category of quasi-coherent
sheaves on a scheme. Let D be the ∞-category of spectra (or this replacement, if you want).

i∗n is a very important functor; in homotopy theory, this is geometric fixed points ΦCn . (I.e.
Mack(F c©, D) agrees with the homotopy theory of S1-spectra.) I need the j’s to get Artin
gluing off the ground.

Let p be prime. Recall ιn : O c© ↪→ O c©; this is the embedding of a cosieve. There’s a
complementary sieve jp : O c©p′ ↪→ O c©, where O c©p′ is the full subcategory spanned by 〈m〉’s
such that p - m.

We can extend this to a functor jp : F c©p′ → F c© which is also fully faithful. This preserves

pullbacks, and I defined it to preserve coproducts. So it’s one of the functors we can take Aeff

of:
Aeff(jp) : Aeff(F c©p′ )→ Aeff(F c©).

This is a direct-sum-preserving functor.

I can pre-compose

Mack(F c©, D) j∗p // Mack(F c©p′ , D)

jp,∗

ll

jp,!
ss

Theorem 16.3. These functors define a recollement

Mack(F c©, D) in,∗ // Mack(F c©, D) j∗p //

i!n

ll

i∗n
ss

Mack(F c©p′ , D)

jp,∗

ll

jp,!
ss

This is looking like a topology you can imagine on the divisibility poset: the basic opens
are the sieves. What we’ll say is that it’s really the case that you can glue together Mackey
functors on the pieces to get Mackey functors on the whole thing.

Lecture 17: May 2

So far: we’ve introduced the cyclonic orbit category O c© by taking the category of Q/Z-sets
with finitely many orbits and finite stabilizers, and introducing some 2-morphisms. Then
we enlarge this in the same way we enlarge the orbit category of a finite group, first to get
the category F c© of finite cyclonic sets, and then further to the effective Burnside category

Aeff(F c©). Then we talked about Mackey functors Mack(F c©, D) for this category (here D is
the ∞-category of spectra or the DG category of complexes of quasi-coherent sheaves over
your favorite variety) – direct-sum preserving functors Aeff(F c©)→ D.

We also wanted to look at the action of N× on this category. This gave rise to an action on
Aeff(F c©), which gave rise to an action on Mack(F c©, D).
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Definition 17.1. Cyclotomic objects of D are objects of Mack(F c©, D)hN
×

. A cyclotomic
object of D is the following data:

• a Mackey functor M : Aeff(F c©)→ D

• for all primes p, an identification i∗pM
θp∼= M satisfying the obvious relations (using the

fact that ip and iq commute). (N× is freely generated as a commutative monoid by the
p’s, so this is all you have to write down.)

Recall we had a recollement, where the open piece came from the “p part”, and the closed
piece came from the “prime-to-p part”

Mack(F c©, D) ip,∗=ip,! // Mack(F c©, D) j∗p=j!p //

i!p

ll

i∗p
rr

Mack(F c©p′ , D)

jp,∗

ll

jp,!
rr

The fact that this is a recollement is that the following

jp,!j
!
pM →M → ip,∗i

∗
pM

is a fiber sequence (distinguished triangle). (This expresses the fact that M can be recovered
from the pieces.) In homotopy theory, this is just the isotropy separation sequence. (This isn’t
hard to prove, because the i∗ thing gives geometric fixed points.) Given a normal subgroup
H < G, you can run this to get a recollement

Mack(G/H) // Mack(G) //

kk

ss

Mack(H)
kk

ss

But this also makes sense for the derived category of abelian groups. If you take H0 (project
everything to the heart), this distinguished triangle becomes a right exact sequence. That is,
if X ∈ Mack(F c©,Ab), we get an exact sequence

jp,!j
!
pX

λp→ X → ip,∗i
∗
pX → 0.

Let’s talk about (jp,!j
!
pX) 〈n〉. Actually, factor n = mpv where (m, p) = 1. Then you have

(jp,!j
!
pX) 〈mpv〉 = X 〈m〉 .

Given this, λp : X 〈m〉 → X 〈mpv〉 is just the Verschiebung ϕm|mpv ,∗, the pushforward functor
in the Mackey functor you get from the divisibility relation m | mpv. So:

ip,∗i
∗
pX 〈mpv〉 = X 〈mpv〉 /ϕ∗(X 〈m〉).

Exercise 17.2. A cyclotomic structure on X is the following data:

• for each prime p, an isomorphism rp : X
∼=→ i∗pX, such that for any pair of primes p1, p2,

the following diagram commutes:

X //

��

i∗p1
X

��

i∗p2
X // i∗p1p2

X

Since i∗pX 〈mpv〉 = X
〈
mpv+1

〉
/X 〈m〉, this is giving the data of identifications X 〈mpv〉 ∼=

X
〈
pv+1m

〉
/X 〈m〉 compatible with both Frobenius and Verschiebung.
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Write n = mp, where m = apv. Then I can form

ρm|n : X 〈n〉 → X 〈n〉 /X 〈a〉
r−1
p→ X 〈m〉 .

This composition gives a restriction map.

Recall: an open U ⊂ O c© is a sieve. (You’re specifying a full subcategory (a collection of
integers) which is closed under the property that if d | n and n is in the sieve, then d is in the
sieve.) These opens are the same as truncation sets in the sense of Hesselholt. For a fixed
base ring R (which will eventually be Z), look at the sheaf

Opens(O c©)op → Ab

sending S 7→WS(R). If S′ ⊂ S, the corresponding map WS(R)
ρ→WS′(R) is our restriction

map as long as S is some 〈n〉. But every other truncation set is a union of 〈n〉’s. Because
rings of Witt vectors of rings, we can think of this sheaf as valued in rings instead of just Ab.
The restrictions ρ and the Frobenius are ring maps (but the Verschiebung is not). This is
most of the structure on the Witt vectors – there’s also that plethysm, and that can also
be injected into this picture. But for now this is enough for me to tell you what the Witt
complex is. (It’s not actually a complex. . . )

Definition 17.3. A Witt complex (over a ring R) is a sheaf

Opens(O c©)op
E•→
{

anticommutative5 graded rings
}

along with a natural ring map η : W → E0, and natural (w.r.t. restriction maps) graded
abelian group maps

d : E∗ → E∗+1 Fn : E∗S → E∗S/n Vn : E∗S/n → E∗S

such that:

(1) for all x ∈ EqS , x′ ∈ Eq
′

S ,

d(xx′) = d(x)x′ + (−1)qxd(x′)

d(d(x)) = d log ηS([−1]S)d(x)

where d log ηS [−1]S = ηS([−1]S)−1dηS([−1]S) (the brackets are referring to the Witt
vectors so you get a Teichmüller lift).

(2) For m,n ∈ N:

F1 = V1 = 1

FmFn = Fmn VmVn = Vmn

FnVn = n1 FmVn = VnFm if (m,n) = 1

FnηS = ηS/nFn ηSVn = VnηS/n

(3) Fn is a ring map and Vn is a module map: there is a projection formula just like in

algebraic geometry: for x ∈ EqS and y ∈ Eq
′

S/n we have

xVn(y) = Vn(Fn(x)y).

(4) FndVn(y) = d(y) + (n− 1)d log ηS/n([−1]S/n)y

(5) FndηS([a]S) = ηS/n([a]n−1
S/n )dηS/n([a]S/n)
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The idea is that this relates to cyclotomic things.

Cyclotomic objects Witt complexes

opens of O c© truncation sets

pushforwards ϕm|n,∗ Verschiebung maps Vn

pullbacks ϕ∗m|n Frobenius maps Fn

restrictions ρm|n
coming from the N× action

restrictions

residual S1 action differential

Note that the differential is the only thing that needed structure beyond just Q/Z-sets.

Claim 17.4. The homotopy groups of a cyclotomic spectrum inherit the structure of a Witt
complex.

Remark 17.5. A Witt complex is a complex if one of:

(1) 2 is invertible in R

(2) 2 = 0 in R

(3) if you restrict to 2-primary truncation sets (the only n’s in the truncation sets are odd)

Definition 17.6. The big de Rham-Witt complex over R is the initial object in the category
of Witt complexes over R.

This is quite similar to the definition given in Deligne-Illusie. But there, they’re working in a
p-primary situation (e.g. the Witt vectors of a characteristic-p field) so they’re not so worried
about the fact that the differential isn’t a differential, and there are fewer error terms.

The idea is that, via Claim 17.4, the homotopy groups of something related to THH are the
de Rham-Witt complex.

Lecture 18: May 4

Last time we stated a relationship between cyclotomic spectra and Witt complexes. In these
last lectures my goal is to connect the F1 stuff with the first half of the course about Tate’s
thesis.

The idea is the following. If X → SpecZ is a smooth and projective variety, then Serre defined
local L-factors for the motive hw(X) (this is just a formal piece of notation at this point).
Here w is a weight. These are familiar things at the finite places, but more complicated at
the archimedean primes, where these factors are given as Γ-functions. The product of all of
these should be a completed L-function Λ(kw(X)) =

∏
v Lv(h

w(X)), which should have an
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analytic continuation to a meromorphic function on C, and a nice functional equation for the
replacement s 7→ w + 1− s.

This picture works perfectly well when we work with varieties over finite fields. In particular,
we have expressions of the L-factors using various kinds of cohomology theories – `-adic and
crystalline. As well we have functional equations which come from Poincaré duality for the
aforementioned cohomology theories. So we know how to deal with Fq, and you’re supposed
to contemplate q → 1.

This goes back to an idea of Deninger (1991), who tried to get an expression of Lv(h
w(X))

(in particular, the ones at infinity) in terms of a cohomology theory. The L-factors in the Fq
case came from crystalline cohomology, the characteristic-p version of de Rham cohomology.
So the question is: what is de Rham cohomology over F1? We now have a candidate for this;
it’s something extracted from THH (or, equivalently, the big de Rham Witt complex WΩ).

Why is this a reasonable candidate for de Rham cohomology? Last time we talked about the
“complex” WΩ. From our point of view, F1-algebras are the same thing as Λ-rings, and we
talked about Λ-modules, and this gave a notion of differentials. You can exteriorize this to
get the de Rham complex. You get a map Ω•W(Z) →WΩ•Z which is essentially a quotient map;

the point is that it “forces good behaviour w.r.t. the Frobenius and Verschiebung”.

The conjecture is that, just thinking about F1-algebras as Λ-rings on their own is not enough.
This is a coalgebra for a plethory, and maybe you need more structure on the plethory. So at
the moment, we don’t have a picture that presents WΩ•Z as the de Rham complex over F1.
Instead, we have indications that this is close to being the right thing.

Recall Γ functions have infinitely many poles. That tells you that the cohomology theory has
to be infinite-dimensional – otherwise there would be finitely many poles. Deninger presented
a candidate for this cohomology theory by picking up a summand of Deligne cohomology. It
turns out that works perfectly at complex places, but it’s a little awkward at real places. To
fix up this discrepancy, Connes and Consani proved:

Theorem 18.1 (Connes-Consani). Let K be a number field. Suppose we have a smooth and
projective variety X → SpecOK .

∏
0≤w≤2d

Lv(h
w(X), s)(−1)w+1

=
det∞

(
1

2π (s−Θ)
∣∣
HCareven(Xv)

)
det∞

(
1

2π (s−Θ)
∣∣
HCarodd(Xv)

)
Here HC is cyclic homology, and det∞ is a regularized determinant (a determinant on a
countable dimensional vector space).

If this were the correct cohomology theory, we’d expect this formula, but the formula is true
regardless. Being right would include having everything that you have over finite fields –
including the Riemann hypothesis!
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Theorem 18.2 (Hesselholt). Let X be smooth and proper over Fq. Choose an embedding
W(Fq) ↪→ C.

ζ(X, s) =
det∞

(
(s−Θ)

∣∣
TPodd(X)

⊗W C
)

det∞

(
(s−Θ)

∣∣
TPeven(X)

⊗W C
) =

det(1− q−sFr∗q
∣∣
Hodd

cry
)

det(1− q−sFr∗q
∣∣
Heven

cry
)
.

Here TP∗(X) is the Tate cohomology (homotopy of the Tate construction for S1, or equivalently
(since we’re working p-completely) the limit of the Tate constructions for all the Cpr ’s) of
THH(X).

HC is like rationalized THH.

I hope this is sufficient motivation for studying THH and its friends TP etc. The presentation
here is supposed to be visibly free of choices.

What is THH?

(1) THH(X) is a cyclotomic spectrum.

(2) THH(X) should receive cycle class maps from K(X).

(3) THH(X) should depend only on the “category of modules” Perf(X) (perfect complexes),
because that’s what happens to K-theory and I want to think of THH as a repository
of cycle class maps from K-theory.

THH will be a cyclonic spectrum, and I’ll define Tate cohomology using recollements.

Let me give you an 85% Tabuada-esque description of THH. (Aside: what I’m going to
describe won’t work if k-linearized – I can’t work over Z, only over the sphere spectrum.)
Take an idempotent-complete stable∞-category and attach a noncommutative motive Motncadd.
Given any category and make the free stable ∞-category generated by it (left adjoint to the
obvious forgetful functor). Given that category I can also take the cyclic nerve N cyc; this will
be an object of Fun(Oopc©,Spaces). Define THH as the lift in the following diagram:

{Cat}
Ncyc

((vv

{stable ∞-categories}

��

SpΦ

((

Fun(Oopc©, Spectra)

Σ∞+
��

Motncadd
Kan extend //

THH

66

Fun⊕(Aeff(F c©),Spectra)

Here SpΦ = Fun⊕(Aeff(F c©),Spectra)hN
×

. Then

THH(S[ΩX]) = Σ∞+ ∧X.

This description makes it obvious that there is a natural transformation

K → THH.
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This is called the Dennis trace.

Recall for any supernatural number N , we could replace all c© with c©N above – you’re only
looking at cyclic groups whose order divide N . This is a way to get the p-typical version of
THH, called THH(−; p) ∈ SpΦp∞

. There are spectra TRn(−; p) := THH(−; p)
〈
pn−1

〉
p∞

.

(These are cyclotomic spectra so you can plug in 〈n〉.) Then TR∗ is the pro-system of these
things.

Say X is a p∞-cyclonic spectrum (this is the p-typical case). I want to try to appeal to the
recollement story. Specifying pr should specify a closed piece and an open piece. We have

O c©p∞
closed
↪→ O c©p∞

open
←↩ O c©pr

which gives rise to the recollement:

Sp c©p∞
i∗=ip,! // Sp c©p∞

j∗=j! //

i!

jj

i∗

tt

Sp c©pr

j∗

jj

j!
tt

This gives a cofiber sequence
j!j

!X → X → i∗i
∗X.

Last time I mentioned that this is the same as the isotropy separation sequence. We can
compare this to another fiber sequence on the bottom:

j!j
!X // X //

��

i∗i
∗X

��

j!j
!X // j∗j

∗X // i∗i
∗j∗j

∗X

This presents i∗i
∗j∗j

∗X as a pushout; this is the Tate construction. (Literally, it’s geometric
fixed points of the Borel construction.) Here i∗ is geometric fixed points and i∗ is forgetting.

We should analyze this map in the case where X = THH(−, p). There is a restriction map
R : TRn+1(−, p)→ TRn(−, p). Evaluate all the cyclotomic objects on pn+1.

TRn+1(−, p) R //

��

TRn(−, p)

��

H•(Cpn , THH)
N // H•(Cpn , THH) // Ĥ•(Cpn , THH)

This is a pullback diagram and Ĥ is the Tate cohomology.

Clark Barwick and Saul Glasman will be putting a paper out soon about this method of
defining THH.

Definition 18.3.

TPi(X) = Ĥ−i(T, THH) = πi(lim
n
Ĥ•(Cpn , THH))

(Here T = S1 and lim is in the homotopy sense.)

This is the candidate for our cohomology theory.
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Next time I’ll write down a computation of some of these groups, and relate TR to the de
Rham-Witt complex – we’ll see that they’re really describing the same structure.

Lecture 19: May 9

THH carries the structure of a cyclotomic complex. In particular, it receives a map from
the de Rham-Witt complex. We also started to construct TR (taking Cpn−1-fixed points of
THH). We’re talking about the ζ-function of a variety over Fq.

(Is it clear that the category of Witt complexes has an initial object? No. If you get rid of the
prime 2 by looking at p-typical things, you can use an adjoint functor argument.)

Recall:
TR(−, p) = THH(−)

〈
pn−1

〉
.

Last time we had

H•(Cpn , THH(−)) // TRn+1(−, p) //

��

TRn(−, p)

��

H•(Cpn , THH(−)) // H•(Cpn , THH(−)) // Ĥ•(Cpn , THH(−))

where Ĥ was Tate cohomology. The bottom right term is what you take the limit of to get
TP .

I need to tell you basic results (due to Hesselholt and Hesselholt-Madsen) about how THH
functions.

Theorem 19.1. Let X be smooth over a perfect field k of characteristic p. There’s an
isomorphism of cyclotomic OX-algebras:

W•(X)
∼=→ TR•0(X, p).

Wn is the n-truncated Witt vectors (i.e. you’re using the truncation set
〈
pn−1

〉
) and W• is

what you get when you put them together (the Frobenius and Verschiebung move these things
around).

Formally, TR already has all the structure you need to be a p-Witt complex (only care about
evaluating on 〈pr〉) except an algebra structure over the Witt vectors, which is what this
computation tells you. So we have that TR•∗(X) is a p-Witt complex, and there is a map
η : W•Ω∗ → TR•∗(X) of pro-complexes that is a ring map degree-wise, and compatible with
Frobenius and Verschiebung.

(Note on the indexing: you should think of • giving a pro-system of complexes, and ∗ is the
complex degree.)

Theorem 19.2 (Hesselholt). The map WnΩj
X → TRnj (X) is an isomorphism for j ≤ 1.
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We want to know what this looks like more generally as j varies. There’s an answer where
X = Spec k:

Theorem 19.3 (Bökstedt, Hesselholt-Madsen (Periodicity theorem)). TRn2 (k, p) is free of
rank 1 over Wn(k). If n ≥ 1, there is an isomorphism of graded Wn(k)-algebras

Sym(TRn2 (k, p))
∼=→ TRn∗ (k, p).

(Hesselholt also specifies a precise “good” generator for TRn2 (k, p).)

Bökstedt’s paper is still unpublished but can be found on the internet.

Theorem 19.4 (Hesselholt). Let f : X → Spec k be a smooth scheme over a perfect field k,
and let n ≥ 1. Then there is an isomorphism

WnΩ∗X ⊗f∗Wn(k) f
∗TRn∗ (k, p)

∼=→ TRn∗ (X, p).

This is from Hesselholt’s p-typical curves paper, which you should definitely read.

Recall we’re regarding TRn∗ (X, p) as a sheaf of Wn(OX)-algebras.

Remark 19.5. There is an isomorphism, due to Voevodsky and Geisser-Levine:

KM
∗ (OX)⊗f∗(Z/pn) f

∗K∗(k,Z/pn)→ K∗(OX ,Z/pn).

Classically, you take the hypercohomology of the de Rham-Witt complex to get crystalline
cohomology.

Theorem 19.6 (Illusie). H i
crys(X/W•(k)) ∼= H i(X,W•Ω∗X)

Here H∗crys is the cohomology of the crystalline site.

This gives rise to the conjugate spectral sequence

Ei,j2 = lim
F
H i(X,W•Ωj

X) =⇒ H i+j
crys(X/W(k)).

This is the spectral sequence you get by filtering the crystalline cohomology by the truncated
crystalline cohomology. It looks like this should be limR, but there is an isomorphism

limF Wn(k)
ϕ→ limRWn(k).

Fact 19.7. U 7→ Ĥ•(Cpn , THH(U)) is an étale sheaf of Wn(OX)-modules on X.

Theorem 19.8 (Hesselholt). If n ≥ 1,

WnΩ∗X ⊗f∗Wn(k) f
∗Ĥ−∗(Cpn , THH(k))

∼=→ Ĥ−∗(Cpn , THH(X)).
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WnΩ∗X ⊗f∗Wn(k) f
∗TRn∗ (k, p)

∼= //

��

TRn∗ (X, p)

γ

��

WnΩ∗X ⊗f∗Wn(k) f
∗Ĥ−∗(Cpn , THH(k)) // Ĥ−∗(Cpn , THH(X))

Note that both of the things on the bottom row are 2-periodic algebras. So it suffices to
prove the theorem in a range. In particular, we will prove that γ is an isomorphism in degrees
≥ dimk(X).

Everything in sight is an étale sheaf; so we can quickly reduce to the affine case.

Key Fact 19.9. If A/k is smooth of relative dimension d, there is a spectral sequence (the
Tate spectral sequence)

E2
i,j = Ĥ−u(Cpn , THHj(A)) =⇒ Ĥ−i−j(Cpn , THH(A))

which converges strongly, and E∞i,j = 0 if j ≥ d+ 2n.

Proof idea. We have
E2
∗∗ = Λ{u} ⊗ S{t±, α} ⊗ Ω∗A

with |u| = (−1, 0), |t| = (−2, 0), and |α| = (0, 2). (Here Λ means exterior algebra and S
means symmetric algebra, and Ω∗A is the usual de Rham complex on A.) Here u and α are
permanent cycles, and d2n+1(u) = λtn+1αn for λ ∈ Fp. Sort of the whole point is that Ω∗A is
in degrees (0, j) with 0 ≤ j ≤ d. Compare this to

E2
∗∗ = S{t±, α} ⊗ Ω∗A =⇒ Ĥ−∗(T, THH(A)).

The nonzero differentials are all even, and so E2n+2
i,j = 0 if j ≥ d+2n. (This isn’t true for formal

reasons – all of this is a computation.) Here Ĥ−∗(T, THH(A)) = limn Ĥ
−∗(Cpn , THH(A))

(for now, just take this as a definition). �

Definition 19.10. TP∗(X) := limn Ĥ
−∗(Cpn , THH(A)) = Ĥ−∗(T, THH(A))

(Oops, forgot to define TC. The category of cyclotomic spectra is symmetric monoidal, so it
has a unit. The TC groups are the Ext groups out of the unit. This is the one that closely
approximates K-theory.)

In defense of that crazy definition of THH: all it tells you is what to do with free things. But
no one knows how to do a computation with THH that doesn’t involve using descent, formal
arguments, and knowing what happens on free things.

Here’s a spectral sequence for computing TP (one might call this the Hodge spectral sequence,
but we’re getting it out of pure topology):

E2
i,j =

⊕
m∈Z

lim
F
H−i(X,W•Ωj+2m

X ) =⇒ TPi+j(X).

This is just gotten by putting together pieces we already know. This spectral sequence is
concentrated in the strip −d ≤ i ≤ 0.
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We were going to tensor TP up to C so we could look at the regularized determinant for some
operator (if you don’t use C you have convergence issues), and some quotient of those was our
ζ function. I’m going to use some embedding ι : W(k) ↪→ C. At least in theory, everything
depends on this embedding. We can tensor this entire spectral sequence up to C:⊕

m∈Z
lim
F

(H−i(X,W•Ωj+2m))⊗ C =⇒ TPi+j(X)⊗ C.

There’s going to be an operator Θ on the RHS, and that’s what we’re going to take the
regularized determinant of. There’s also a scaling factor, which doesn’t matter until you work
in an archimedean setting.

ζ(X, s) =
det∞

(
1

2π (s1−Θ)
∣∣
TPodd(X)⊗C

)
det∞

(
1

2π (s1−Θ)
∣∣
TPeven(X)⊗C

)

Lecture 20: May 11

We need to define the regularized determinant, and then we’ll be able to finish off Hesselholt’s
proof from last time.

Definition 20.1. Suppose (λn)n∈N is a sequence of complex numbers with specified arguments
(αn)n∈N. Make two assumptions:

(1) There exists N ∈ N such that for all n ≥ N , λ0n 6= 0.

(2) Consider the Dirichlet series ∑
n≥N
|λn|−s exp(−isαn).

This converges on some half-plane. Assume that this admits an analytic continuation
to a holomorphic function ζN (s) on 〉 − ε,+∞〈 for ε > 0.

Then the regularized product

n∈N
(λn, αn) =

{
n−1∏
n=1

λn

}
exp(−ζ ′N (0))

We’ll always pick arg(λ) ∈ (−π, π]. The existence and value of is invariant under rearrange-
ment.

Example 20.2. Let γ, z ∈ C×. Recall the Hurwitz ζ-function is

ζγ(s, z) =
∑
n∈N0

1

(γ(z + n))s
.

Then

n∈Z
γ(z + n) = (zγ)−1 exp

(
− d

ds
ζγ(s, z)

∣∣∣
s=0

)
exp

(
− d

ds
ζ−γ(s,−z)

∣∣∣
s=0

)
.
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Exercise 20.3.

exp

(
− d

ds
ζγ(s, z)

∣∣∣
s=0

)
=

{
|γ|1/2−z exp(iπ(1

2 − z))(
1√
2π

Γ(z))−1 im z ≤ 0

γ|1/2−z exp(−iπ(1
2 − z))(

1√
2π

Γ(z))−1 im z > 0

Definition 20.4. Suppose V is a C-valued space of countable dimension, Θ : V → V is an
endomorphism, and assume:

(1) V ∼=
⊕

λ∈C Vλ, where Vλ = ker(Γ − λ)N for N � 0 (i.e. it stabilizes) and Vλ is
finite-dimensional

(2) Let (λn) be the sequence of eigenvalues with multiplicity, and assume that λn
converges.

Then the regularized determinant is

det
∞

(Θ) = λn.

We’re looking at

ζΘ(s) =
∑
λ∈C×

dimC(Vλ)λ−s.

Condition (2) says that this analytically continues to 〉 − ε,+∞〈. (1) is necessary because
the Dirichlet series doesn’t converge otherwise (so you can’t even hope to get an analytic

continuation necessary to define ).

Note that

det∞(Θ) =

{
0 dimV0 > 0

exp(−ζ ′Θ(0)) otherwise.

Definition 20.5. Define
dim∞(Θ) = dimC V0 + ζΘ(0)

where Θ : V/V0 → V/V0.

If V is finite-dimensional, then our product is a finite product, choose N > dimV , and
det∞(Θ) = det(Θ) and dim∞(Θ) = dim(V ).

Suppose we have a short exact sequence

0→ (V ′,Θ′)→ (V,Θ)→ (V ′′,Θ′′)→ 0.

Then we have det∞(Θ) = det∞(Θ′) det∞(Θ′′) and dim∞(Θ) = dim∞(Θ′) + dim∞(Θ′′).

Proposition 20.6 (Deninger). If V is a graded-commutative graded C-algebra such that
V (j) ⊂ V is finite-dimensional, and if Θ : V → V is a graded linear derivation, and if
β ∈ V (−2) is a unit such that Θ(β) = 2πi

log qβ, then det∞(s−Θ|V (2∗+j)) = det(1− q−sΘ|V (j)).

(Here V (i) means the ith graded piece, since we’ve already used Vi for the eigenspace.)
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We were trying to prove:

Theorem 20.7. Let X be smooth and proper over Fq, and ι : W(Fq)
W

↪→ C an embedding.

Then

ζ(X, s) =
det∞

(
(s−Θ)

∣∣∣TPodd(X)⊗W C
)

det∞

(
(s−Θ)

∣∣∣TPeven(X)⊗W C
)

where Θ is a C-linear derivation, and qΘ = Fr∗q .

So Θ will be some kind of logarithm of Frobenius which is independent of q.

You can replace s − Θ with δ(s − Θ) for any δ > 0 and this will still be true. Here

det∞(δΘ) = δdim∞(Θ) det∞(Θ). This is why I don’t care about the scaling factor.

Last time we had a spectral sequence

E2
ij =

⊕
m∈Z

lim
F
H−i(X,W•Ωj+2m

X )⊗ C =⇒ TPi+j(X)⊗ C.

The point is that the E2
ij terms are finite-dimensional. That means we can apply the formula

of Deninger once you’ve specified the element β. We saw that everything was generated by a
class in degree 2, and we can specify a canonical generator that gives rise to an element of
degree −2 in TP .

By Berthelof’s thesis, we have

ζ(X, s) =
det(1− q−sFr∗q |Hodd

crys(X/W )⊗ C)

det(1− q−sFr∗q |Heven
crys (X/W )⊗ C)

.

I need to be able to relate determinants on the crystalline cohomology to determinants on
TP .

Assemble the conjugate spectral sequence and the Hodge spectral sequence, and the multi-
plicativity of det∞ in exact sequences, to get

det(1− q−sFr∗q |TPj(X)⊗W C) =

{
det(1− q−sFr∗q |Hodd

crys ⊗ C) j odd

det(1− q−sFr∗q |Heven
crys ⊗ C) j even.

Lecture 21: May 16

In the Hesselholt story (∼2016), we were looking at a smooth, projective scheme X over a
finite field Fq. We were interested in understanding its ζ-function; there was a formula for this
involving a regularized determinant of an operator Θ, which was defined roughly as “logq Fr

∗
q”.

It was acting on TP∗, which was related to THH. We proved that formula by comparing
things like TR, TP , and THH to the hypercohomology of the de Rham-Witt complex, which
was in turn related to crystalline cohomology and friends.
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This was a story that came roughly a year after a result by Connes-Consani. They contemplated
a smooth, projective scheme X over a number field K. (The goal, ultimately, is to imagine an
arithmetic variety that combines these, but we’re not there yet.) For an archimedean place v
of K, they looked at ∏

0≤w≤2d

Lv(h
w(X), s)

(we’ll define hw later). There is an operator Θ, the analogue of the other Θ, which is defined
as “a generator of all Λm’s” (to be explained later). The idea is that THH rationalized,
is just HH rationalized. You can run some of the same tricks used to get TP , to get an
analogous periodic thing related to HH called HCan. In the Hesselholt story, we compared
to Berthelof’s formula for ζ involving Hcrys; here, we compare to Deligne cohomology and
work of Beilinson.

In order to define this stuff, I need to review some Hodge theory. Write S for the Weil
restriction of Gm from C to R. For example, we have w : Gm ↪→ S such that on real points,
we have the usual map w(R) : R× ↪→ C×.

Definition 21.1. An R- Hodge structure on a finite-dimensional vector space HR (i.e. real
vector space) is an action of the real group S.

An action of C××C× on HC := HR⊗RC is the same thing as a decomposition HC ∼=
⊕

p,qH
p,q

where Hp,q = {x ∈ HC : (u, v)x = u−pv−qx}. This is a Hodge structure iff Hq,p = Hp,q. It is
pure of weight k iff Hp,q = 0 unless p+ q = k.

Example 21.2. If X is compact and Kähler, then Ω•X
∼= C. There is a “foolish filtration”

· · · → Ω≥nX → Ω≥n−1
X → · · · → C

inside the derived category of sheaves on X. This gives a spectral sequence

Ep,q1 = Hq(X,Ωp
X) =⇒ Hp+q(X,C).

(We’re thinking of the analytic topology now.) The theorem is that this degenerates to a filtra-
tion on Hp+q(X,C), which is the same as the Hodge filtration Hk(X,C) =

⊕
p+q=kH

q(X,Ωp).

This is a Hodge structure. It is really valued in the category of representations of S. (Part of
the Tannaka idea is that any reasonable algebraic cohomology theory isn’t supposed to be
valued in vector spaces, but rather in representations of some pro-group.)

Notation 21.3. Write

ΓR(s) = π−s/2Γ( s2)

ΓC(s) = 2(2π)−sΓ(s)

(Some authors don’t use the first 2 for ΓC(s). You want it there because you want the identity
ΓC(s) = ΓR(s)ΓR(s+ 1).)

If HC is a C-Hodge structure (a C-vector space with an action of C× × C×), then define

ΓHC(s) =
∏
p,q

ΓC(s−min{p, q}) where h(p, q) = dimCHp, q.
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If HR is an R-Hodge structure, then

ΓHR(s) =
∏
n

ΓR(s− n)h(n,+)ΓR(s− n+ 1)h(n,−)
∏
p<q

ΓC(s− p)h(p,q)

I’ve got an involution on h(n, n) and I’m looking at the two eigenspaces – that is, Hn,+ =
{x ∈ Hn,n : x = (−1)nx} and Hn,− = {x : x = −(−1)nx}, and h(n,+) and h(n,−) are their
dimensions respectively.

If you try to generalize away from projective things, you have to talk about mixed Hodge
structures – in addition to a Hodge filtration, there’s also a weight filtration. But we’ll
concentrate on projective things.

Given a number field K, I have some complex places and some real places. If Kv
∼= C (i.e.

we’re completing at some place) then Hw(X(Kv)
an,C) has a C-Hodge structure, and we

define
Lv(h

w(X), s) = ΓHw(X(Kv)an,C)(s).

If Kv
∼= R, then Hw(X(Kv(i))

an,C) has an R-Hodge structure, and we define

Lv(h
w(X), s) = ΓHw(X(Kv(i))an,C)(s).

Definition 21.4 (Deligne cohomology). Define R(p) = (2πi)pR ⊂ C. Form the homotopy
pullback

R(p)D //

��

Ω≥p� _

��

R(p) // C

(I’m writing Ω≥p ↪→ C as an inclusion because I’m thinking of this going on in sheaves of
complexes.) The homotopy pullback is the Deligne complex of weight p. Then Deligne
cohomology is the hypercohomology of this complex:

Hq(X,R(p)) = Hq(X,R(p)D).

I invite you to think about this with the analytic topology.

This is computed by the complex

0→ R(p)→ OX → Ω1
X → · · · → Ωp−1

X → 0.

I can do all the above with Z-coefficients as opposed to R-coefficients.

Example 21.5. R(0)D ∼= R

Example 21.6.

0 //

��

Z(1)

exp

��

// OX //

exp

��

0

��

1 // 1 // O×X // 1

We have ZX(1)D ∼= O×X [−1], and Hq(X,ZX(1)D) ∼= Hq−1(X,O×X).
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Example 21.7. In weight 2:

ZX(2) ∼= [d log : O×X → Ω1
X ][−1].

H2,2 classifies line bundles with holomorphic connections.

There’s a short exact sequence

0→ J1(X)→ H2
D(X,Z(1))→ NS(X)→ 0.

Hq
D(Xv,R(p)) =

{
Hq
D(X(Kv),R(p)) complex case

Hq
D(X(Kv(i)),R(p))C2 real case.

(Here (−)C2 means taking C2-fixed points.)

Theorem 21.8 (Beilinson). For m ∈ Z such that m ≤ w
2 ,

ords=m Lv(h
w(X), s)−1 = dimR(Hw+1

D (Xv,R(w + 1−m))).

Next time we’ll talk about how this is all related to cyclic homology HCan, which leads to
the proof of:

Theorem 21.9 (Connes-Consani). For v an archimedean place,∏
0≤w≤2d

Lv(H
w(X), s)(−1)w+1

=
deg∞

(
1

2π (s−Θ)|HCareven(Xv)
)

deg∞
(

1
2π (s−Θ)|HCarodd(Xv)

) .
We’ll get a Λ-action on HC. We learned λ-operations are the same as compatible families of
lifts of Frobenius. We’ll try to do a simultaneous logarithm of all the Frobenius, which will be
expressed in terms of λ-operations.

We’ll define Θ by defining uΘ for any u > 0. uΘ will be an action of R>0 on HC. If k ∈ N,

kΘ|HCn(Xv) = k−nλk.

By fractions and density this can be extended to R>0. Remember these λk’s should be thought
of as lifts of Frobenius.

I’ll tell you about the relationship between Deligne homology and cyclic homology. If you like,
you can take that as the definition, but that might not be helpful. Recall we had

Ω<p[1] //

��

R(p)D //

��

Ω≥p� _

��

// 0

��

0 // R(p) �
�

// C // Ω<p

Ω<p[1] is the fiber; sometimes people call this reduced Deligne cohomology:

H̃n
D(X;R(p)) = Hn(X,Ω<p[1]).

There’s a nice LES relating these things.

Here’s one in a long line of HKR-type theorems (e.g. relating HH to the complex of Kähler
differentials):
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Theorem 21.10. Let X be a finite-type variety over Q, R, or C. Then we have:

HCn(X) ∼=
⊕
i≥0

H̃n+1−2i
D (X,R(n+ 1− i)).

HC is roughly what happens when you rationalize TC.

Let

HC(j)
n (X) = {x ∈ HCn : λm(x) = mjx}.

Then you get a decomposition

HCn(X) =
⊕
j≥0

HC(j)
n (X).

This is a formal sentence, but the sentence in the theorem above is less formal, and the claim
is that they’re “the same”.

HC(j)
n (X) = H̃2j+1−n

D (X,R(j + 1)).

This should remind you of the formula relating the eigenspaces of the Adams operations on
algebraic K-theory to motivic cohomology. (But there’s a weird degree shift here.)

We’ll take a form of HC and extract HCan, which is where we’ll look at the regularized
determinant of Θ and get our result.

Lecture 22: May 18

We started talking purely analytically about the Γ-function using the Mellin transform. This
allowed us to define related functions of arithmetic origin, such as ζ-functions and L-functions.
We were interested in completing these using Γ-functions. This inspired us to look at Tate’s
thesis about functional equations for these things.

Then we seemingly dropped this story and started talking about F1. These things were
defined as Λ-algebras. The motivation for this is that a reduced F1-algebra is the same thing
as a Z-algebra with compatible lifts of Frobenius. We looked at the theory of modules over
F1-algebras, in particular Ω1. This is like the usual Ω1 but it has a Λ-module structure, which
means that when you took the entire de Rham complex you get the de Rham-Witt complex.
This led us to thinking about Witt complexes, which were related to cyclotomic spectra.
We learned there was a special relationship between the de Rham-Witt complex WΩX and
THH and friends. We saw a sketch of a proof of Hesselholt’s formula for ζ(X, s) in terms of
regularized determinants for an operator acting on something related to THH. We compared
the invariants coming from THH to the hypercohomology to the sheaf of complexes, which
turns out to be crystalline cohomology, and there is a known formula for ζ(X, s) in terms of
crystalline cohomology.

Finally, we’re going to look at the ζ-function for a smooth, projective variety X over a number
fields. ∏

0≤w≤2d

Lv(h
w(X), s)(−1)w+1

=
det∞( 1

2π (s−Θ)|HCaneven
)

det∞( 1
2π (s−Θ)|HCanodd

)
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The last piece is to say what HCan is, in a way that shows how it relates to THH.

Definition 22.1. Let XC be a smooth projective complex variety. Look at C∞(Xan,C,C)
and C∞(Xan

C ,R); these are Fréchet algebras. I can inject topology into my definition of THH
and friends to define

TP cts(C∞(Xan
C ,C))⊗ C.

Just use the cyclic bar construction. (I don’t know how to do this integrally.) You can define
this in such a way that you get

TP cts(C∞(Xan
C ,C))⊗ C ' TP (XC)⊗ C

with all the cyclic structure. I can also look at TP cts(C∞(Xan
C ,R)) ⊗ C. Let Θ0 be the

generator of the λ-operations without the k−n factor we had last time; that is, define kΘ0 = λk.
There is a natural map

TP cts(C∞(Xan
C ,R))⊗ R (2πi)Θ0

−→ TP cts(C∞(Xan
C ,C))⊗ C.

(If this were THH instead of TP , on one side I’m taking the cyclic bar construction over C,
and on the other side I’m taking the cyclic bar construction over R.)

I don’t think anyone knows an algebraic form for this map; this is one of the obstructions to
proving the Riemann hypothesis.

Define
Pan(XC) =

(
TC(XC)⊗ C×hTP (XC)⊗C TP

cts(C∞(Xan
C ,R))⊗ R

)
[1].

This should look a lot like what we used to define Deligne cohomology. Then define

HCan∗ (Xv) = π∗Pan(Xv).

(Here Xv is completion at some real or complex place.)

Let XR be a smooth projective real variety. Define

Pan(XR) := Pan(XC)C2 .

where the action is the de Rham conjugation (same as for Deligne cohomology).

Proposition 22.2. Let Ed = {(n, j) : n ≥ 0, 0 ≤ 2j − n ≤ 2d}.

πn(Pan(Xv)
Θ0=j) =

{
H2j+1−n
D (XC,R(j + 1)) (n, j) ∈ Ed

0 (n, j) /∈ Ed.

The rest is just pushing formulas around.

Proposal 22.3 (Hesselholt). Prove the Riemann hypothesis.

The idea is that the completed zeta function ζ̂(X, s) should have the formula

ζ̂(X, s) =
det∞( 1

2π (s−Θ)|TPodd
)

det∞( 1
2π (s−Θ)|TPeven)
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where TP = THH(X)tS
2 ⊗ C (Tate spectrum with S1-action). This is one question mark –

no one knows how to get an appropriate complex vector space. In our previous setting, we
could just tensor up over the Witt vectors.

In this picture, X is smooth and projective over F1, for example X = SpecZ ∪ {∞}. In
the story of a variety over a finite field, we had the conjugate spectral sequence. There’s a
motivic spectral sequence for algebraic K-theory (a.k.a. the AHSS). Motivic cohomology
is what you get when you look at a weight filtration of the algebraic K-theory spectrum
W j−1K(X)→W jK(X)→ · · · → K(X); then

π2j−iW
j/j−1 =: H i(X,Z(j)).

(You can think of this as one definition of motivic cohomology, albeit maybe not the most
useful one.)

Crystalline cohomology is effectively Ext groups in some category. Motivic cohomology is
Ext groups in a universal category for these things. We have a trace map K(X)→ TR•(X)
where TR•(X) is a pro-spectrum (indexed by the divisibility poset). There should be a weight
filtration W jTR•(X)→ · · · → TR•(X) but no one knows how to do that. You get the weight
filtration on K(X) using the fact that K(X) is A1-invariant, but TR•(X) is not. But if you
were to make this work, you’d get a spectral sequence which is supposed to be related to the
conjugate spectral sequence. That is,

π2j−iW
j/j−1 = H i(X,W (j))

where W (j) is this mystery complex. (Bhatt and Scholze constructed this spectral sequence
at a prime p. This is the Hodge-Tate spectral sequence.)

But if you had all the above pieces, you could prove the Riemann hypothesis. Assumptions:

• SpecZ (some completion of SpecZ)

• a graded complex vector space TP (SpecZ) with a Hodge ∗ operator

• Θ operator acting on TP (SpecZ)

• ζ̂(X, s) =
det∞( 1

2π (s−Θ)|TPodd
)

det∞( 1
2π (s−Θ)|TPeven)

As in the Hesselholt story, Θ is going to be a graded derivation. Suppose Θ(x) = ρx (i.e. ρ is
an eigenvalue). We want to show Re ρ = 1

2 . Since Θ is a derivation, we have

Θ(∗x ∪ x) = (∗Θx ∪ x) + (∗x ∪Θx).

For weird Hodge-theoretic reasons, Θ(∗x∪x) = ∗x∪x. Define the inner product 〈x, y〉 = ∗x∪y.
We could just include Θ 〈x, x〉 = 〈x, x〉 into our list of assumptions. But we also have
(∗Θx ∪ x) + (∗x ∪Θx) = (ρ+ ρ) 〈x, x〉 and so Re ρ = 1

2 .
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