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Number theory Lecture 1

Lecture 1: February 3

Topics:

• Tate’s thesis (what led to the Langlands program)

• Galois cohomology

• Introduction to Galois representation theory (also tied in to the Langlands program)

Reference (for Tate): Deitmar Introduction to harmonic analysis. Also, Bjorn will be posting
official notes!

Before Tate, there was Riemann – the prototype for Tate’s thesis is the analytic continuation
and functional equation for the Riemann zeta function. For Re s > 1, recall

ζ(s) =
∏

(1− p−s)−1 =
∑
n≥1

n−s.

Theorem 1.1 (Riemann, 1860). (Analytic continuation) The function ζ(s) extends to a
meromorphic function on C, which is holomorphic except for a simple pole at 1.

(Functional equation) The completed zeta function1 ξ(s) = π−s/2Γ(s/2)ζ(s), where Γ is the
gamma function, satisfies ξ(s) = ξ(1− s).

Hecke (1918, 1920) generalized this to ζK(s) and other L-functions. Margaret Matchett
(1946) started reinterpreting this in adelic terms, and John Tate (1950) finished this in his
Ph.D. thesis. (It’s not just a reinterpretation: it gives more information than Hecke’s proofs.)

Analytic prerequisites. Recall that the Gamma function is

Γ(s) =

∫ ∞
0

e−tt−s
dt

t
.

Note that e−t is a function R→ C× and t−s (as a function of t) takes R×>0 → C× and dt
t is a

Haar measure on R×>0 (it’s translation-invariant on the multiplicative group). (If you do this
sort of thing over a finite field you get Gauss sums!)

This is convergent for Re s > 0.

Proposition 1.2.

(1) Γ(s+ 1) = sΓ(s) (use integration by parts)
(2) Γ(s) extends to a meromorphic function on C with simple poles at 0,−1,−2, . . . , and no

zeros
(3) Γ(n) = (n− 1)! for n ∈ Z≥1

(4) Γ1
2 =
√
π (by a change of variables this is equivalent to

∫∞
−∞ e

−x2
dx =

√
π)

Now I’ll review the Fourier transform.

1think of ξ as ζ with extra factors corresponding to the infinite places
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Number theory Lecture 1

Definition 1.3. f : R→ C tends to zero rapidly if for every n ≥ 1, xnf(x)→ 0 as |x| → ∞
(i.e. |f(x)| = O

(
1
|x|n

)
).

Definition 1.4. Call f : R → C a Schwartz function if for every r ≥ 0, f (r) tends to zero
rapidly. Write S = S (R) for the set of Schwartz functions.

Examples: e−x
2
, zero, bump functions (any C∞ function with compact support).

Definition 1.5. Given f ∈ S , define the Fourier transform

f̂ =

∫
R
f(x)e−2πixydx.

Because f is a Schwartz function, this converges, and it turns out that f̂ is also a Schwartz
function.

Example 1.6. If f(x) = e−πx
2
, then f ∈ S and f̂ = f .

You can also define Fourier transforms on L2. Eventually we’ll have to generalize all of this
from R to compact abelian groups.

Theorem 1.7 (Fourier inversion formula). If f ∈ S then

f(x) =

∫
R
f̂ e2πixydy.

In particular,
̂̂
f(x) = f(−x).

Theorem 1.8 (Poisson summation formula). If f ∈ S , then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Definition 1.9. For real t > 0, define

θ(t) =
∑
n∈Z

e−πn
2t.

This actually makes sense for any t in the right half plane. You can also define θ(it) = θ(t),
defined in the upper half plane; it is a modular form.

In general, theta functions are associated to lattices. In this case, the lattice is just Z ⊂ R.

Theorem 1.10 (Functional equation of θ). For every real t > 0,

θ(t) = t−
1
2 θ
(

1
t

)
.
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Number theory Lecture 1

Proof. If f ∈ S and c 6= 0, then the Fourier transform of f
(
x
c

)
is cf̂(cy). Apply

this to f(x) = e−πx
2

and c = t−
1
2 to get that the Fourier transform of ft(x) = e−πtx

2
is

f̂t(y) = t−
1
2
e
−π( 1

t )y2

. Now apply the Poisson summation formula to ft(x) to get

e−πn
2t =

∑
n∈Z

t−
1
2 e−πn

2· 1
t .

�

Note that θ(t) = 1 + 2
∑

n≥1 e
−πn2t, so∑

n≥1

e−πn
2t =

θ(t)− 1

2
.

Proof of Theorem 1.1. Recall ξ(s) =
∑

n π
−s/2Γ( s2)n−s; start by looking at an indi-

vidual summand:

π−
s
2 Γ
(
s
2

)
n−s = π−

s
2n−s

∫ ∞
0

e−xxs/2
dx

x

Make a change of variables x = πn2t and recall that dx
x is translation-invariant:

=

∫ ∞
0

e−πn
2tts/2

dt

t

Now sum over n. As long as you can justify interchanging the sum and integral,

ξ(s) =

∫ ∞
0

θ(t)− 1

2
ts/2

dt

t

Why can you interchange the sum and integral? For s ∈ R>1, this is OK because everything
is nonnegative and the sum on the left converges. In fact,

∑∫
. . . converges absolutely for

any complex s: changing the imaginary part does not affect the absolute value |ts/2|.

If s < 0, you can’t expect this to make any sense: if t is close to zero, then the ts/2 part won’t
converge, and the θ part doesn’t help enough. Now I want to replace this expression with
something that does make sense for all s.

Plan: we have

ξ(s) =

∫ ∞
1

θ(t)− 1

2
ts/2

dt

t

I(s)

+

∫ 1

0

θ(t)− 1

2
ts/2

dt

t

where I(s) converges for all s ∈ C: this is because θ(t)−1
2 =

∑
n≥1 e

−πn2t, and as t→∞, the

first term (n = 1) dominates. The second part is problematic for some s. We will fix it by
using the functional equation for θ.

First do the substitution t 7→ 1
t , which sends dt

t 7→ −
dt
t :∫ 1

0

θ(t)− 1

2
ts/2

dt

t
=

∫ ∞
1

(
θ
(

1
t

)
− 1

2

)
t−

s
2
dt

t
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Number theory Lecture 1

Now use the functional equation θ(t) = t−
1
2 θ
(

1
t

)
=

∫ ∞
1

(
t

1
2 θ(t)− 1

2

)
t−

s
2
dt

t

=

∫ ∞
1

θ(t)− 1

2
· t

1−s
2
dt

t
+

∫ ∞
1

t
1−s

2
dt

t
−
∫ ∞

1
t−

s
2
dt

t

= I(1− s)− 1

1− s
− 1

s

Putting all of this together, we have

ξ(s) = I(s) + I(1− s)− 1

1− s
− 1

s
;

this is true for Re s > 1, but you can take the RHS as the meromorphic continuation of ξ(s)
for all s.

The conclusion is that

ζ(s) =
ξ(s)

π−
s
2 Γ
(
s
2

)
is meromorphic. ξ has poles at 0 and 1, and you don’t get any new poles from zeros of the
denominator. The denominator has simple poles at 0,−2,−4, . . . , which cancels out the pole
in the numerator at 0. So ζ is meromorphic, and holomorphic except for a simple pole at
s = 1. �

The above used the Poisson summation formula for Z ⊂ R. The idea is to replace this with
a Poisson summation formula for K ⊂ AK . This will require a certain amount of analysis
review.

Measure theory review. Let X be a set, and M be a collection of subsets of X.

Definition 1.11. M is a σ-algebra if M is closed under complementation and countable
unions (including finite unions).

Example 1.12. If X is a topological space, the set B = B(X) of Borel subsets is the smallest
σ-algebra containing all the open subsets.

Fix a σ-algebra M on a set X; this will be the collection of measurable sets.

Definition 1.13. f : X → C is measurable if inverse images of measurable sets are measur-
able.

For example, if S ∈ B(C), then f−1S ∈ M . If f is real-valued, it is enough to check
f−1S ∈M for S of the form (a,∞).

Definition 1.14. A measure on (X,M ) is a function µ : M → [0,∞] such that µ(
⋃
Ai) =∑

µ(Ai) for any countable (or finite) collection of disjoint sets Ai ∈ M . If M = B, µ is
called a Borel measure.
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Number theory Lecture 2

Definition 1.15. N ⊂ X is a null set if N ⊂ a measure-zero set (even if it’s not measurable).

Call f : X → C a null function if {x ∈ X : f(x) 6= 0} is a null set.

It is easy and convenient to enlarge M so that all null sets are in M .

Now let’s integrate. Fix (X,M , µ). Given S ∈ M with µ(S) < ∞, let 1S be the function
that is 1 on S and 0 outside S. Define

∫
1S := µ(S).

Definition 1.16. A step function is a finite C-linear combination of functions of the form
1S . If f is a step function, define

∫
f so that it’s linear in f .

Define the L1-norm ‖f‖1 :=
∫
|f | ∈ R≥0. This leads to a notion of distance, and Cauchy

sequences, in the space of functions.

Say f : X → C is integrable if, outside a measure 0 set, it equals the pointwise limit of an
L1-Cauchy sequence (fi) of step functions. Then define

∫
f =

∫
X fdµ := limi→∞

∫
fi ∈ C.

Notation: if f, g are functions on X and I write f ≤ g, I mean implicitly that f, g are functions
X → [0,∞], and f(x) ≤ g(x) for all x ∈ X).

For f ≥ 0, the alternative definition∫
f = sup

{∫
g : g is a step function with 0 ≤ g ≤ f

}
agrees with the previous one and gives ∞ if f is not integrable.

Lecture 2: February 5

Last time we said that if we have a set X, a set of measurable subsets M , and a measure µ,
you can talk about the integral

∫
fdµ of an integrable function f . For measurable functions

f : X → C, f is integrable iff |f | is integrable. Now we have two theorems for interchanging
limits and integrals:

Theorem 2.1 (Monotone convergence theorem). Suppose (fn) is a sequence of measurable
functions X → [0,∞] such that 0 ≤ f1 ≤ f2 ≤ . . . and we can define f = lim fn (note we are
allowing the pointwise limits to be ∞). Then

∫
fn →

∫
f .

Theorem 2.2 (Dominated convergence theorem). Let f1, f2 and f be measurable functions
X → C such that fn → f pointwise. If there is an integrable function g : X → C such that
|fn| ≤ |g| for all n, then all the fn and f are integrable, and

∫
fn →

∫
f .

Variant 2.3. Instead of f1, f2, . . . , you can consider a family of functions f(x, t) depending
on the parameter t, and ask about limt→0 f(x, t) instead of limn→∞ fn. The same thing holds
for this setting.
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Number theory Lecture 2

Definition 2.4 (Lp spaces). For p ∈ R>1, define

Lp(X) := {measurable functions f : X → C s.t. |f |p is integrable}.
(Note that this depends on M and µ as well, but including this makes the notation unwieldy.)

Define the Lp-norm of f ∈ Lp(X) by

‖f‖p :=

(∫
|f |p

) 1
p

.

‖ ‖p is almost a norm on Lp(X), except that there could be nonzero functions f with
‖f‖p = 0, namely the null functions. To fix this, define

Lp(X) := Lp(X)/{null functions}.
This is a Banach space with the ‖ ‖p norm.

L2(X) is also a Hilbert space under the Hermitian inner product 〈f, g〉 :=
∫
fg ∈ C.

Definition 2.5. A Hausdorff topological space is called locally compact if every x ∈ X has
a compact neighborhood (i.e. a compact set that contains an open neighborhood).

From now on, X is a locally compact Hausdorff topological space. On such a space, measures
correspond to integrals.

Definition 2.6. An outer Radon measure on X is a Borel measure µ : B → [0,∞] that is:

• locally finite: every x ∈ X has an open neighborhood U such that µ(U) <∞,

• outer regular : every Borel set S ∈ B can be “approximated from above”, i.e. µ(S) =
infopen U⊃S µ(U), and

• inner regular on open sets: every open U ⊂ X satisfies µ(U) = supcompact K⊂U µ(K).

Definition 2.7. A function f : X → C has compact support if the closure of {x ∈ X :
f(x) 6= 0} is compact. Write C(X) for the set of continuous functions X → C, and Cc(X)
for the set of continuous functions of compact support.

Definition 2.8. A Radon integral on X is a C-linear map I : Cc(X)→ C such that I(f) ≥ 0.

Given an outer Radon measure µ, you can get a Radon integral

Iµ : Cc(X)→ C by f 7→
∫
X
fdµ.

It turns out that the converse holds too.

Theorem 2.9 (Riesz representation theorem). Let X be a locally compact Hausdorff space.
Then there is a bijection

{outer Radon measures on X} ←→ {Radon integrals on X}
where the forwards map sends µ 7→ Iµ.
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Number theory Lecture 2

You can use this to construct Radon measures, if it is easier to construct the integral.

Example 2.10. Let X = Rn. Consider the Radon integral Cc(Rn)→ C sending f 7→
∫
Rn f

(where
∫

means the Riemann integral). By the theorem, there is a corresponding Radon
measure; this is Lebesgue measure.

Definition 2.11. A topological group is a topological space G equipped with a group struc-
ture such that the multiplication map G×G→ G and the inverse map G→ G are continuous.

Equivalently, it’s just a group in the category of topological spaces.

Definition 2.12. A Borel measure µ is left-invariant if µ(gS) = µ(S) for all g ∈ G and
S ∈ B.

For example, Lebesgue measure is left (and right) invariant.

You can guess what right invariant means. . . These don’t have to be the same – the group
doesn’t have to be abelian.

From now on, G is a locally compact Hausdorff topological group. For example: R, C, Zp,
Qp, A (adele ring of any global field) are topological groups under addition. The unit group
A× of any of these rings A are topological groups under multiplication. These are abelian,
but GLn(A) isn’t. Or, consider any group with the discrete topology.

Definition 2.13. A left Haar measure on G is a nonzero left-invariant outer Radon measure
on G.

Theorem 2.14. There exists a left Haar measure µ on G, and every other Haar measure on
G is cµ for a scalar c ∈ R>0.

By the Riesz representation theorem, you also get a Haar integral.

Warning 2.15. A left Haar measure µ need not be right-invariant.

If g ∈ G, then define µg(S) := µ(Sg); this is still a left Haar measure. By the theorem,
you can write µg = ∆(g)µ for some constant ∆(g), called the modular function. In fact,
∆ : G → R×>0 is a homomorphism. If G is abelian, then left-invariant measures are right-

invariant, and ∆ ≡ 1. If G is compact, then ∆ ≡ 1 as well (its image in R×>0 has to be a
compact subgroup, and there’s only one of those). In this case, say G is unimodular.

A group that is not unimodular is subgroup of GL2(R) consisting of matrices

(
1 ∗
∗

)
.

Definition 2.16. An LCA group is a locally compact abelian Hausdorff topological group.
LCA groups, along with continuous homomorphisms, form a category.
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Number theory Lecture 2

0→ A→ B → C → 0 is a short exact sequence of LCA groups if:

• it is a short exact sequence, A,B, and C are LCA groups, and the homomorphisms are
continuous;

• the induced homomorphism B/A→ C identifies the quotient topology on B/A with the
topology on C, and the topology on A has the subspace topology inherited from B.

In this case, A is identified with a closed subgroup since otherwise B/A would not be Haus-
dorff. Given Haar measures on any two of A,B,C, there exists a unique Haar measure on
the third such that the three Haar measures da, db, and dc satisfy∫

B
f(b)db =

∫
C

∫
A
f( c
∈B

a)da

depends only
on cA∈B/A∼=C

dc

for every f ∈ Cc(B).

Let G be an LCA group.

Let T = {x ∈ C : |z| = 1} denote the group under multiplication; this is ∼= R/Z as a
topological group. This is sometimes called U(1) or even S1.

Definition 2.17. A character of G is a continuous homomorphism χ : G→ C×. A unitary
character of G is a continuous homomorphism χ : G→ T. (Some people use “character” to
mean our unitary characters, and call our characters “quasi-characters”.)

Since our groups are abelian, all of the characters are 1-dimensional.

Definition 2.18. The Pontryagin dual of G is

Ĝ := Homconts(G,T) = {unitary characters of G}.
This is an abelian group under pointwise multiplication of functions. You can make this
into a topological group by using the compact-open topology (the topology generated by sets

{χ ∈ Ĝ : χ(K) ⊂ U} for every compact K ⊂ G and open U ⊂ T).

It turns out that Ĝ is another LCA group. Any continuous homomorphism G→ H induces

a continuous homomorphism Ĥ → Ĝ sending H
χ→ T to G→ H

χ→ T. (̂−) is a contravariant
functor the set of LCA groups to itself. If 0 → A → B → C → 0 is exact, then so is

0→ Ĉ → B̂ → Â→ 0.

Theorem 2.19 (Pontryagin duality theorem). The canonical homomorphism G→ ̂̂
G sending

g 7→ (χ 7→ χ(g)) is an isomorphism of LCA groups.

If H is the Pontryagin dual of G, then there exists a continuous bilinear pairing G×H → T
sending (g, χ) 7→ χ(g). Pontryagin duality says that the roles of G and H are interchangeable.
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Number theory Lecture 3

G Ĝ
R R
Qp Qp
A A
Z T (just have to say where 1 goes)

Zp Qp/Zp (l̂im−→ = lim←−)
finite finite

discrete compact
discrete torsion profinite (discrete torsion group is an injective limit of finite groups)

Example 2.20. The self-duality of R is given by the pairing R × R → T sending (x, y) 7→
e2πixy. In other words, we are claiming that the homomorphism R→ R̂ sending y 7→ χy(x) =
e2πixy is an isomorphism of LCA groups. We’ll prove this later for all local fields.

Fourier transform. Recall: if f ∈ S (R) then we defined

f̂(y) :=

∫
R
f(x)e−2πixydx.

Definition 2.21. If f ∈ L1(G), define the Fourier transform f̂ : Ĝ→ C

f̂(χ) :=

∫
G
f(g)χ(g)dg.

Even if f is not continuous, the Fourier transform is not continuous.

Lecture 3: February 12

There is a pairing G× Ĝ→ T, and if H ≤ G, you can use the pairing to define an orthogonal

H⊥ = {χ ∈ Ĝ : χ(h) = 1 ∀h ∈ H}.

Definition 3.1. For f ∈ L1(G), we defined a Fourier transform f̂ : Ĝ→ C by

f̂(χ) =

∫
G
f(g)χ(g)dg.

Theorem 3.2 (Fourier inversion formula). If G is an LCA group and dg is a Haar measure,

then there exists a unique Haar measure dχ (“dual measure”, “Plancherel measure”) on Ĝ

such that if ∈ L1(G) is such that f̂ ∈ L1(Ĝ) then

f(g) =

∫
Ĝ
f̂(χ)χ(g)dχ

for almost all (i.e. “outside a null set”) g ∈ G. If f is continuous then it holds for all g ∈ G.

Another way of saying this is ̂̂
f(x) = f(−x).
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Theorem 3.3 (Plancherel theorem). Let dg and dχ be dual measures on G and Ĝ, respec-

tively. If f ∈ L1(G)∩L2(G) then ‖f‖2 = ‖f̂‖2. (Implicit in this is the claim that f̂ ∈ L2(Ĝ).)

Corollary 3.4. The map L1(G)∩L2(G)→ L2(Ĝ) sending f 7→ f̂ extends to a map L2(G)→
L2(Ĝ) and this extended Fourier transform is an isomorphism of Hilbert spaces.

Proof of Corollary 3.4. According to the Plancherel theorem, f 7→ f̂ maps L2-
Cauchy sequences to L2-Cauchy sequences. So the Fourier transform extends to the comple-
tion of L1(G) ∩ L2(G) w.r.t. ‖ ‖2. I claim that L1(G) ∩ L2(G) is dense; in fact, even the
subspace Cc(G) ⊂ L1(G) ∩ L2(G) of continuous functions with compact support is dense.

The Plancherel theorem implies that the map L2(G)→ L2(Ĝ) sending f 7→ f̂ preserves ‖ ‖2.

The extended Fourier transform on Ĝ (with negation) gives the inverse. �

A lot of this theory generalizes to locally compact nonabelian groups, but instead of looking
at just characters, you have to look at higher-dimensional representations.

Local fields.

Definition 3.5. A local field is a field satisfying one of the following definitions:

(1) F is R or C, or the fraction field of a complete DVR with finite residue field (some people
don’t agree with the latter condition);

(2) F is a finite separable extension of R, Qp, or Fp((t)) for some prime p;
(3) F is the completion of a global field;
(4) F is a nondiscrete locally compact topological field.

Note that F isn’t just a field; it’s a field that comes with a topology. For proof that these
are equivalent, see the book in the references list. (4) is there for motivation – it’s the least
ad hoc definition; but most of the time, we want to use one of the other ones.

From now on, F will denote a local field.

Recall that R and C are archimedean, and the fraction field of a complete DVR is nonar-
chimedean. In this case, write

• O is the valuation ring

• p is the maximal ideal of O
• k is the residue field O/p
• $ is the uniformizer

• p is the characteristic of k

• q is the cardinality of k

Let µ be a Haar measure on F . Let a ∈ F (nonzero), so F
a→ F is an isomorphism of LCA

groups. So S 7→ µ(aS) is another Haar measure µa, and there is some number |a| ∈ R>0 such
that µ = |a|µ. Note that |a| is independent of µ. In particular,
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• if F = R then |a| is the ordinary absolute value;

• if F = C then |a| is the square of the ordinary absolute value (so it’s not an absolute
value at all since the triangle inequality fails);

• if F is nonarchimedean and a ∈ O, then |a| = #(O/aO)−1.

The “absolute value” defines the topology on F .

Say that S ⊂ Fn is a bounded subset if it is bounded w.r.t. the sup norm:

‖(x1, . . . , xn)‖ := sup
i
|xi|.

Theorem 3.6 (Heine-Borel theorem for local fields). Let S ⊂ Fn for any n ≥ 0. Then S
has compact closure iff S is bounded.

Additive characters. You know there are nontrivial additive characters, because oth-
erwise that violates Pontryagin duality. So fix a nontrivial unitary character ψ : F → T.
Given a ∈ F , define ψa(x) := ψ(ax). The theorem says that this describes all of them.

Theorem 3.7. The map Ψ : F 7→ F̂ sending a 7→ ψa is an isomorphism of LCA groups.

Proof. Ψ is an injective homomorphism (if ψa ≡ 1 then we need a = 0; but this means
that ψ(ax) = 1 for all x, which can only happen if a = 0). Compare the original topology on F

to the topology on F given by the subspace topology on Ψ(F ) ⊂ F̂ . A basis of neighborhoods
of 0 in the latter consists of sets {a ∈ F : ψa(K) ⊂ U} = {a ∈ F : aK ⊂ ϕ−1U} (where K
is compact and U is open, containing 1). We need to check:

(1) Given compact K and open U 3 1, does there exist δ > 0 such that |a| < δ =⇒ aK ⊂
ψ−1U?

(2) Given ε > 0, does there exist K, U 3 1 such that aK ⊂ ψ−1U =⇒ |a| < ε?

For (1), the answer is yes, because K is bounded and ψ−1U contains an open disk around 0
(so multiplying K by a small enough a will get it into this disk).

For (2), the answer is also yes: choose b such that ψ(b) 6= 1, and choose U 3 1 so that
ψ(b) /∈ U , i.e. b /∈ ψ−1U . Choose K to be a closed disk centered at 0 of radius ≥ |b|/ε. Then

aK ⊂ ψ−1U implies b /∈ aK, so |b| > |a| · |b|ε , so |a| < ε. (Idea: choose K so big that if a

scales it into ϕ−1U , a must have been really small.)

Since F is locally compact, F is complete, so Ψ(F ) is complete, so Ψ(F ) is closed in F̂ .

We want to show that Ψ(F ) = F̂ , or equivalently Ψ(F )⊥ = 0. There is an order-reversing

bijection, given by ⊥, between closed subgroups of F and closed subgroups of F̂ . If x ∈
Ψ(F )⊥, then ψa(x) = 0 for all a, so ψ(ax) = 0 for all a, so x = 0. �

There is a standard ψ on each of our favorite local fields F :

• If F = R, ψ(x) = e−2πix

16
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• If F = Qp, ψ is the map Qp � Qp/Zp
∼=← Z[p]/Z ↪→ R/Z ∼= T. ψ is characterized by

ψ|Zp = 1 and ψ(1/pn) = e2πi/pn for all n ≥ 1.

• If F = Fp((t)), define ψ(
∑
ait

i) := e2πiai/p (lifting ai from Fp to Z).

If F0 is one of the three fields above, and ψ0 is the standard character on F0, and F is
a finite separable extension of F0, define the standard character on F by the composition

F
TrF/F0−→ F0

ψ0−→ T. Since F/F0 is separable, the trace map is surjective, so this is nontrivial.
This describes ψ on all local fields.

There is a generalization of Schwartz functions: Schwartz functions on Rn (i.e. functions
Rn → Cn) are functions such that the partial derivatives decay rapidly. For arbitrary F , you
don’t want to talk about differentiable functions F → C, because it’s unclear how to define
the difference quotient in the derivative. So our cop-out is to use locally constant functions
instead of C∞ functions.

Definition 3.8. f : F → C is called a Schwartz-Bruhat function if:

• it is a Schwartz function if F = R or F = C; OR

• it is a locally constant function of compact support if F is nonarchimedean.

As before, use the notation S = S (F ) for the set of SB functions. These functions take
complex values, so it is a C-vector space.

If F is nonarchimedean and f ∈ S , then supp(f) is covered by finitely many disjoint open
disks on which f is constant. So f is a finite C-linear combination of functions 1Di .

Lecture 4: February 19

RECALL: if you fix one nontrivial character, then you get all the other ones. We also defined
Schwartz-Bruhat functions, which are Schwartz functions if F = R or C, and locally constant
with compact support if F is nonarchimedean.

Definition 4.1. Suppose F is nonarchimedean, and ψ is a nontrivial additive character.
Look at ψ−1(right half of T); because F is nonarchimedean, this neighborhood contains a
little subgroup, and that subgroup would have to map to a subgroup in T. But there is no
subgroup contained in the right half of T other than the trivial one. So ψ|pm = 1 for some
m ∈ Z. Choose the smallest such m. Then pm is called the conductor of ψ.

Fourier transform for local fields. Fix a field F , an additive character ψ, and a Haar
measure dx on F . Given f ∈ S , define

f̂(y) :=

∫
F
f(x)ψ(xy)dx.

(Note: no complex conjugate.) It turns out that f̂ ∈ S .
17
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Note that
̂̂
f(x) = rf(−x) for some r ∈ R>0. We could arrange r = 1 by scaling dx, so that

f(x) =

∫
F
f̂(y)ψ(xy)dy

for all x ∈ F .

Proposition 4.2. The self-dual dx (wrt the standard ψ) is:

• if F = R then dx is the Lebesgue measure;

• if F = C then dx = 2· the Lebesgue measure;

• if F is nonarchimedean, then dx is such that vol(O) = (ND)−
1
2 where D is the different

of F/F0 (where F0 is Fp or Fp((t))).

Proof. For R, choose f(x) = e−πx
2
. Then f̂ = f and

̂̂
f(x) = f(x) = f(−x). For C,

f(z) = e−2πzz; do the same thing.

If F is nonarchimedean, consider f = 1O. Then

f̂(y) =

∫
O
ψ(xy)dx

=

{
vol(O) if ψ|O = 1

0 otherwise.

The first case holds ⇐⇒ ψ(Oy) = 1

⇐⇒ TrF/F0
(Oy) ⊂ O0

⇐⇒ y ∈ D−1

Thus f̂ = (ND)−
1
2 . �

Multiplicative characters. I mean characters of F×, not necessarily unitary charac-
ters. Define

U := {x ∈ F× : |x| = 1} =


{±1} if F = R
T if F = C
O× if F is nonarchimedean.

Then

|F×| = {|x| : x ∈ F×} =

{
Rx>0 if F is archimedean

qZ if F is nonarchimedean.

I claim there is an exact sequence

1→ U → F×
| |→ |F×| → 1

that is split (look at the second nontrivial map). Thus F× ∼= U × |F×|. Let X(F×) be the
group of characters of F×. Then X(F×) = X(U)×X(|F×|).

Definition 4.3. Say that x ∈ X(F×) is unramified if x|U = 1. (I.e. it is a pullback of a
character of |F×|.)

18
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Why unramified? In the nonarchimedean case, CFT says that there is a homomorphism
F× → Gal(F ab/F ) that is almost an isomorphism. More precisely, U = O× → I is an
isomorphism.

Definition 4.4. Suppose F is nonarchimedean, and χ ∈ X(F×). I have some neighborhoods
1 +pn of 1 (all contained in O×, which I will think of as “1 +p0”). Then χ|1+pm = 1 for some
m ∈ Z≥0. Choose the smallest such m. Then define conductor(χ) = pm.

Proposition 4.5. The unramified characters of F× are | |s for s ∈ C.

Proof. Unramified characters correspond to characters of |F×|. If F is nonarchimedean,
|F×| ∼= Z. It’s pretty easy to figure out what the characters of Z are. . .

If F is archimedean, |F×| ∼= R×>0
∼= R. What are the characters (not necessarily unitary)

of R? I.e. we’re looking for additive-to-multiplicative homomorphisms χ : R → C×. But
R>0 is simply connected, so every character factors through the universal cover C of C×
(where the covering map C → C× is the exponential). So no we’re looking for continuous
homomorphisms R → C ∼= R2. The continuous homomorphisms R → R are just x 7→ ax
(where does 1 go?). �

You can ask whether the character uniquely determines the value of s. If F is archimedean,
then the answer is yes. If F is nonarchimedean, χ determines |$|s = q−s which only deter-
mines s (mod Z · 2πi

log q ). Note that σ := Re s is determined by χ; this is called the exponent

of χ.

Theorem 4.6. Every character of F× is η · | |s for some η ∈ Û and s ∈ C.

(All characters of U are unitary because U is compact.) Note that, in the real case, Û =

{1, sgn} and in the complex case, Û = Z.

Corollary 4.7. Every character of R× has the form

χa,s(x) = x−a|x|s

for some a ∈ {0, 1} and s ∈ C.

Every character of C× has the form

χa,b,s(z) := z−az−b‖z‖s

for some a, b ∈ Z with min(a, b) = 0 and s ∈ C. (the notation ‖z‖ means it’s the square of
the usual absolute value)

Local L-factors. Now we will talk about L-factors and zeta integrals, which are func-
tions of a character χ ∈ X(F×), not a complex number. By evaluating such a function on
η · | |s for a fixed η, you can get a function of a complex number s. Think about the set of
all characters – this is a complex manifold. It has different slices (copies of C), one for each
value of η.
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Recall that (up to some Γ factor) ζ(s) is related to ζ(1 − s). What operation on characters
sends | |s to | |1−s?

Definition 4.8. If χ ∈ X(F×), define the twisted dual as χ−1| |.

As motivation, recall that

ζ(s) =
∏
p

(1− p−s)−1.

We’re trying to come up with an analog of (1− p−s)−1 in terms of characters. If χ = | |s on
Q×p , then p−s = |$|s. In general, if F is nonarchimedean and x ∈ X(F×), define

L(χ) =

{
(1− χ($))−1 if χ is unramified

1 if χ is ramified.

Define

L(χa,s) := ΓR(s) := π−
s
2 Γ( s2)

L(χa,b,s) := ΓC(s) := ΓR(s)ΓR(s+ 1)

To understand why you want to do this, you have to go into higher-dimensional charac-
ters. . . Just believe me, this is a good idea!

Also write
L(s, χ) := L(χ| |s).

For fixed χ, this is a meromorphic function of s with no zeros. (The Gamma function has
poles, but no zeros.)

Fix a multiplicative Haar measure d×x on F×. Then

d×x = c
dx

|x|
for some c ∈ R>0

i.e.
∫
F× f(x)d×x =

∫
F f(x) c

|x|dx for all f ∈ Cc(F×) (recall Cc means continuous functions

with compact support).

Local zeta integrals. Given f ∈ S and χ ∈ X(F×), define

Z(f, χ) :=

∫
F×

f(x)χ(x)d×x.

Theorem 4.9 (Meromorphic continuation and functional equation of the local zeta integral).

Let χ = η| |s, where η ∈ F̂×, and s ∈ C.

(a) For f ∈ S , Z(f, χ) converges for Re s > 0.
(b) For f ∈ S , Z(f, χ) (thought of as a function of s) extends to a meromorphic function

on C.

(c) The function L(χ) is the “gcd” of the Z(f, χ) as f varies.
Z(f, χ)

L(χ)
is an entire function

of s, and for each s ∈ C, there exists f ∈ S such that
Z(f, χ)

L(χ)
is nonvanishing at s.
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(d) There exists an “ε-factor” ε(χ, ψ, dx) such that

Z(f̂ , χ∨)

L(χ∨)
= ε(χ, ψ, dx)

Z(f, χ)

L(χ)
for all f ∈ S .

(Here χ∨ is the twisted dual.) The point is that ε should be an “easy function” (e.g. 1).
The surprising thing is that there’s a single functional equation for all f . (remember that
the Fourier transform depends on a choice of ψ and dx)

Recall that the first pole of Γ is at zero, and also (1− p−s) has problems when s = 0. So it
makes sense that s = 0 is the cutoff.

Proposition 4.10 (Proof of convergence for s > 0). We’ll prove absolute convergence.

Lecture 5: February 24

We had Z(f, χ) :=
∫
F× f(x)χ(x)dx. Last time we proved that χ = η| |s decays fast enough

that Z(f, χ) converges for Re s > 0.

We were trying to prove:

Theorem (Meromorphic continuation and functional equation of the local zeta integral).

Let χ = η| |s, where η ∈ F̂×, and s ∈ C.

(a) For f ∈ S , Z(f, χ) converges for Re s > 0.
(b) For f ∈ S , Z(f, χ) (thought of as a function of s) extends to a meromorphic function

on C.

(c) The function L(χ) is the “gcd” of the Z(f, χ) as f varies.
Z(f, χ)

L(χ)
is an entire function

of s, and for each s ∈ C, there exists f ∈ S such that
Z(f, χ)

L(χ)
is nonvanishing at s.

(d) There exists an “ε-factor” ε(χ, ψ, dx) such that

Z(f̂ , χ∨)

L(χ∨)
= ε(χ, ψ, dx)

Z(f, χ)

L(χ)
for all f ∈ S .

(Here χ∨ is the twisted dual.) The point is that ε should be an “easy function” (e.g. 1).
The surprising thing is that there’s a single functional equation for all f . (remember that
the Fourier transform depends on a choice of ψ and dx)

Proof that Z(f, χ) and Z(f,χ)
L(χ) are holomorphic for Re s > 0. For Re s > 0, the

derivative of Z(f, χ) = f(x)η(x)|x|sd×x w.r.t. s exists because (due to absolute convergence,
etc.) you can just differentiate under the integral sign – it’s an exponential function of s.

Since L(χ) has no zeros, Z(f,χ)
L(χ) is holomorphic too. �

Proof of the functional equation (in the region 0 < s < 1 where both sides are
defined) for one f (for each η).
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Lemma 5.1. For each η (unitary character of F×) there exists f ∈ S such that

(a) Z(f,χ)
L(χ) on Re s > 0 is nonvanishing

(b) Z(f̂ ,χ∨)
L(χ∨) on Re s < 1 is nonvanishing.

(c) There exists a nonvanishing holomorphic function ε(s) = ε(χ, ψ, dx) on all of C such that
the functional equation holds on the strip 0 < Re s < 1

Proof of Lemma 5.1. In all of this there is an implicit choice of ψ and dx. But changing
this information just changes things by a constant; if you get it to work for one (ψ, dx) pair,
you can easily make it work for a different pair by multiplying ε by an easy constant. So it
suffices ot prove this for my favorite ψ and dx.

Case 1: F = R, ψ(x) = e−2πix, dx = Lebesgue, d×x = dx
|x| . (Note that changing the choice

of d×x changes both sides by the same factor.) η is a character of the group {±}; there
are two possible ones: the identity character and the sign character. If η = 1, then choose

f(x) = e−πx
2

(it’s a Schwartz function that is equal to its own Fourier transform). Plug

everything in, and you get Z(f, χ) = L(χ) and Z(f̂ , χ∨) = L(χ∨). So you can just set ε = 1.

If η is the sign representation (i.e. η(x) = x−1|x|). You can’t choose f = e−πx
2
, because then

the integral becomes zero. Instead, try f = xe−πx
2
. The rest is homework.

Case 2: F = C, ψ(z) = e−2πi(z+z), dx = 2· Lebesgue, d×x = dx
‖x‖ . Another calculation; read

the official notes. η looks either like z−a‖z‖a/2 or z−b‖z‖b/2. You can choose your isomorphism
of F with C to guarantee one of these cases; suppose the first. Choose f(z) = eae−2πzz. Then
ε = (−1)a.

Case 3: F is nonarchimedean. Choose dx so that
∫
O dx = 1. Then

∫
pk dx = q−k. Choose the

obvious multiplicative measure d×x = dx
|x| . Then

∫
O× d

×x = 1− q−1 and
∫

1+pk d
×x = q−k.

Proposition 5.2. Given unitary characters ω : O× → T and ψ : O → T, define the Gauss
sum

g(ω, ψ) :=

∫
O×

ω(x)ψ(x)d×x.

Suppose ω has conductor pn with n > 0, and ψ has conductor pm (so ω|pn = 1 and ψ|pm = 0,
and n and m are the smallest such numbers). Then:

(1) If m 6= n, g(ω, ψ) = 0.
(2) If m = n, |g(ω, ψ)|2 = q−m where | | denotes the usual absolute value on C.

Proof. (1) If m > n, I claim that the integral over each coset of 1 + pn is zero. Because
pn is the conductor of ω, ω is constant. A multiplicative coset of 1 + pn can be thought of
as an additive coset of pn. But ψ is a nontrivial character on pn; integrating a nontrivial
character over a compact group is zero. If m < n, it’s the other way around: ψ is constant,
and ω is nontrivial.
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(2) If m = n > 0 then

|g(ω, ψ)|2 =

∫
O×

ω(x)ψ(x)d×x

∫
O×

ω(y)ψ(y)d×y

=

∫
O×

∫
O×

ω(xy−1)ψ(x− y)d×xd×y

Let x = yz; this preserves the measure because it’s a sheaf transformation.∫
O×

∫
O×

ω(z)ψ(yz − y)d×yd×z

=

∫
O×

ω(z)h(z)d×z where h(z) =

∫
O×

ψ(yz − y)d×y

h(z) =

∫
O×

ψ(y(z − 1))dy

=

∫
O×

ψ(y(z − 1))dy −
∫
p
ψ(y(z − 1))dy

The point of this is that the first part is integrating an (additive) character y 7→ ψ(y(z − 1))
over an (additive) subgroup. This depends on whether ψ(y(z− 1)) is trivial or not, and that
depends on z.

=


1− q−1 if v(z − 1) ≥ m
−q−1 if v(z − 1) = m− 1

0 if v(z − 1) < m− 1.

Because m is the conductor, it matters whether z − 1 lands in pm.

= 11+pm(z)− q−1 · 11+pm−1(z)

Thus

|g(ω, ψ)|2 =

∫
1+pm

ω(z)d×z − q−1

∫
1+pm−1

ω(z)d×z

= q−m − 0 = q−m.

(recall that both conductors are m = n, so the second term is an integral of a nontrivial
character). �

Back to the proof of Lemma 5.1 in the nonarchimedean case. Assume η is ramified. Choose
ψ : F → T to be of conductor p0. Assume η comes from a character of O× by defining
η($) = 1. Assume η has conductor pn for n > 0 (if n = 0 then this would be the unramified
case).

Choose f := 21+pn , since that makes Z(f, χ) =
∫

1+pn η(x)|x|sd×x. Note that x ∈ 1 + pn so

|x| = 1. So this integral is
∫

1+pn d
×x = q−n 6= 0. So (a) is good. Also L(χ) = 1. Next

f̂(y) =

∫
1+pn

ψ(xy)dx =

∫
pn
ψ((1 + z)y)

= ψ(y)

∫
pn

∫
pn
ψ(yz)dz.

Now we’re integrating an additive character z 7→ ψ(yz) over a compact additive subgroup.
The answer is q−nψ(y)1p−n . The answer depends on whether it’s trivial.
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For Re s < 1,

Z(f̂ , χ∨) =

∫
F×

f̂(x)χ∨(x)d×

= q−n
∫
p−n

ψ(x)η(x)−1|x|1−sld×x

The idea is to break the integral into pieces where |x| is constant.

= q−n
∑
k≥−n

∫
pk−pk+1

ψ(x)η(x)−1(q−k)1−sd×s

Even those these regions look like they’re getting smaller (additively), the have the same
multiplicative volume because they’re multiplicative translates of each other.

= q−n
∑
k≥n

q−k(1−s)
∫
O×

ψ($kz)η($kz)−1d×z

= q−n
∑
k≥n

q−k(1−s)
∫
O×

ψ($kz)η(z)−1d×z because η($) = 1

This is a Gauss sum

= q−n
∑
k≥n

q−k(1−s)g(η−1, ψ$k)

Use Proposition 5.2; notice that z 7→ ψ($kz) has conductor p−k and z 7→ (η(z))−1 has
conductor pn.

= q−nqn(1−s)g(η−1, ψ$−n) 6= 0.

So ε := qn(1−s)g(η−1, ψ$−n). �

Proof of the functional equation. We have still only proved the functional equation
for one f . Now we take an arbitrary g, and prove it still works by calculating the ratio of the
two functional equation candidates.

Lemma 5.3. Let f, g ∈ S . Let χ = η| |s for some η ∈ F̂×. If 0 < Re s < 1 then:

Z(f, χ)Z(ĝ, χ∨) = Z(g, χ)Z(f̂ , χ∨).

Proof. I’ll write out the LHS and show it’s symmetric in f and g.

Z(f, χ)Z(ĝχ∨) =

∫
F×

f(x)χ(x)d×x

∫
F×

(∫
F
g(z)ψ(yz)dz

)
χ(y)−1|y|d×y

Fubini
=

∫
(F×)3

f(x)g(z)χ(xy−1)ψ(yz)|yz|d×xd×yd×z

y=xt
=

∫
(F×)3

f(x)g(z)χ(t−1)ψ(txz)|tzy|d×xd×td×z

It’s symmetric! �

We now know that the functional equation holds in the strip 0 < Re s < 1. The RHS is
holomorphic for Re s > 0, and the LHS is holomorphic for Re s < 1, and they agree on the
overlap. So you can take those two functions, glue them together and get a big holomorphic
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function. We already checked that ε is a nonvanishing holomorphic function on the entire
plane. L(χ) is meromorphic, so that proves the meromorphic continuation of Z(f, χ).

Lecture 6: February 26

We’re done with local stuff, so now we’ll prove the global functional equation, which is defined
for adèles and idèles. Recall: we have a global field K, and for each absolute value | |v we
have local data Kv, Ov, pv, kv; the adèles are A =

∏′
v(Kv,Ov) (whose basic opens look like∏

Uv, where Uv = Ov for all but finitely many v). We also have A× =
∏′
v(K

×
v ,O×v ) whose

basic opens look like
∏
Uv where Uv = O×v for all but finitely many v.

There is an inclusion K ⊂ A that should be thought of as like Z ⊂ R: i.e. K is discrete and
A/K is compact.

Proposition 6.1. There is an isomorphism

Â→
′∏
v

(K̂v, K̂v/Ov)

sending ψ 7→ (ψ|Kv)v. (Here ̂ means Pontryagin dual, so K̂v/Ov is the set of characters
vanishing on Ov.) In the other direction, send (ψv) 7→

∏
γv (the product converges because

almost all of the factors are 1).

This says that giving ψ on A is the same as giving ψv on Kv for all v such that ψv|Ov = 1
for all almost all v.

Now we choose a standard additive character ψ on A:

• If K is a number field, choose the standard ψv on Kv, and take ψ =
∏
ψv.

• Now suppose K is the function field of some (smooth, projective, and geometrically
integral) curve X/Fq. Let ΩX be the sheaf of Kähler differentials, and let ΩK be the stalk
at the generic point of X (which has residue field equal to K, so this is a 1-dimensional
K-vector space – the vector space of meromorphic 1-forms). Define Ωv = ΩK ⊗ Kv =
kv((u))du (here u is a uniformizing parameter at v). You get a residue map

Resv : Ωv → kv sending
∑

aiu
idu 7→ a−1.

A choice of nonzero global meromorphic 1-form ω ∈ ΩK gives rise to a root of unity

ψv(x) = exp

(
2πi

p
· Trkv/Fp Resv(xω)

)
∈ C×

for valuation v and x ∈ Kv.
Define κv = ordv ω (the largest integer such that ω ∈ pκvv ΩX,v). Then the conductor

of ψv is p−κvv . (Why? ω vanishes to order κv, so if x vanishes to order −κv, then xω will
be a holomorphic 1-form, and the residue will be trivial.) Since κv = 0 for almost all v,
we can take ψ =

∏
ψv.

(Technically all of this depends on a choice of ω. . . but it turns out it’s OK.)

From now on, ψ will denote the standard additive character. For a ∈ A, you can shift ψ by
defining ψa(x) = ψ(ax).
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Corollary 6.2. There is an isomorphism A
∼=→ Â sending a 7→ ψa.

Proof. Each ψv gives rise to an isomorphism Ψv : Kv → K̂v (i.e. Kv is self-dual). For

almost all v, ψv has conductor p0
v, so O⊥v = Ov, so Ψv identifies Ov with K̂v/Ov. Now look

at
′∏

(Kv,Ov)
πΨv→

′∏
v

(K̂v, K̂v/Ov).

�

Proposition 6.3. ψ|K = 1

Sketch of proof. The number field case of this is homework. The function field case
boils down to the fact that, over an algebraically closed field, for any meromorphic 1-form η,∑

v Resvη = 0. �

By your homework, Â/K = K⊥ (characters of A that are trivial on K).

Corollary 6.4. K → Â/K = K⊥ is an isomorphism.

Proof.

(1) K⊥ is discrete. (Proof: A/K is compact.)

(2) K⊥ is a K-subspace of Â = A. (Proof: if η|K = 1 then ηa|K = 1.)

By (1), K⊥/K is a discrete subgroup of A/K, which is compact, so it’s finite. By (2), K⊥/K
is a K-vector space. K is infinite, so the only way this can happen is for K⊥/K = 0. �

The Tamagawa measure on A. Let dxv be the self-dual measure on Kv (w.r.t. the
Fourier inversion formula using the standard ψv).

Definition 6.5. The Tamagawa measure dx =
∏
dxv on A is defined to be the Haar measure

such that for each basic open set
∏
v Uv,∫
∏
Uv

dx =
∏∫

Uv

dxv.

(For almost all v, Uv = Ov, so
∫
Uv
dxv is 1 in almost all cases. Hence this product makes

sense.)

Look at the exact sequence 0 → K → A → A/K → 0. Take the Tamagawa measure on A;
since K is a discrete set, we can put the counting measure on it. Thus there is an induced
measure on A/K (just like you get a measure on R/Z). A is a LCA group, K is discrete, and
A/K is compact, so it has finite measure.
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Proposition 6.6. vol(A/K) = 1

I’ll give a proof by direct calculation in the number field case. Later, we’ll get a calculation-
free proof using the Poisson summation formula.

Proof in the number field case. Let K be a number field. Define D to be a fun-
damental domain for the quotient A/K, i.e. a measurable subset of A such that A =⊔
κ∈K(D + κ). Then vol(A/K) = vol(D).

By strong approximation, the composite map∏
v|∞

Kv

KR

×
∏

finite v

Ov ⊂ A→ A/K

is surjective (you have an element of A that you’re trying to approximate up to a factor of
K). The kernel consists of things that are v-adically integral, for all v; i.e. the kernel is the
ring of integers OK .

Let D∞ be a fundamental domain for KR/OK . Then let D = D∞ ×
∏

finite vOv; I claim this
is a fundamental domain for the whole thing.

We have vol(D) = vol(D∞)
∏

finite v vol(Ov). Last semester we calculated vol(D∞) = (discOK)
1
2

(some people put a factor of 2−s, but we don’t have this here because we chose the “better”

measure at the complex places). With respect to the self-dual measure, vol(Ov) = (NDv)
− 1

2 .
Putting this all together, vol(D) = 1. �

Adèlic Fourier transform. If fv ∈ S (Kv), and fv = 1Ov for almost all v. Then we
can define the product

∏
fv : A→ C (just multiply all the values together).

Definition 6.7. A Schwarz-Bruhat function f : A → C is a finite C-linear combination of
these. Write S = S (A) for the set of such functions.

These are the functions we’re going to be taking Fourier transforms of.

Fix the standard ψ on the adèles, and the Tamagawa (self-dual) measure dx on A. Given
f ∈ S , define

f̂(y) :=

∫
A
f(x)ψ(xy)dy.

Then f̂ ∈ S .

The above is for A and its Pontryagin dual A. Now do it for K and its Pontryagin dual A/K.

Functions on A/K are in 1-1 correspondence with K-periodic functions on A. I can’t talk
about Schwarz-Bruhat functions, though, because periodic functions aren’t 1 on almost all
v.
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Given f ∈ L1(A/K), define f̂ : K → C by

f̂(κ) :=

∫
D
f(x)ψ(κx)dx.

(Actually, there should be a factor of 1
vol(D) , but this will turn out to be 1.) If f ∈ L1(A/K)

and f̂ ∈ L1(K), then

f(x) =
∑
κ∈K

f̂(κ)ψ(κx).

(Aside: the Pontryagin dual of the counting measure on a discrete group, is the measure that
gives measure 1 to the dual, which is compact.)

Poisson summation comes from comparing the two Fourier inversion formulas above.

Lemma 6.8. If f ∈ S (A), then
∑

κ∈K f(x + κ) converges absolutely and uniformly on
compact subsets.

Proof. Without loss of generality, assume that f =
∏
fv (a general one is a linear

combination of these). Every compact set in A is contained in a big box
∏
Sv, where Sv is

compact in Kv and equal to Ov for almost all v. At each nonarchimedean v, the set

{κv ∈ Kv : fv(Sv + κv) is not identically 0}
is v-adically bounded, and |κv| ≤ 1 for almost all v. For x ∈ S,∑

κ∈K
f(x+ κ) =

∑
κ∈I

f(x+ κ)

where I is some fractional ideal depending on S; here I is a lattice ⊂ KR. This converges
well, etc. �

Theorem 6.9 (Poisson summation formula). If f ∈ S (A), then∑
κ∈K

f(κ) =
∑
κ∈K

f̂(κ).

Lecture 7: March 3

Recall we had Fourier inversion formulas for A←→ A

f̂(y) =

∫
A
f(x)ψ(xy)dx =⇒ f(x) =

∫
A
f̂(y)ψ(xy)dy

(where ψ is the standard character and dx is the self-dual measure) and for A/K ←→ K:

f̂(κ) =

∫
D
f(x)ψ(κx)dx =⇒ f(x) =

∑
κ∈K

f̂(κ)ψ(κx)

(where D is a fundamental domain, f(x) ∈ L(A/K)). We showed that if f ∈ S (A), then∑
κ∈K f(x + κ) converges absolutely and uniformly to a function in L1(A/K) (i.e. a K-

periodic function).
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Theorem 7.1 (Poisson summation formula). If f ∈ S (A), then∑
κ∈K

f(κ) =
∑
κ∈K

f̂(κ).

The proof here is exactly the same as the proof of the Poisson summation formula for Z ⊂ R.

Proof. Define F (x) =
∑

κ∈K f(x + κ); this is obviously a periodic function, so we can
regard it as a function on A/K. Then

F̂ (κ) =

∫
D

∑
`∈K

f(x+ `)ψ(κx)dx

=
∑
`∈K

∫
D
f(x+ `)ψ(κx)dx

=
∑
`∈K

∫
D+`

f(z)ψ(κ(z − `))
ψ(κz)

dz

(since κ acts trivially on elements of K)

=

∫
A
f(z)ψ(κz)dz

= f̂(κ).

By the second Fourier inversion formula,

F (x)∑
κ∈K f(x+κ)

=
∑
κ∈K

F̂ (κ)

f̂(κ)

ψ(κx).

Now set x = 0 to get
∑

κ∈K f(κ) =
∑

κ∈K f̂(κ). �

There should have been a factor of 1
vol(D) in the second Fourier inversion formula. So we

should have gotten
∑

κ∈K f(κ) =
∑

κ∈K f̂(κ). Applying this formula to f̂ instead of f , we

get
∑
f̂(κ) = 1

vol(D)

∑
κ∈K f(−κ) =

∑
κ∈K f(κ). So

(
1

vol(D)

)2
= 1 so vol(D) = 1.

Riemann-Roch theorem. Let K be the function field of a curve X over Fq. Then
places v of K correspond to closed points on X. Then the divisor group is

DivX = free abelian group on the set of closed points.

A typical divisor looks like D =
∑

v dvv where dv ∈ Z and dv = 0 for almost all v.

Define the degree of D to be
∑

v dv[kv : Fq] ∈ Z. Every f ∈ K× gives rise to a divisor∑
v v(f)v. Similarly, our chosen ω ∈ ΩK gives rise to a canonical divisor K =

∑
κv · v,

where κv is the order of vanishing of ω at v (this is only canonical up to multiplication by an
element of K×).
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Define
OA :=

∏
v

Ov ⊂ A.

(This is like giving a Taylor expansion of a function at each point.) Given D =
∑
dv · v,

define
OA(D) =

∏
v

p−dvv ⊂ A.

Define
L(D) = K ∩ OA(D).

This is the set of rational functions f on X such that v(f) ≥ −dv. This is an Fq-vector space.
Algebraic geometers want to know about it!

Define `(D) := dimFq L(D).

Example 7.2. Claim that L(0) = Fq (constant functions on the curve), and hence `(0) = 1.

Why? It’s clear that constants satisfy this; the nontrivial part is saying that all holomorphic
functions are constant. If t ∈ K − Fq, then the 1

t -adic valuation on Fq(t) extends to a place
v of K for which v(t) < 0, so t /∈ L(0).

Define the genus of X to be g := `(K ) ∈ Z≥0.

Theorem 7.3 (Riemann-Roch). For any divisor D on X, then

`(D)− `(K −D) = degD + 1− g.

Sketch of proof. The characteristic function 1
p−dvv

is a Schwarz-Bruhat function. Its

Fourier transform ends up being q
dv−κ/2
v 1

pκv+dv
v

(something’s wrong!). The adèlic Fourier

transform of 1OA(D) is q
degD−deg K /2
v 1OA(K −D). Apply the Poisson summation formula to

1OA(D): ∑
κ∈L(D)

1 = qdegD−deg K /2
∑

x∈L(K −D)

1

so

`(D) = degD − 1

2
deg K .

This gives
`(D)− `(K −D) = degD + 1− h

for some h ∈ Z independent of D. Take h = 0. �

Norm of an idèle. If a ∈ A×, multiplication by a is an isomorphism A a→ A. It’s
multiplying each local field component by v(a). This induces a map of Haar measures sending
dx to some other Haar measure d(ax), and this has to be a multiple of dx. Define this multiple
to be |a|.

If a = (av)v (where av ∈ O×v for almost all v), then it’s pretty easy to show that |a| =
∏
|av|v.
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Theorem 7.4 (Product formula). If a ∈ K× then |a| = 1.

Tate’s sneaky proof. a is an isomorphism A → A and K → K. So it induces an
isomorphism A/K → A/K. We already know vol(A/K) = 1, but even if we didn’t, this
isomorphism shows that vol(A/K) = |a| vol(A/K). �

Tate: “we can do nothing significant with the idèles until we embed the multiplicative group
in it.”

Idèle class character (a.k.a. Hecke character or Größencharakter). An idèle
class character is a character χ : A× → C× of the idèle group with the property that χ|K× = 1.
It is equivalent to giving a character of A×/K× (the “idèle class group”).

Example 7.5. If s ∈ C, | |s is an idèle class character.

Example 7.6 (Idèle class character associated to a Dirichlet character). If K = Q, let χ be
a Dirichlet character: χ : (Z/NZ)× → C× for some N ≥ 1. The profinite completion of Z is

Ẑ := lim←−Z/nZ
∼=
∏

primes p Zp. This has a unit group Ẑ× = lim←−(Z/nZ)×. There is a surjection

onto (Z/NZ)×, which we can then map to C× using χ. I claim that A× = Q× × R×>0 × Ẑ×

(this uses the fact that Q has class number 1), so this surjects onto Ẑ×. Putting this all

together, we get a map A× � Ẑ× � (Z/NZ)×
χ→ C×.

The advantage of Tate’s approach is that it deals gracefully with the case when the class
number is not 1.

Example 7.7. Given a 1-dimensional Galois representation Gal(Ks/K)
ρ→ C×. This factors

through Gal(Kab/K). Class field theory says that the latter is almost isomorphic to A×/K×;
in particular, there is an Artin homomorphism θ : A×/K× → Gal(Kab/K). The idèle class
character is

A× � A×/K× θ→ Gal(Kab/K)→ C×.

Given an idèle class character, define its exponent σ ∈ R by

|χ(a)| = |a|σ.
(Warning: the RHS absolute value is the norm of the idèle, but the LHS absolute value is
the usual complex absolute value.) For example, if χ = | |s then the associated σ is Re s.

You can also define the twisted dual :

χ∨ := χ−1| |.
You can define the local component of a character

χv := χ|K×v .
Giving all the χv’s is equivalent to giving χ (but you can’t take any random collection of χv’s
and expect them to assemble to get a character χ).
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There is a split SES
1→ A×1 /K

× → A×/K× → |A×| → 1

(Here A×1 means norm 1 idèles.) So every character is a unitary character times something
of the form | |s.

You can look at the space of all idèle class characters. Given any χ, you can also make
another character χ| |s. In this way, there is an action of C. In the number field case, these
are all different for different values of s. So you get a bunch of copies of C, i.e. a big Riemann
surface which we’ll call X , and you can talk about meromorphic functions etc. on it.

We need a multiplicative Haar measure on the idèles.

First attempt: we could try to define d×xv := dxv
|xv |v and take d×x =

∏
v d
×xv. This doesn’t

work: if
∏
Uv is a basic open (so Uv = O×v almost all the time), then vol(

∏
Uv) =

∏
v vol(Uv).

But we normalized our measure such that vol(Ov, dxv) = 1 for almost all v, which means
that vol(O×v ) = 1−q−1

v . So the product
∏
v vol(Uv) diverges to 0; every open set has measure

0.

Fix this by rescaling so that vol(O×v ) = 1:

d×v =

{
dxv
|xv |v if v is archimedean

(1− q−1) dxv
|xv |v if v is nonarchimedean.

Then define d×x =
∏
v d
×xv.

Lecture 8: March 5

Last time we introduced the idèle class characters χ : A× → C× such that χ|K× = 1, and X ,
the set of all such (this forms a Riemann surface). We defined a multiplicative Haar measure
on A× by fixing up the usual multiplicative Haar measure dx

|xv |v in the nonarchimedean case

so that volO×v = 1.

We have a SES
0→ A×1 → A× → |A×| → 1

(where A×1 means norm-1 elements). We want a measure on A×1 , but we can’t just restrict
the measure on A×, because then everything would have measure zero and that wouldn’t be
a Haar measure (think about restricting the usual measure on R× to {±1}.)

Recall that |A×| is R×>0 if we’re working over a number field, and qZ if we’re working over a

function field. In the first case, define the measure on |A×| to be dt
t , and in the second case,

define the measure to be (log q)· the counting measure. We’ll use the convention that dt
t will

mean “the measure on A×.”

Now we can define the measure d∗x on A×1 to make it compatible with the measure on the
other things in the SES.
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For t ∈ |A×|, define
A×t := {x ∈ A× : |x| = t};

this is a coset of A×1 .

Look at the orbit space A×t /K×. This inherits the measure d∗x (here K× had the counting
measure). Define V := vol(A×1 /K×); this is finite because A×1 /K× is a compact group.

Global zeta integrals. For f ∈ S (A) and χ ∈ X , define

Z(f, χ) :=

∫
A×

f(x)χ(x)d×x.

This is a generalization of the completed Riemann zeta function ξ(s).

Given χ, you can define a new character x 7→ |χ(x)|; this is equal to | |σ for some σ ∈ R. If
χ = η| |s where η is unitary and s ∈ C, then σ = Re s.

Theorem 8.1 (Meromorphic continuation and functional equation for global zeta integrals).

(a) Z(f, χ) converges for χ of exponent σ > 1
(b) Z(f, χ) extends to a meromorphic function on the entire Riemann surface X . In fact,

it’s holomorphic except for
• a simple pole at | |0 with residue −V f(0),

• a simple pole at | |1 with residue V f̂(0).

(c) Z(f, χ) = Z(f̂ , χ∨) as meromorphic functions of χ ∈ X .

Proof of convergence for σ > 1. We’ll reduce to the case of Dedekind zeta func-
tions. f is a Schwarz-Bruhat function, a linear combination of

∏
fv, where fv = 1Ov for

almost all v. Reduce to the case where f =
∏
fv. Now we may replace f and χ by their

absolute values, so χ = | |σ. Now

Z(f, χ) =
∏
v

Z(fv, | |σv ).

For almost all v, fv = 1Ov and Z(fv, | |σv ) = (1− q−σv )−1.

Question: does
∏

nonarch.
v

(1 − q−σv )−1 converge? If K is a number field of degree d, then this

is ζK(σ). ∏
v|∞

(1− q−σv )−1 ≤
∏

prime
p

(1− p−σ)−d = (
∑
n≥1

n−σ)−d <∞.

That was the number field case. In the function field case, the idea is to reduce from K to
Fq(t). ∏

monic irred.
polyn. Q

(1− (qdegQ)−σ)−1 =
∏
n≥1

(1− q−nσ)−Nn
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where Nn is the number of monic irreducible polynomials in Fq[t] of degree n. We need a
bound for Nn, but we don’t need a very good bound: Nn ≤ qn. So this is∑

n≥1

Nnq
−nσ ≤

∑
n≥1

qnq−nσ <∞

if σ > 1. �

What does A× look like? Break it up into cosets A×t . Then K× is a discrete subgroup of A×1 .
By Fubini’s theorem, we can integrate in whatever order we want, and we’re going to first
integrate over each coset, and then integrate over the t’s.

For σ > 1, let Zt(f, χ) =
∫
A×t

f(x)χ(x)d∗x. Then Z(f, χ) =
∫
|A×| Zt(f,

χ)dtt . We’ll prove that

this “slice zeta function” also has a functional equation.

(Recall our strategy in the Riemann zeta function case was to write ξ(s) =
∫∞

0

(
θ(t)−1

2

)
ts/2 dtt ,

and then prove that θ had a functional equation.)

Lemma 8.2. If σ > 1, then

Zt(f, χ) + f(0)

∫
A×t /K×

χ(x)d∗x = Z1/t(f̂ , χ
∨)f̂(0)

∫
A×

1/t
/K×

χ∨(x)d∗x.

Proof. Choose a fundamental domain for the action of K× on A×t . We’ll do the integral
for each piece. But to make it nice, I’ll translate all the pieces back to one piece: so the
integration variable x just ranges over one fundamental domain, but f(x)χ(x) gets translated
by a for each a.

Zt(f, χ) =

∫
A×t /K×

∑
a∈K×

f(ax)χ(ax)d∗x

χ is an idèle class character, so χ(a) = 1 since a ∈ K×

=

∫
A×t /K×

( ∑
a∈K×

f(ax)
)
χ(x)d∗x

This looks like the Poisson summation formula, but it should be a sum over K, not K×. Add
in the missing term.

Zt(f, χ) + f(0)

∫
A×t /K×

χ(x)d∗χ =

∫
A×t /K×

(∑
a∈K

f(ax)
)
χ(x)d∗x

By the form of the Poisson summation formula on the homework,

=

∫
A×t /K×

1

|x|
∑
a∈K

f̂(a/x)χ(x)d∗

x=y−1

=

∫
A×

1/t
/K×
|y|
∑
a∈K

f̂(ay)χ(y−1)d∗y

=

∫
A×

1/t
/K×

∑
a∈K

f̂(ay)χ∨(y)d∗y
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Notice that this looks like the second line above, except with χ∨ and f̂ instead of χ and f .

= Z1/t(f̂ , χ
∨) + f̂(0)

∫
A×

1/t
/K×

χ∨(y)d∗y.

�

Lemma 8.3.∫
A×t /K×

χ(x)d×x =

{
V ts if χ is trivial on A×1 /K×, i.e. χ = | |s

0 otherwise.

Given the SES 0 → A×1 /K× → A×/K× → |A×| → 1, if you have a character on A×/K×
that comes from the trivial character on A×1 /K×, then you know it comes from a character
of |A×|, and you know what those are.

Back to proving the theorem.

Proof of the analytic continuation. Assume K is a number field. (In the official
notes, the function field case will be done too.)

Z(f, χ) =

∫ 1

0
Zt(f, χ)

dt

t

J(f,χ)

+

∫ ∞
1

Zt(f, χ)
dt

t

I(f,χ)

We want to fix this so it converges for σ < 1. I(f, χ) converges (to a holomorphic function)
everywhere on X because |χ| gets smaller as σ becomes smaller, so the convergence just gets
better as σ decreases. (Recall that Zt(f, χ) =

∫
f(x)χ(x)d∗x, and the absolute value of χ(x)

is tσ.) (This is analogous to the ξ(s) computation we did in Lecture 1.)

The problematic thing is J(f, χ).

J(f, χ) =

∫ 1

0
Zt(f, χ)

dt

t

Use the functional equation (Lemmas 8.2 and 8.3)

=

∫ 1

0
Z1/t(f̂ , χ

∨)
dt

t
+

∫ 1

0

(
V f̂(0)

(
1
t

)1−s − V f(0)ts
) dt
t

ifχ=| |s

u= 1
t=

∫ ∞
1

Zu(f̂ , χ∨)
du

u

I(f̂ ,χ∨)

+V f̂(0)

∫ 1

0
ts−1dt

t
− V f(0)

∫ 1

0
ts
dt

t

Now add I(f, χ) to both sides, and do the two integrals above:

Z(f, χ) = I(f, χ) + I(f̂ , χ∨) +
V f̂(0)

s− 1
− V f(0)

s

This RHS defines the meromorphic continuation. The first two terms are holomorphic on all
of X , it has simple poles at s = 0 and s = 1, and you can see the residues. �
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Proof of the functional equation. This analytic continuation is visibly symmet-

ric. You have to be careful because
̂̂
f(x) = f(−x), not f(x). Nonetheless, I claim that

I(
̂̂
f, χ∨∨) = I(f, χ). Do a change of variables x 7→ −x in the integral; now χ(x) becomes

χ(−x), but that’s OK because χ(−x) = χ(x) (recall that χ is an idèle class character). The
second two terms in the meromorphic continuation are symmetric w.r.t. s 7→ 1− s. �

Next time: applications of this main theorem to Dedekind zeta functions and Hecke L-
functions. Compare this to the product of the local functional equations (these are not the
same, and the difference is something in terms of the local L-factors).

References for Galois cohomology:

• Atiyah and Wall’s article in Cassels/ Frölich

• Milne’s notes on class field theory (there’s a big chapter in there about Galois cohomology)

• Serre’s book Galois cohomology

Lecture 9: March 10

Finishing up Tate’s thesis. RECALL: we had a local functional equation

Z(f̂ , χ∨)

L(χ∨)
= ε(χ)

Z(f, χ)

L(χ)

(for fixed ψ and dx) and a global functional equation

Z(f̂ , χ∨) = Z(f, χ).

Today, we’ll get information about the global situation from the local situation. (You don’t
get the global thing by just producting together the local things, but they’re related.)

Definition 9.1. For any idèle-class character χ, using the standard ψ and the Tamagawa
measure, define

ε(χ) :=
∏
v

ε(χv).

(What is χv? Recall that there’s a copy of K×v inside of A×; then given χ : A× → C×, define
χv = χ|K×v .) It will turn out that this product always converges. Similarly, define

L(χ) :=
∏
v

L(χv)

when the product converges.

You proved on the homework that this doesn’t depend on the choice of ψ. (The choice of dx
doesn’t really matter either.)

Theorem 9.2.

(1) ε(χ) converges to a nonvanishing holomorphic function on X .
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(2) L(χ) converges for σ > 1, and extends to a meromorphic function on X , and is holomor-
phic outside | |0 and | |1. (Recall that |χ| = | |σ for some σ ∈ R, and that is called the
exponent.)

(3) L(χ) = ε(χ)L(χ∨).

Proof. Recall that X is just a bunch of copies of C, so we can prove this one component
at a time: restrict attention to one component X0 of X . (This means we’re fixing one idèle
class character χ and looking at the family {| |sχ}.) By local calculations,

• ε(χv) is a nonvanishing holomorphic function on X0 equal to 1 for all but finitely many
v. (By something on the homework, these correspond to unramified characters. Recall
that ε = AeBs on each X0. χ|∏

nonarch. v O
×
v

has open kernel, so χv is unramified for almost

all v. (A character on a profinite group to C× has to factor through a finite group, hence
has open kernel.))

We can find fv ∈ S (Kv) with fv = 1Ov for almost all v such that:

• Z(fv ,χv)
L(χv) is a nonvanishing holomorphic function on X0, equal to 1 for almost all v, and

• the local functional equation holds for all v.

Taking the product over v, and setting f =
∏
fv ∈ S (A)

• ε(χ) is a nonvanishing holomorphic function on X0

•
∏
v
Z(fv ,χv)
L(χv) is a nonvanishing holomorphic function on X0, so the properties of L(χ) in

(2) follow from that of Z(f, χ).

•
Z(f̂ , χ∨)

L(χ∨)
= ε(χ)

Z(f, χ)

L(χ)
Divide by the global functional equation to get

1

L(χ∨)
= ε(χ)

1

L(χ)
.

�

To get meromorphic functions of s ∈ C fix an idèle-class character χ and define

ε(s, χ) := ε(χ| |s)
L(s, χ) := L(χ| |s)

Then
L(s, χ) = ε(s, χ)L(1− s, χ−1)

Recall (χ| |s)∨ = χ−1| |1−s.

In Example 7.7, we talked about the diagram

Gal(Ks/K)
ρ

((��

A× // A×/Ks θ // Gal(Kab/K) // Gal(C) = C×
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θ becomes an isomorphism is you replace Galois groups with Weil groups.

WK

&&��

A× // A×/Ks θ // W ab
K

// GL1(C) = C×

There is a correspondence

{idèle class characters} ←→ {1-dim. reps of WK}.
You can consider n-dimensional representations of WK , and try to redo all of this theory. It
turns out that you can get all the n-dimensional representations out of 1-dimensional ones
(tensoring them together, tensoring with | |s, induced representations). So n-dimensional
L-functions are just products of Hecke L-functions. It’s not so hard to show that the n-
dimensional L-functions are holomorphic. The hard part is actually showing that it doesn’t
matter how you decompose your n-dimensional character.

Is there a similar correspondence relating n-dimensional representations ofWK to. . . something?
It relates to GLn(A) but is tricky to state correctly. This is Langlands!

(Reference? see references in the official notes.)

Now for something completely different.

Group cohomology. Let G be a group, and ZG be the group ring, i.e. the set of finite
formal sums

∑
g∈G agg. If G is a noncommutative group, then this is a noncommutative ring.

Definition 9.3. A G-module is a left ZG-module, i.e. an abelian group A equipped with a
left G-action G×A→ A satisfying

• 1 · a = a

• g(a+ b) = ga+ gb for all g, h ∈ G
• (gh)a = g(ha) for all a, b ∈ A

Let ModG denote the category of all G-modules.

Examples 9.4.

• Z with the trivial action

• If L/K is a Galois extension of fields, then Gal(L/K) acts on L×, or E(L) (where E is
any elliptic curve, or even any commutative group scheme over K).

• If A,B ∈ ModG, then Hom(A,B) (the set of abelian group homomorphisms A→ B) has
G-action

(gϕ)(a) = gϕ(g−1a).
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The way to remember this is to draw the picture

A
ϕ
//

g

��

B

��

g

��

A // B

and define gϕ to be the morphism on the bottom. (Note that g : A → A is invertible,
since g has an inverse!)

Definition 9.5. If A ∈ ModG, then define AG to be the subgroup of G-invariants, i.e. the
set {a ∈ A : ga = a ∀g ∈ G}.

Example 9.6. Hom(A,B)G = HomG(A,B), the group of G-module homomorphisms A →
B.

In general, HomG(Z, A) ∼= HomZG(Z, A) ∼= AG (canonical isomorphisms).

Proposition 9.7. If 0 → A → B → C → 0 is an exact sequence of G-modules, then
0→ AG → BG → CG is exact (i.e. the fixed-points functor is left-exact).

Proof. HomZG(Z,−) is left exact. �

The whole point of cohomology is to deal with the fact that this is not an exact functor.

Definition 9.8. Let H ⊂ G be a subgroup, and A be an H-module. We want to come up
with a G-module. There’s a ring homomorphism ZH → ZG, so you can talk about ZG⊗ZHA,
but actually we care more about HomZH(ZG,A), so we call that one the (co)induced module
and notate it IndGHA.

Note that, to specify homomorphisms out of ZG, it suffices to specify homomorphisms out
of G. So HomZH(ZG,A) is ∼= to the set of functions ϕ : G→ A such that ϕ(hg) = hϕ(g) for
all h ∈ H and g ∈ G. Give this the G-action

(gϕ)(s) = ϕ(sg)

for all g, s ∈ G.

As a special case, if H = {1} then write

A∗ := IndGA := IndG{1}A.

IndGH(−) is a functor ModH → ModG, and it turns out to be exact.

I’ll tell you five different ways to say what cohomology is. The official one will be definition 2.
First, why should cohomology take values in Ab? Because AG is essentially just an abelian
group – there’s no interesting G-action left.
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Definition 9.9 (Definition #1 of Hq(G,A)). (Hq(G,−))q=0,1,2,... is the unique sequence of
functors ModG → Ab equipped with connecting (or coboundary) homomorphisms

δ = δq : Hq(G,C)→ Hq+1(G,A)

defined functorially for exact sequences 0→ A→ B → C → 0 such that

(1) H0(G,A) = AG

(2) For each 0→ A→ B → C → 0,

0→ H0(G,A)→ H0(G,B)→ H0(G,C)

δ→ H1(G,A)→ H1(G,B)→ H1(G,C)

δ→ H2(G,A)→ . . .

is exact.
(3) If A = IndGB for some abelian group B, then it’s acyclic, i.e. Hq(G,A) = 0 for q > 0.

It’s not obvious that something like this exists. But it isn’t hard to show that these prop-
erties characterize the cohomology groups uniquely: use “dimension-shifting” to construct
Hq(G,A). Start with a G-module A, forget the G-action, and induce back up; call this A∗.
There is a natural injection A ↪→ A∗ sending a 7→ (g 7→ ga). Let B be the quotient, so we
have a SES

0→ A→ A∗ → B → 0

where A∗ is an induced thing. So the long exact sequence breaks up into a bunch of 2-term
exact sequences, i.e. isomorphismsHq+1(A) ∼= Hq(B) for q ≥ 1, andH1(A) ∼= coker((A∗)G →
BG).

Definition 9.10 (Definition #2 (official definition) of Hq(G,A)). Define (Hq(G,−))q≥0 are
the right derived functors of the left exact functor A 7→ AG.

What does this mean? First a definition.

Definition 9.11 (Injective modules). Let R be a ring and I be a R-module. Say that I is
injective if, given a diagram of solid arrows

I

M

>>

� � // N

OO

a dotted lift exists. (I.e. homomorphisms to I can be extended.) Other equivalent definitions:

• Every I ↪→M has a splitting M → I.

• Every short exact sequence 0→ I →M → N → 0 splits (so M = I ⊕N).

• Hom(−, I) is exact (this ends up implying that there’s no higher cohomology, i.e. Hq(G, I) =
0 for all q ≥ 0).

In order to define right derived functors out of a category, you need there to be enough
injectives – i.e. that every object A injects into an injective object.
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Proposition 9.12. ModG has enough injectives.

Given a left exact functor F from one abelian category to another such that the first category
has enough injectives, Grothendieck came up with a procedure for forming the right derived
functors of F .

To compute Hq(G,A) first choose an injective resolution of A, i.e. an exact sequence

0→ A→ I0 → I2 → . . .

where Ii are injective modules for ZG. (Note: the resolution is I0 → I1 → . . . , not A →
I0 → . . . .) (Saying that a category has “enough injectives” means that there’s always an
injection A ↪→ I0 where I0 is injective.) Now take G-invariants of the resolution:

(I0)G
d0→ (I1)G

d1→ (I2)G
d2→ . . . . (9.1)

This is not necessarily exact anymore, but it is a complex: dn ◦ dn+1 = 0. So even though we
might have ker = im, we still have im ⊂ ker. Measure the failure of exactness by defining

Hq(G,A) :=
ker dq

im dq−1
.

This is the qth cohomology of (9.1).

This is the same as ExtZG(Z, A).

Lecture 10: March 12

Problem set 5 may be turned in until Friday March 19.

Last time, we talked about how to computeHq(G,A) as the qth right derived functor of the left
exact functor (−)G : ModG → Ab: take an injective resolution 0→ A→ I0 → I1 → . . . , take

G-invariants of that, and then take the qth cohomology of 0→ (I0)G
d0→ (I1)G

d1→ (I2)G
d2→ . . . .

(Note that the (co)-induced modules J are acyclic, which means that Hq(G, J) = 0 for all
q ≥ 1. Also note that H0(G,A) = AG.)

Alternatively, because HomG(Z, A) ∼= AG, we have Hq(G,A) = Ext1
ZG(Z, A). You can com-

pute this using a projective resolution of Z. Free modules are projective.

Definition 10.1 (Definition #3 of Hq(G,A)). Choose a free (or more generally, projective)
resolution of Z as a G-module:

· · · → P2 → P1 → P0

projective resolution of Z

→ Z→ 0.

Apply HomG(−, A) to get a complex

0→ HomG(P0, A)→ HomG(P1, A)→ . . .

and define Hq(G,A) to be the qth cohomology of this complex.
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Example 10.2 (Example of a projective resolution P• of Z). Define Pi = Z[Gi+1] with G-
action as follows: s ∈ G acts on basis elements by s(g0, . . . , gi) = (sg0, . . . , sgi+1). I should
also tell you what the differentials are; it’s the usual thing from algebraic topology where you
have alternating sums and forget one thing at a time. This is called the standard complex.

Definition 10.3 (Definition #4 of Hq(G,A)). Define the group of q-cochains Cq(G,A) to be
the set of functionsGq → A (not necessarily homomorphisms). (If q = 0 then C0(G,A) := A.)
These can be made into a complex

0→ C0(G,A)
d→ C1(G,A)

d→ C2(G,A)→ . . .

If you know what the differentials in the standard complex are, you can figure out exactly
what the differentials are here. For example:

• If a ∈ C0(G,A) then da ∈ C1(G,A) is the map g 7→ ga− a.

• If ξ ∈ C1(G,A), then (dξ) : (g, h) 7→ gξh − ξgh + ξg.

Let Zq(G,A) = ker dq (“q-cocycles”) and Bq(G,A) = im dq−1 (“q-coboundaries”). Then
define

Hq(G,A) := Zq(G,A)
/
Bq(G,A).

So now you have a concrete way of doing calculations in low degrees.

Important example 10.4. Suppose G acts trivially on an abelian group A. Then for
ξ ∈ C2(G,A),

ξ ∈ Z1(G,A) ⇐⇒ gξh = ξgh + ξg ⇐⇒ ξ is a homomorphism G→ A

ξ ∈ B1(G,A) ⇐⇒ ξ = (g 7→ ga− a = 0) ⇐⇒ ξ = 0

So H1(G,A) = Hom(G,A).

Definition 10.5 (Definition #5 of Hq(G,A)). You can relate all of this to the singular
cohomology of a big topological space BG. (Read Gelfand-Manin, Methods of homological
algebra.)

Lemma 10.6 (Shapiro’s lemma). Let H ⊂ G be a subgroup, and A ∈ ModH . Then
Hq(G, IndGHA) ∼= Hq(H,A) for all q ≥ 0.

Proof. If P• is a resolution of Z by free ZG-modules, then it’s a resolution of Z by free
ZH-modules. (G is a union of cosets of H, and think of ZG is a direct sum of copies of ZH,
so ZG is a free ZH-module.) So we need to show that

HomG(Pi, IndGHA)→ HomH(Pi, A)

is an isomorphism; you can just check using the definitions. �

If H = {1}, then H0(H,A) = A, and Hq(H,A) = 0 for q > 0. (You want a projective
resolution of Z as a Z-module; just take 0 → Z → Z → 0.) So Hq(G, IndGA) = 0 for q > 0,
i.e. IndGA is acyclic. This explains why we used IndGA in the first definition. (It turns out
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that, to compute Hq(G,A), it suffices to use any acyclic (not necessarily injective) resolution
of A.)

Definition 10.7. If H ⊂ G is a subgroup, any A ∈ ModG can be considered as an H-module
by forgetting. There are restriction maps Res : Hq(G,A) → Hq(H,A) induced by (using
Definition 10.3) restriction of cochains Gq → A to Hq → A.

Alternatively, apply Hq(G,−) to A→ IndGHA and then apply Shapiro’s lemma on the right.

There’s also a map in the other direction, but it only works if (G : H) is finite.

Definition 10.8. If (G : H) = n < ∞ then there are corestriction maps Cor : Hq(H,A) →
Hq(G,A) defined by dimension-shifting; this is an inductive procedure, and the base case
AH = H0(H,A)→ H0(G,A) = AG is given by Cor(a) 7→

∑
g∈G/H ga (sum over a set of coset

representatives).

Proposition 10.9. Cor ◦ Res = n (i.e. the multiplication-by-n map) as maps Hq(G,A) →
Hq(G,A).

Proof. This is obvious for q = 0: take a G-invariant element a, forget that it’s G-
invariant, and take the sum

∑
g∈G/H ga (but ga = a). Now say the magic words “dimension

shifting.” (I.e. use the exact sequence 0→ A→ A∗ → B → 0.) �

If #G = n <∞, then you can take H = {1}. We know that, for the trivial group, everything
is acyclic. So Cor ◦ Res factors through Hq(H,A) = 0. But we just proved that this is the
multiplication-by-n map. This shows that

Proposition 10.10. If #G = n, then Hq(G,A) is killed by n for q ≥ 1.

Definition 10.11. IfH/G is a normal subgroup, there are inflation maps Inf : Hq(G/H,AH)→
Hq(G,A). This factors through Hq(G,AH). You can define this on cochains, etc. (If I gave
you all the details of everything, you’d be bored out of your skulls.)

Proposition 10.12 (Inflation-restriction sequence for H1). If H / G is normal and A ∈
ModG, then

0→ H1(G/H,AH)
Inf→ Hq(G,A)

Res→ Hq(H,A)

is exact.

This is just a definition-chase. (See, e.g. Silverman Arithmetic of Elliptic curves.) This is
just the beginning of the Hochschild-Serre spectral sequence:

Ep,q2 = Hq(G/H,Hq(H,A)) =⇒ Hp+q(G,A).

In general, spectral sequences arise when you have two left-exact functors: you could either
take the right derived functors of each, or compose the two left exact functors and take the
right derived functors of this composition. These are related by a spectral sequence.
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Homology. Let’s reverse all the arrows!

The augmentation ideal IG ⊂ ZG is the kernel of the map ZG → Z sending g 7→ 1. This is
the ideal generated by {g− 1 : g ∈ G}. Instead of taking G-invariants, take G-coinvariants:
just as AG is the largest G-invariant subgroup, AG is the largest quotient on which G acts
trivially.

Definition 10.13. For A ∈ ModG, define AG = A/(ga ∼ a) = A/IGA.

To define homology, instead of taking right derived functors of Hom, take left derived functors
of ⊗.

Definition 10.14. Define the qth homology group:

Hq(G,A) := Hq(P• ⊗ZG A).

Facts:

• H0(G,A) = AG

• If 0→ A→ B → C → 0 is an exact sequence of G-modules, you get a long exact sequence

· · · → Hq(G,B)→ Hq(G,C)
∂→ H0(G,A)→ H0(G,B)→ H0(G,C)→ 0.

• If A = ZG⊗B (“induced,” not “coinduced”) for some abelian group B, then Hq(G,A) = 0
for all q ≥ 1.

Next time: if G is finite, you can attach this LES to the cohomology LES and make the
biggest LES you’ve ever seen. We’ll also talk about cup products.

Lecture 11: March 17

Problem set 5 deadline extended to Friday, March 20. Problem set 6 is due Monday, March
30.

Recall: forA ∈ ModG, we had the following explicit descriptions of 0-dimensional (co)homology:

H0(G,A) = AG := {a ∈ A : ga = a ∀g ∈ G}

H0(G,A) = AG := A/IGA where IG = ker(ZG g 7→1→ Z)

(IG) is the ideal of ZG generated by {s− 1 : s ∈ G}.

Tate cohomology groups. Let G be a finite group. Let N =
∑

g∈G g ∈ ZG. For any

G-module A, there is a map A
N→ A (multiplication by N). If s ∈ G, then N(s− 1) = 0, so

IGA ⊂ kerN . Since sN = N , we also have imN ⊂ AG. Therefore, N induces a map

H0(G,A) = A/IGA
N∗→ AG = H0(G,A).

Define

Ĥ0(G,A) = kerN∗ = ker(N : A→ A)
/
IGA
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Ĥ0(G,A) = cokerN∗ = AG/NA

Now I’ll write H(A) instead of H(G,A) (etc.) but it means the same thing.

Theorem 11.1. If 0 → A → B → C is a short exact sequence of G-modules, then there’s
an exact sequence

· · · → H1(B)→ H1(C)→ Ĥ0(A)→ Ĥ0(B)→ Ĥ0(C)

→ Ĥ0(A)→ Ĥ0(B)→ Ĥ0(C)→ H1(A)→ H1(B)→ . . .

Define Ĥn(A) := Hn(A), and Ĥ−n(A) := Ĥ−n+1(A) for n > 0. Then the exact sequence

above is the LES of Ĥ•.

Question: why is this cohomology? Is it derived functors of something?

Answer: well, it smells like cohomology. . .

Proof. N∗ are functorial. Use the “extended snake lemma”:

ker // ker // ker

��

. . . // H1(C) // H0(A) //

N∗

��

H0(C) //

N∗

��

0

0 // H0(A) // H0(B) // H0(C) // H1(A) // . . .

coker // coker // coker

99

�

Proposition 11.2. If A = ZG⊗B for some abelian group B, then Ĥq(A) = 0 for all q ∈ Z.

Proof. By the HW, induced = coinduced if G is finite (which we’re assuming – none
of this makes sense when G is infinite). A is coinduced, so Hq(A) = 0 for all q ≥ 1. A is

induced, so Hq(A) = 0 for all q ≥ 1. So Ĥq(A) = 0 for all q ≤ −2. So it suffices to check the
ones in the middle.

It remains to check Ĥ0 and Ĥ0. Elements of A look like
∑

g∈G g⊗bg for bg ∈ B. The G-action
essentially permutes the bg’s; invariants are the elements where all the bg’s are equal – i.e.
things in the image of the norm. So AG = NA (recall we already had NA ⊂ AG). So H0 = 0.

Suppose a =
∑

g∈G g ⊗ bg ∈ ker(N : A→ A); that is,∑
h∈G

h
∑
g∈G

g ⊗ bg = 0 ∈ A = ZG⊗B
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so
∑

g∈G bg = 0 in B. Then a =
∑

g∈G(g − 1)(1⊗ bg) ∈ IGA. Thus Ĥ0 = 0. �

This is good news, because now you can do dimension shifting: given A, come up with
an injection of A into an induced module B, so the LES above turns into a sequence of
isomorphisms. More precisely:

Corollary 11.3. If 0 → A → A∗ → C → 0 (where A∗ = IndGA) is exact, then Ĥq(C) ∼=
Ĥq+1(A) for all q ∈ Z.

So if you know something about Ĥ0(all modules) then you can prove it for all integers. E.g.

you can define the induction and restriction maps and prove Shapiro’s lemma for Ĥ∗.

Alternative construction of Ĥq. Choose a resolution of Z by finite free ZG-modules

· · · → P1 → P0 → Z→ 0

(remember the resolution is · · · → P1 → P0). As abelian groups, these just look like Zn. Now
take Hom(−,Z), which preserves dimension of the free modules, but reverses the arrows.

0→ Z→ P ∗0 → P ∗1 → . . .

This is still exact, since Pi is Z-free of finite rank. We can splice these two exact sequences
together: “just cut out the Z” and consider the composition P0 → Z→ P ∗0 :

· · · → P1 → P0 → P ∗0 → P ∗1 .

This is called the complete resolution, which we renumber as:

P• : · · · → P1 → P0 → P−1 → P−2 → . . .

(i.e. P−1 := P ∗0 ). This is weird; it doesn’t look like it’s resolving anything. Apply the functor
HomG(P•, A), which gives a complex.

Proposition 11.4. Ĥq(G,A) = the qth cohomology of the complex HomG(P•, A) for all
q ∈ Z.

Proof. Omitted. (Mess of homological algebra.) �

Finite cyclic groups. We’d assumed through all of this that G is finite. Now let’s
specialize further to the case where G ∼= Z/nZ = 〈s〉.

Come up with a resolution of Z as follows. Start with ZG→ Z→ 0. Then the augmentation

ideal is principal, generated by s− 1. So we can continue this to ZG s−1→ ZG→ Z→ 0. The

kernel is the image of the norm map, so continue this to ZG N→ ZG s−1→ ZG → Z → 0. The
kernel of N is the place where the coefficients add up to zero, so that’s the augmentation
ideal again. That is, we get a sequence

. . .
N→ ZG s−1→ ZG N→ ZG s−1→ ZG→ Z→ 0.
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Form the complete resolution using this:

· · · → ZG
P1

s−1→ ZG
P0

N→ ZG
P−1

s−1→ ZG N→ ZG→ . . . .

So

Ĥ2q(A) = Ĥ0(A) = AG/NA = ker(s− 1)/ im(N)

Ĥ2q+1(A) = Ĥ0(A) = ker(N : A→ A)/IGA = ker(N)/ im(s− 1)

If 0→ A→ B → C → 0 is exact, then we get an exact hexagon

Ĥ0(A) // Ĥ0(B)

$$

Ĥ1(C)

::

Ĥ0(C)

zz

Ĥ1(B)

dd

Ĥ1(A)oo

Cup products. Now we’re back to the case of arbitrary G. Let A,B ∈ ModG. Then we
get another G-modules A⊗Z B with G-action g(a⊗ b) = ga⊗ gb. Then there is an obvious
G-module homomorphism

AG ⊗BG → (A⊗B)G.

This defines a map on H0. Using dimension shifting, one obtains homomorphisms

Hp(A)⊗Hq(B)→ Hp+q(A⊗B) for all p, q ≥ 0

which we write a, b 7→ a · b or a ∪ b satisfying supercommutivity :

b · a = (−1)|a||b|a · b

(identifying B ⊗A with A⊗B). You can also do this for Ĥ for all p, q ∈ Z if G is finite.

If one has a G-equivariant pairing A × B → C written a, b 7→ a · b (i.e. a bilinear map such
that g(a · b) = (ga) · (gb) (e.g. the Weil pairing on elliptic curves)), then one has a G-module
homomorphism A ⊗ B → C and the cup products can be composed with Hp+q(A ⊗ B) →
Hp+q(C) to give Hp(A)⊗Hq(B)→ Hp+q(C).

Profinite groups. We want to apply this to Galois groups. But if you just do it näıvely,
you get the wrong answers, because you’re losing the fact that e.g. Gal(Q/Q) is a profinite
group that has a topology.

Reminders about profinite groups: suppose (I,≤) is a nonempty partially ordered set with
the property that for all i1, i2 ∈ I there exists i such that i ≥ i1 and i ≥ i2. Let Gi be a
finite group for each i ∈ I, and for every i ≥ j, there is a homomorphism ϕij : Gi → Gj and
these respect composition, etc.. As elements of i get bigger, the G’s go the left (like when
you define the p-adics). (Or, you could think of a poset as a category where the objects are
the elements of the set, and there is a morphism for each ≤ relation; then we’re talking about
a functor I → Grp.)
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You can form the inverse limit

G := lim←−Gi = {(gi) ∈
∏

Gi : ϕij(gi) = gj ∀i ≥ j}.

Give each Gi the discrete topology (so it’s compact);
∏
Gi has the product topology, hence

also compact. We’re imposing closed conditions, so G is also compact. There is a basis
of neighborhoods around the identity given by (π−1

i (1))i∈I , where πi : G → Gi is the ith

projection.

Open subgroups of G are just π−1
i (some Gi). (I.e. every open subgroup comes from some

finite level.) Open subgroups have finite index (which isn’t surprising because G is compact).
Closed subgroups are harder to describe.

Example 11.5. If L/K is any Galois extension of fields (not necessarily finite), then Gal(L/K) =
lim←−Gal(Li/K) where the limit is taken over finite Galois extensions Li/K contained in L,
ordered by inclusion.

Special case: if K is any field, then Gal(Ksep/K) can be described this way.

There is a correspondence{
fields K ′ between K and L

}
←→ {closed subgroups H ⊂ Gal(L/K)}

K ′ 7→ Gal(L/K ′)

LH ← [ H

Example 11.6. Let G be any group. Define Ĝ = lim←−
H

G/H where the limit is taken over all

normal subgroups H of finite index. Then the ordering is by reverse inclusion. As a special

case, we’ve already seen Ẑ (profinite completion of Z).

Alternatively, you can take the pro-p completion, where you do the same thing but only use
H of p-power index. If you do this to Z, you get Zp = lim←−Z/p

nZ. By the Chinese Remainder

Theorem, Ẑ =
∏
p Zp.

Example 11.7. Any compact Lie group over Qp is profinite, e.g. SLn(Zp), Sp2n(Zp).

Next time: “supernatural numbers.”

Lecture 12: March 19

Recall: last time we were talking about profinite groups: G = lim←−
i∈I

Gi where Gi are finite.

WLOG assume G � Gi (if not you can replace Gi by the image of the ith projection, and
get the same inverse limit). Ui = ker(G→ Gi) is an open subgroup of G.

If you have a profinite group G, but you forgot which inverse system it came from, you can
always recover one possible system, namely the open normal subgroups U ⊂ G.
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Definition 12.1. A supernatural number is a formal product
∏
p prime p

np where np ∈
{0, 1, 2, . . . } ∪ {∞}. (Note that there is no requirement that only finitely many exponents
are nonzero!)

You can define multiplication, gcd, lcm, | in the obvious way.

Reference: Serre, Galois cohomology.

If G is a profinite group lim←−Gi, then define #G = lcm#Gi. If H ≤ G is a closed subgroup

then define (G : H) = lcm U⊂G
open, normal

(G/U : H/(H ∩ U)).

Proposition 12.2. If K ⊂ H ⊂ G then (G : K) = (G : H)(H : K).

Definition 12.3. A pro-p-group G is an inverse limit of finite p-groups. Equivalently, it’s a
profinite group G such that #G = pn (where n could be ∞, e.g. Zp).

Definition 12.4. Let H ≤ G be a closed subgroup. H is a Sylow p-subgroup if H is a pro-p
group and p - (G : H).

(In the finite case, you can define Sylow subgroups as a subgroup whose order has the maximal
power of p, but that doesn’t work if the exponent is ∞.)

Proposition 12.5. Every profinite group G has a Sylow p-subgroup.

Also you get the usual Sylow theorems that they’re all conjugate (but not the one about
index. . . )

Proof. Let P (U) be the set of Sylow p-subgroups of G/U . By the usual Sylow theorem,
this is not an empty set. If U ⊂ V , then there is a surjection G/U → G/V , which gives an
induced map P (U) → P (V ). So lim←−P (U) 6= ∅ (a directed inverse limit of nonempty sets is

nonempty). So we can choose a compatible system of Sylow subgroups HU ∈ P (U).

Let H = lim←−HU ⊂ lim←−G/U ; this is obviously a pro-p group since it’s an inverse limit of
p-groups. At each stage the index is prime to p. So H is a Sylow p-subgroup of G. �

Discrete G-modules. Let G be a profinite group. Let A ∈ ModG.

Definition 12.6. A is a discrete G-module if one of the following equivalent conditions holds:

(1) G× A → A is continuous, where G has the usual profinite topology (where the Ui’s are
declared to be open) and A is given the discrete topology.

(2) For all a ∈ A, StabG(a) is an open subgroup

(3) A =
⋃
U≤G

open normal

AU
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(Note: “normal” in the last point doesn’t matter so much. If H has finite index in G, you
can find a normal subgroup ⊂ H that also has finite index: take the intersection of all the
conjugates, or take ker(G→ Aut(G/H)). So the system of finite index normal subgroups is
cofinal in the system of finite subgroups, so it gives the same inverse limit.)

Definition 12.7. Let ModG denote the category of discrete G-modules.

Cohomology of profinite groups. Let G = lim←−Gi be a profinite group, and let A ∈
ModG. I’ll give a few equivalent definitions of Hq(G,A). The difference from before is that
these involve the topology.

Definition 12.8 (Definition #1 of Hq(G,A) for profinite G). Let Cq(G,A) be the set of

continuous functions Gq → A. These form a complex 0 → C0 d0→ C1 d1→ C2 → . . . (same
differential as before). As before, define the group of continuous q-cocycles Zq(G,A) :=
ker dq and the group of continuous q-coboundaries Bq(G,A) = im dq−1. Define Hq(G,A) =
Zq(G,A)/Bq(G,A).

Definition 12.9 (Definition #2 of Hq(G,A) for profinite G). Define

Hq(G,A) := lim−→
U≤G

open normal

Hq(G/U,AU )

where for U ⊂ V , the map Hq(G/V,AV ) → Hq(G/U,AU ) is inflation. (Note that G/U is a
finite group, and that you can’t define this to be lim−→Hq(G/U,A) because G/U doesn’t act

on A, only on AU .)

In the previous definition, cocycles have to come from some cocycle on G/U .

In general, if G = lim←−Gi, Ai ∈ ModGi , and A = lim−→Ai, then Hq(G,A) = lim−→Hq(Gi, Ai).

Definition 12.10 (Definition #3 of Hq(G,A) for profinite G). Show thatModG has enough
injectives, and define Hq(G,−) as the qth right derived functor of the functor ModG → Ab
sending A 7→ AG.

You could also forget that G is profinite and compute it the old way; this gives a different
answer. Why? The only difference between this derived functor definition and the previous
one is that the source categories are different, so the injectives are going to be totally different.
“So Hq(G,A) 6= Hq(G,A).”

Cohomological dimension. Reference: Serre’s Galois cohomology

Let G be a profinite group, and p a prime.

Definition 12.11. The cohomological dimension is cdp(G) := the smallest integer n such
that, for all torsion (every element of A has finite order) A ∈ ModG and for all q > n,
Hq(G,A)[p∞] = 0 (this means p∞-torsion). (Equivalently, it has no p-torsion.)
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There’s no guarantee that this exists: for most groups, you can get arbitrarily high cohomol-
ogy. If it doesn’t exist, define cdp := +∞.

Recall, using restriction and corestriction, we showed that Hq(G/U,AU ) for q ≥ 1 is killed
by #G/U . So Hq(G,A) = lim−→

U

Hq(G/U,AU ) is (for q ≥ 1) a limit of torsion groups, hence

torsion itself. There’s a structure theorem for torsion abelian groups T : T ∼=
⊕

p T [p∞] where

T [pn] = {t ∈ T : pnt = 0} and T [p∞] =
⋃
n≥1 T [pn].

Definition 12.12. Strict cohomological dimension scdp(G) is the smallest integer n such
that for all A ∈ModG, and for al q > n, Hq(G,A)[p∞] = 0.

Definition 12.13. Define cd(G) := supp cdp(G) and scd(G) := supp scdp(G) (this is choosing
an n that works for all primes simultaneously).

Obviously, sdcp ≥ cdp(G). But we can say more:

Proposition 12.14. Either scdp(G) = cdp(G) or cdp(G) + 1.

Proof. We need to show that scdp ≤ cdp + 1. Given A ∈ ModG, we have SES’s

0 → A[p] → A
p→ pA → 0 and 0 → pA → A → A/pA → 0 (where A[p] ⊂ A is the p-torsion

in A) gotten by breaking up the four-term exact sequence A[p] → A
p→ A → A/pA. If

q > cdp(G) + 1, then Hq(A[p])[p∞] = 0 and Hq−1(A/pA)[p∞] = 0 (by definition of cdp).
Because of the LES associated to the first SES, we have an exact sequence

0→ Hq(A)[p∞]→ Hq(pA)[p∞]→ Hq(A)[p∞],

but the second map is also an injection due to the LES associated to the second SES. This
composition is just multiplication by p. So Hq(A)[p∞] = 0. �

Facts 12.15. Let k be a field. Let G = Gk := Gal(ksep/k).
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condition on k cdp(G) scdp(G) comment

k = ksep 0 0

k is finite 1 2 G = Ẑ (limit of finite groups)

[k : Q`] <∞ 2 2 G is known (but complicated2)

R, for p 6= 2 0 0 G = Z/2
R, for p = 2 ∞ ∞ G = Z/2

[k : Q] <∞ and p 6= 2

or k is totally imaginary
2 2

[k : Q] <∞, and

not the above conditions
∞ ∞

k is a function field

of a curve / alg. closed field
1 2

global function fields see [k : Q] <∞ see [k : Q] <∞

Lecture 13: March 31

Recall L(χ) was the “gcd” of Z(f, χ). But gcd’s are only defined up to invertible elements.

For K = R and χ = | |s we defined L(χ) := π−s/2Γ(s/2). Is there anything special about
this choice? No, according to Deligne (but it makes the ε-factor nice.)

Nonabelian cohomology. Let G be a profinite group.

In the usual notion of G-module, if you forget the G-action, you have an abelian group. We
want a more general notion.

Definition 13.1. A G-group A is a G-set A with a group structure compatible with the
action of G: g(ab) = (ga)(gb)

Definition 13.2. If A is a G-set,

H0(G,A) := AG := {a ∈ A : ga = a}.

Definition 13.3. If A is a G-group, then H1(G,A) = {1-cocycles}/ ∼, where 1-cocycles are
continuous functions ξ : G→ A such that ξgh = ξg · gξh for all g, h ∈ G, and ξ ∼ η (say these
are “cohomologous”) if there exists b ∈ A such that ξg = b−1ηg

gb for all g ∈ G.

(If you want to read about H2, see the book by Giraud.)

You can’t use the usual definition of “differs by a coboundary” because the ξ’s don’t even
form a group. Also, H1(G,A) is not necessarily a group. But at least it’s a pointed set (a set
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with a distinguished element); the special point is the equivalence class of ξ : G→ A sending
g 7→ 1.

Even though these aren’t groups, you can still talk about exact sequences.

Definition 13.4. Say that (S, s)
f→ (T, t)

g→ (Y, u) is an exact sequence of pointed sets if
f(s) = t, g(t) = u, and g−1(u) = f(S).

We want to define a long exact sequence associated to a short exact sequence, but it’s not
going to be very long, because H2 doesn’t exist. . .

If G = lim←−
U open
normal

G/U , then we have

Hq(G,A) = lim−→
U open
normal

Hq(G/U,AU ) for q = 0, 1

and Hq(G,−) is a functor for q = 0, 1.

Let A be a G-subgroup of a G-group B. A might not necessarily be normal, so B/A is a
G-set, not a G-group. Then there exists an exact sequence of pointed sets

1→ H0(G,A)→ H0(G,B)→ H0(G,B/A)→ H1(G,A)→ H1(G,B).

If A is normal, then you can add H1(G,B/A) to the end of this. But you’re stuck, because A
might not be abelian. If A ⊂ center(B), then you can add on H2(G,A). If B is nonabelian,
now you’re really stuck.

Vague general principle 13.5. Let X be an object of algebraic geometry over a field k.
Let XL denote the same object base-changed over a Galois extension L/k. Then you can
define an (L/K)-form (twist) of X to be an object Y over k such that YL ∼= XL.

Then there is a correspondence

{(L/K)-twists of X} /k-isomorphism←→ H1(Gal(L/k),Aut(XL))

sending XL
ϕ→ YL to the cohomology class of the function g 7→ ϕ−1 · gϕ. It looks like a

coboundary, but it’s usually not, since ϕ isn’t an automorphism; however, it is at least a
cocycle.

Twists XL
∼=→ YL don’t come with a choice of isomorphism ϕ; it turns out that changing ϕ

changes the function to a cohomologous one. Going backwards is harder; this works if our
“objects” satisfy descent (e.g. for quasi-projective varieties).

Example 13.6. Let X be the elliptic curve y2 = x3 + 1 over Q, and Y be the elliptic curve
7y2 = x3 + 1 over Q. These are not isomorphic, but if L = Q(

√
7) or L = Q, then XL

∼= YL.
So Y is an (L/K)-twist of X.

Proposition 13.7. Let L/K be a Galois extension of fields, and G = Gal(L/k). Then
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(a) Hq(G,L) = 0 for all q ≥ 1 (here we’re thinking of L as a G-module under addition).

(b) If [L : k] <∞, the Ĥq(G,L) = 0 for all q ∈ Z.

Proof. (b) The key to this is the normal basis theorem, which says that L/k is generated
by one element and its Galois conjugates; in other words, L ∼= KG as a KG-module. Recall
that KG = ZG⊗Z K, i.e. L is an induced module. But the Tate cohomology of an induced
module is zero.

(a) Hq = Ĥq for q ≥ 1, so if [L : k] is finite, then (a) is done. If [L : k] is infinite, then use
the fact that profinite cohomology is the direct limit of finite cohomology, so

Hq(G,L) = lim−→
K⊂Li⊂L

Li/k finite Galois

Hq(Gal(Li/k), Li),

which is the direct limit of zero. �

Theorem 13.8 (“Hilbert’s” theorem 90). If L/K is a Galois extension of fields, then

H1(Gal(L/k), L×) = 0.

(Why is Hilbert in quotes? It was theorem 90 in a book written by Hilbert. Actually, he
didn’t state it for general cohomology, but gave a more concrete version for cyclic extensions.
Noether should get credit for some formulation of this.)

One proof involves explicitly constructing a coboundary. I’ll give a more conceptual proof,
that also has the advantage that it generalizes nicely.

Recall that a finite étale k-algebra is a finite product L of finite separable field extensions
of k. (This is the same as saying that SpecL → Spec k is a finite étale morphism.) Why
care? You want to take a field extension L/k and tensor up by k′, but then L ⊗k k′ is not
necessarily a field; instead, it’s an étale k-algebra.

Theorem 13.9 (Grothendieck). Let Gk = Gal(ks/k), where ks is the separable closure.
There exists an equivalence of categories{

finite Gk-sets

morphisms of Gk-sets

}op
←→

{
étale k-algebras

k-homomorphisms

}
sending S 7→ HomGk-sets(S, ks) = Homsets(S, ks)

Gk . In the other direction, send L 7→
Homk-alg(L, ks).

Example 13.10. Suppose that the Gk-set S is transitive (exactly one orbit). Fix s ∈ S,
and let H := StabGk(s). Then H is an open subgroup of Gk, and S ∼= Gk/H as Gk-sets
(where the isomorphism Gk/H → S takes g 7→ gs). S corresponds to the étale algebra
HomGk-sets(Gk/H, ks) = (ks)

H (a finite separable extension of k in ks). In general, a finite
G-set is S =

⊔
Si where Si is transitive. If the Si’s correspond to Li’s, then S corresponds

to the finite étale algebra
∏
Li.

If S has trivial Gk-action, then S corresponds to
∏
s∈S k.
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Pet peeve: don’t write k ⊕ k, because the map k ↪→ k ⊕ k sending α 7→ (α, 0) isn’t a ring
homomorphism; the natural maps are out of this object, so it should be called k × k.

Definition 13.11. Let L be an étale k-algebra with a left action of a finite group G. If
Ω ⊃ k is a field extension, then L ⊗k Ω is an étale Ω-algebra with left G-action, and so is∏
g∈G Ω = Homsets(G,Ω), where the left G-action comes from the right translation action of

G on G.

Call L a Galois étale k-algebra with Galois group G if for some field extension Ω ⊃ k,

L⊗k Ω ∼=
∏
g∈G

Ω

as Ω-algebras with G-action.

Note: you have to specify the group in advance; unlike Galois field extensions, the “Galois
group” is not determined by the other data.

Example 13.12. Let L = k × k × k × k; this has actions of Z/4Z and Z/2Z × Z/2Z (per-
mutation of coordinates). These make L into a Galois étale k-algebra with different Galois
groups. Note: Aut(L/k) ∼= S4, so that doesn’t help.

You don’t have to check all possible field extensions; if any Ω works, then the separable
closure of Ω also works.

Lecture 14: April 2

Suppose L/k is a finite Galois extension with Galois group G. Let W be an L-vector space.
A G-action on W is semilinear if σ(`w) = (σ`)(σw) for all σ ∈ G, ` ∈ L, and w ∈ W (and
the action respects addition).

Example 14.1. G acts coordinate-wise on Ln. More generally, if V is a k-vector space,
V ⊗k L is an L-vector space with a semilinear G-action.

WG is a k-vector space.

If you know V ⊗k L with its G-action, how can you recover V ?

Lemma 14.2. Suppose V is a k-vector space. Then the k-linear map V → (V ⊗kL)G sending
v 7→ v ⊗ 1 is an isomorphism.

Proof. If V = k, this is just LG = k. Any V is a direct sum of copies of k, and the
formation of the map respects direct sums. �

Lemma 14.3. Let W be an L-vector space with semilinear action. Then the L-linear map
WG ⊗ L→W sending w ⊗ ` 7→ `w is an isomorphism.
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Proof. We will show that the same holds for Galois étale extensions L/k (here L is no
longer a field). The point is that now you can do base-change. Apply − ⊗k Ω to k, L,W .
Rename Ω as L. Thus we reduce to the case L =

∏
g∈G k (here W is an L-module with semi-

linear G-action). Modules over a direct product also break up: if eg := (0, . . . , 0, 1, 0, . . . , 0)

with the 1 in the gth spot, and Wg = egW , then W =
∏
g∈GWg. An element g ∈ G maps

eg to e1 and hence provides an isomorphism Wg
∼=→ W1. Then WG = the diagonal image of

W1 →
∏
g∈GWg (invariants are tuples where the coordinates are all the same). WG⊗kL→W

is the direct sum of WG⊗k keg →Wg, and the latter maps are isomorphisms since both sides

are just the gth spot. �

Theorem 14.4. The functors

{k-vector spaces} −⊗kL←→
G-invariants

{L-vector spaces with semilinear G-action}

are inverse equivalences of categories.

This is what we just proved (well, you need things to be functorial, but that’s clear. . . ).
This also generalizes in several ways: e.g. quasiprojective varieties over L equipped with a
semilinear G-action are equivalent to quasiprojective varieties over k. This is useful where L
is algebraically closed, so it’s easier to construct things over L, but you want things over k.

Corollary 14.5. There is only one n-dimensional L-vector space with semilinear G-action,
up to isomorphism (here this is an isomorphism of L-vector spaces that respects the semilinear
G-action).

We’ve almost proved Hilbert Theorem 90 at this point, using the n = 1 case above. We can
do better: we can prove the GLn case.

Theorem 14.6. Let L/k be a Galois extension of fields with Galois group G. Then

H1(G,GLr(L)) = {0}.

(Hilbert Theorem 90 is the r = 1 case of this, also with the assumption that L/k is abelian.)

Notation: sometimes people write H1(k,GLr) := H1(Gal(ks/k), GLr(ks)) = {0}. Actually,
this is a little more than notation – it’s étale cohomology.

Proof. First reduce to the case where G is finite, by doing the usual trick of writing
profinite cohomology as the limit of the cohomology of finite groups.

Given a 1-cochain ξ : G → GLr(L), let Wξ = Lr equipped with the G-action G × Lr → Lr

sending (σ,w) = ξσ(σw) (idea: the difference between any semilinear G-action and the
standard one is L-linear).

Exercise (homework): this describes a semilinear G-action (i.e. (στ) ∗ w = σ ∗ (τ ∗ w)) iff ξ
is a 1-cocycle.
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Exercise (homework): Wξ
∼= Wξ′ ⇐⇒ ξ and ξ′ are cohomologous.

Conclusion: there exists a bijection

H1(G,GLr(L))←→ {r-dimensional L-vector spaces with semilinear G-action} / ∼= .

But we said there is only one of these. . . �

Alternative proof. Another proof: take the cohomology LES associated to 1 →
SLr(L)→ GLr(L)

det→ Gm(L)→ 1 (note that Gm(L) = L×):

GLr(k)
det→ k× → H1(SLr(L))→ H1(GLr(L)) = {0}.

�

Aside: H1(k,On) is the group of quadratic forms of rank n over k (up to ∼=). H1(k, PGLr)
is the group of twists of Pr−1, equivalently twists of Mr(k) (matrix group). (Matrix auto-
morphisms are given by conjugation, but conjugating by scalars doesn’t do anything.) The
long exact sequence for 1 → Gm → GLr → PGLr → 1 goes all the way to H2 because Gm
is central:

· · · → H1(k,GLr)

{1}

→ H1(k, PGLr)→ H2(k,Gm) = H2(Gal(ks/k), k×s ).

(The last thing is called the Brauer group.) See Serre’s book on local fields. For generaliza-
tions, see Bjorn’s secret notes on k-points: math.mit.edu/~poonen/papers/Qpoints.pdf.

Kümmer theory. Let k be a field, G = Gal(ks/k), n ≥ 1, and char k - n. Assume that
the group µn of nth roots of 1 in ks is contained in k. Then there is an exact sequence

1→ µn → k×s
(−)n→ k×s → 1

(you can find nth roots (i.e. surjectivity) because xn − a is a separable polynomial). The
resulting LES is:

1→ µn → k×
(−)n→ k× → H1(G,µn)→ H1(G, k×s )

0

.

This says that there’s an isomorphism k×/(k×)n
∼=→ H1(G,µn). Use the assumption that

µn ⊂ k to say that G acts trivially here.

Fact 14.7. If A is a G-module, and G acts trivially on A, then H1(G,A) = Homcts(G,A)
(just Hom in the finite case). (If A is nonabelian, then this is not quite true.)

So k×/(k×)n ∼= Homcts(G,µn). Explicitly, this sens a 7→ (g 7→ g n
√
a/ n
√
a).

Look at ks/L/k, where G = Gal(ks/k) and Z/nZ = Gal(L/k). Giving a surjection G→ Z/nZ
describes the cyclic extensions.
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Aside about class field theory: suppose you have a finite abelian extension L/k. Look at

L(ζn)
Kummer

ext.

k(ζn) L

k

Issue in class field theory: which Kummer extensions are in L?

Tracing through definitions shows that L/k is a cyclic extension of degree dividing n, so GL
is the kernel of a homomorphism Gk → Z/nZ. Then L = k( n

√
a) for some a ∈ k×.

14.1. Artin-Schreier theory. Let k be a field of characteristic p. There is a SES

0→ Fp → ks
P→ ks → 0

where P : x 7→ xp − x. The LES is:

· · · → k/P(k)→ H1(k,Fp)→ H1(k, ks)

but the last term is zero, as ks is an induced module. So k/P(k) ∼= H1(k,Fp) = Homcts(G,Fp)
as before.

Every Z/pZ-extension of k is of the form k(α), where αp − α = b for some b ∈ k.

What about Z/prZ? It’s not characteristic p, so it doesn’t sit inside a characteristic p
field; but, it sits inside the Witt ring. Alternatively, you can think of Z/prZ as a tower
of Artin-Schreier extensions. But, you have to be careful how you do this; this is called
Artin-Schreier-Witt theory.

14.2. Elliptic curves (or higher-dimensional analogue, abelian varieties). Let
k be a global field, and A an abelian variety over k. (This is a smooth projective connected
k-variety equipped with a commutative group structure.) The analogue of the nth power map

is A
n→ A mapping a 7→ a+ a+ · · ·+ a

n

. This is a morphism.

Claim 14.8. Assume n ≥ 1 and char k - n. Then A
n→ A is surjective.

Proof. The derivative at 0 is T0A
n→ T0A, which is an isomorphism. So the image of

A
n→ A is g-dimensional. The image is also a projective variety, because it’s the image of a

projective variety. Hence, the image is = A.

Define A[n] as the kernel in

0→ A[n]→ A(ks)
n→ A(ks)→ 0

(A[n] is the group of n-torsion points). You get an injection A(k)/nA(k) → H1(k,A[n]).
Unfortunately, there’s no Hilbert Theorem 90 in this case. Mordell-Weil says that A(k)/nA(k)
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is finitely generated. Prove it’s finite by proving that the image is contained in a particular
finite subgroup of H1(k,A[n]) called the Selmer group.

Look at Silverman’s Arithmetic of elliptic curves for the EC case, or Serre’s Lectures on the
Mordell-Weil theorem. �

Lecture 17: April 14

Let K be a field, GK = Gal(Ks/K), and L a topological field. Recall that a Galois rep-
resentation is just a continuous homomorphism GK → GL(V ) for some finite-dimensional
L-vector space V .

Theorem 17.1. If GK is finite, it’s either trivial or Z/2Z (e.g. for R).

Last time, we saw that if L is discrete or L = C, then ρ(GK) is finite.

Proposition 17.2. Any Galois representation ρ : GK → GLn(Qp) has image contained in
GLn(L) for some finite extension L/Qp.

Proof. The set of degree n extensions of Qp in Qp is finite. (Proof: break this up into
unramified followed by totally ramified extensions. There are a finite number of unramified
extensions because they corresponds to residue field extensions. Totally ramified extensions
come from adjoining an Eisenstein polynomial. If you vary the coefficients, the assignment
of Eisenstein polynomial 7→ field is locally constant. But the space of these is compact.)

Also, the set of finite extensions of Qp in Qp is countable, say {L1, L2, . . . }. So
⋃
Li = Qp,

and
⋃
GLn(Li) = GLn(Qp). Apply ρ−1 to this to get

⋃
ρ−1GLn(Li) = GK . Li is complete,

hence closed in Qp. GLn(Li) is closed in GLn(Qp), and Hi := ρ−1GLn(Li) is closed in GK .
You want one of these to be all of GK .

Let µ be the Haar measure on GK with µ(GK) = 1. Then µ(Hi) > 0 for some Hi. Then
this Hi has finite index in GK : otherwise, you would have infinite cosets all with the same
measure of Hi. Let S be a set of coset representatives for Hi. This is finite. This means
that GK = 〈Hi, S〉. Apply ρ to get ρ(GK) = 〈ρ(H), ρ(S)〉. By definition of Hi, we have
ρ(Hi) ⊂ GLn(Li), so 〈ρ(Hi), ρ(S)〉 ⊂ GLn(L) for some finite extnsion L of Li.

Alternatively, if Hi has infinite index,
◦

barHi = ∅ (i.e. Hi is nowhere dense). The Baire
category theorem says that

⋃
Hi is nowhere dense in GK , hence 6= GK . �

The point of this is that, when we restrict to finite extensions L/Qp, we’re not losing anything.
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Two representations ρ, ρ′ are isomorphic if they’re conjugate by some element of GLn:

GLn(L)

conjugation

��

GK

ρ 55

ρ′
))

GLn(L)

Irreducible representations are ones that have no nontrivial subrepresentations.

Given (V, ρ), you might not be able to write it as a direct sum of irreducible things, but the
next best thing is that there is a composition series V = Vr ⊃ . . . ⊃ V2 ⊃ V1 ⊃ V0 = {0} such
that each Vi is a subrepresentation and each quotient Wi := Vi/Vi−1 is irreducible.

Theorem 17.3 (Jordan-Hölder). Changing the composition series for V gives the same W ’s
(but possibly in a different order).

Definition 17.4. The semisimplification of V is V ss :=
⊕r

i=1Wi (and the corresponding
representation is denoted ρss).

You don’t need this if working over C, because every finite-dimensional representation over
C breaks up as a direct sum. But if we have an arbitrary topological field, you can have more
interesting representations.

Example 17.5. If L = Qp, consider a representation λ : GK � Zp (e.g. if K is finite, then

this could be GK = Ẑ =
∏
` Z` � Zp). Let ρ =

[
1 λ
0 1

]
. I.e. ρ : Gk → GL2(Qp) where

g 7→
[
1 λ(g)
0 1

]
. If V = Qp × Qp then we have a composition series V ⊃ V1 ⊃ {0} where

V1 = Qp × {0}. G acts trivially on V1 and on V/V1. Then ρss ∼= 1⊕ 1 6∼= ρ.

Idea: the semisimplification “zeroes out the blocks above the diagonal.” The trace and the
characteristic polynomial are the same as in the original representation. There’s a sort of
converse to this.

Theorem 17.6 (Brauer-Nesbitt). Let ρ, ρ′ be representations GK → GLn. Then ρss ∼= (ρ′)ss

if and only iff ρ(g) and ρ′(g) have the same characteristic polynomial for all g ∈ GK .

If charL = 0 or if charL > n, then ρss ∼= (ρ′)ss iff tr ρ(g) = tr ρ′(g) for all g ∈ GK .

Proof. Skipped. There’s too much representation theory at MIT as it is. �

Proposition 17.7. Suppose [L : Q`] < ∞. Let O be the valuation ring, and k the residue
field of L. Every ρ : GK → GLn(L) can be conjugated by an element of GLn(L) to get
ρ : GK → GLn(O). Then ρ : GK → GLn(k) is defined.

But the way of conjugating might not be unique, so you might get different ρ’s.
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Proposition 17.8. If ρ, ρ′ : GK → GLn(L) are isomorphic (conjugate by an element of
GLn(L)) and take values in GLn(O), then ρ, ρ′ have the same semisimplification.

Proof. ρ(g), ρ′(g) have the same characteristic polynomial in O[x] (because they’re
conjugate) for any g, and therefore ρ(g), ρ′(g) have the same characteristic polynomial in
k[x]. So now we can apply Theorem 17.6. �

Tate twists. Let k be a field with char k - n. Let µn = {ζ ∈ k×s : ζn = 1}. Then there’s
a homomorphism ε : GK → (Z/nZ)× taking σ 7→ the a such that σ(ζ) = ζa for all ζ ∈ µn.

Define GK modules

Z/nZ(1) := µn but with group law written additively

Z/nZ(j) := µn ⊗ . . .⊗ µn
j copies

Z/nZ(0) := Z/nZ with trivial action

Z/nZ(−j) := Hom(Z/nZ(j),Z/nZ) for − j ≤ −1

(The (1) means that there’s something funny going on with the Galois action.)

Then for any j, Z/nZ(j) is still a cyclic group of order n on which σ ∈ GK acts as multipli-
cation by ε(σ)j .

If ` 6= char k is prime, then define

Z`(j) := lim←−
n

Z/`nZ(j)

Q`(j) := Z`(j)⊗Z` Q`

Example 17.9. If k = Q, and ζ`n := e2πi/`n ∈ Q ⊂ C then ζ = (ζ`n) ∈ Z`(1).

Definition 17.10. If GK → GL(V ) is an n-dimensional Galois representation over Q`, then
V (j) := V ⊗Q`(j) is another one.

Finite fields. Let k be a finite field. It has a unique extension kn of degree n. Consider
the “geometric” Frobenius Frob : k → k sending x 7→ x1/#k; this is the inverse of the usual
(“arithmetic”) Frobenius. (Why geometric? This comes from étale cohomology.)

Z has dense image in Ẑ because it surjects onto each finite quotient. There are isomorphisms

FrobZ� _
dense
image

��

Z� _

��

oo

GK ∼= lim←−Gal(kn/k) ∼= lim←−Z/nZ = Ẑ

where the top map sends 1 7→ Frob.
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Idea: “Gk is topologically generated by Frobenius” (i.e. FrobZ is dense in GK). Equip Z
with the discrete topology; this is not the subspace topology in Ẑ.

Local fields. Suppose [L : Qp] < ∞. We have a valuation v : K � Z ∪ {∞}, and a
uniformizer $. Let k be the residue field. Then we have an absolute value | | : K → R≥0

with |$| = 1
#k .

Recall, the inertia group was the kernel in 1→ I → GK → Gk

Ẑ

→ 1. We have

1 // I // W //� _

dense
image

��

FrobZ� _

dense
image

��

// 1

1 // I // GK // Gk

Ẑ

// 1

where W (the Weil group) is the pullback of the right-hand square. Concretely, it’s

{σ ∈ GK whose image in GK is an integer power of Frob}.
Think of it as an approximation to the Galois group in the same way that Z is an approxi-

mation to Ẑ.

Give W the topology such that I is open in W , where I has its usual topology. I is one of a
Z’s-worth of cosets in W . Note that W is a topological group that is not profinite or compact
(all the I-cosets form an open cover that has no finite subcover).

One usually defines abelianization as W ab := W/[W,W ]. But this is the wrong notion for
topological groups: you only want to consider closed subgroups. So we define the abelianiza-
tion instead as

W ab := W/[W,W ].

You can reformulate local class field theory in terms of Weil groups. You have two exact
sequences

1 // O×

∼
��

// K×
v //

θ∼
��

Z //

∼
��

0

1 // I(Kab/K) // W ab // FrobZ // 0

where θ is the local Artin homomorphism. On elements, this sends

. . . $ //

��

1

��

. . . Frob // Frob

Define an absolute value W �W ab ∼= K×
| |→ R×>0. According to the diagram, σ ∈W induces

x 7→ x|σ| on the residue field k.

Lecture 18: April 16
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Last time, we were talking about the situation where [K : Qp] < ∞, there is a valuation
v : K � Z ∪ {∞} with absolute value | | : K → R≥0, uniformizer $ with |$| = 1

#k where k

is the residue field (normalized w.r.t. the Haar measure).

The Galois group GK of Ks/K acts on Gk ∼= Ẑ. Look at the subgroup of Gk generated by
Frob, and define W to be the pullback, i.e. the set of σ ∈ GK whose image in Gk is an integer
power of Frobenius.

1 // I // W� _

��

// FrobZ

��

// 1

1 // I // GK // Gk

Ẑ

// 1

I also defined an absolute value on W via W �W ab ∼= K×
| |→ R×>0.

If you have a representation GK → GLn, you can get a representation W ↪→ GK → GLn
of W . Even though the topology on W is kind of different, W ↪→ GK is a homomorphism
(the topology on W is stronger). Since the image of W is dense in GK , you can recover the
original representation GK → GLn. So there is an inclusion{

continuous homomorphisms GK → C×
}

finite-image characters of K×
⊂ {continuous homomorphisms W → C}

characters of K×

More inclusions: finite-image characters ⊂ unitary characters ⊂ characters of K×.

Let P ⊂ I be the Sylow p-subgroup of the inertia group I (“wild inertia”). We have a tower

G Ks

P

I Ktr = Kunr($1/n : n is not divisible by p)

I/P

P Kunr = K(ζ : n is not divisible by p)

G/I

{1} K

Here Ktr is the maximal tamely ramified extension. Recall the correspondence between
Galois groups and fields is order-reversing, so G = Gal(Ks/K), I = Gal(Ks/K

unr), etc.

G/I = Gal(Kunr/K) ∼= Gal(k/k) ∼= Z
You can choose the last isomorphism so Frob ←[ 1. I/P is called the tame quotient of the
inertia group.

I/P = Gal(Ktr/Kunr) ∼= lim←−
(n,p)=1

Gal(Kunr($1/n)/Kunr) ∼=
∏
`6=p
Z`(1)

Note that Gal(Kunr($1/n)/Kunr) ∼= µn =: Z/nZ(1) via the map sending σ 7→ σ($1/n)/$1/n.
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There is a surjection
∏
6̀=p Z`(1) � Z`(1). This is the largest pro-` quotient of I. Let t`

denote the surjection I � I/P ∼= . . .� Z`(1).

There’s more than just a sequence of inclusions of groups; the quotients interact with each
other.

1→ Gal(Ktr/Kunr)∏
6̀=p Z`(1)

→ Gal(Ktr/K)→ Gal(Kunr/K)

FrobẐ

→ 1

The middle group is a semidirect product, that can be specified by the action of the quotient.
There is a conjugation action of the subgroup on itself, but the subgroup is abelian, so that’s
a stupid action. The conjugation action of the quotient restricts to an action on the subgroup.
This equals the action in which Frob acts as multiplication-by-1

q .

If w ∈ W and σ ∈ I then t`(wσw
−1) = |w|t`(σ). Under the local class field theory map,

Frob 7→ $. So |Frob| = 1
#k .

Theorem 18.1 (Grothendieck’s `-adic monodromy theorem). Suppose L/Q` is a finite ex-
tension, and suppose V is a finite-dimensional L-vector space, and suppose ρ is an `-adic
representation of W (i.e. a continuous homomorphism ρ : W → GL(V )). Then there exists
a nilpotent N ∈ (EndV )(−1) such that

ρ(σ) = exp(t`(σ)N)f (18.1)

or all σ in some (finite-index) open subgroup of I.

(Note that t` is twisted by 1, and N is twisted by −1, so t`(σ)N is just a scalar times a
matrix.)

Thus ρ can be described by giving N , a subgroup, and finitely many values of ρ.

Remark 18.2. If N is unique, then it is W -invariant. (W acts on V , hence it acts on EndV
by conjugation, and hence it also acts on the twist.)

ρ(w)Nρ(w)−1 = |w|N
for all w ∈W .

Proof of Theorem 18.1. I is profinite, hence compact, so I stabilizes some full O-
lattice Λ ⊂ V . Without loss of generality assume I’ve chosen a basis, so we can write this
inclusion as On ⊂ Ln. Look at ρ|I : I → GLn(O).

Let U2 = 1 + `2Mn(O). This is an open normal subgroup of GLn(O). Let I ′ = (ρ|I)−1U2.
This is open in I; this will be the subgroup in the statement of the theorem.

Replace K by a finite extension K ′, replace GK by a subgroup GK′ , replace W = WK by its
subgroup WK′ = W ∩ GK′ , and replace I = IK by the subgroup IK′ = I ∩ GK′ . Since the
(GK′) form a basis of neighborhoods of 1 in GK , and the topology on I is induced from that
of GK , we can choose K ′ so that IK′ ⊂ I ′. So do all the replacements above, and notice that
proving the new statement still suffices to prove the theorem. So ρ now maps I to U2.
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We will now prove (18.1) for all σ ∈ I. We have ρ|I : I → U2. I claim that U2 is a pro-`-group;
that is because it has a filtration, and the quotients are pro-`. This homomorphism has to
kill a big part of I, e.g. all the wild inertia. So ρ|I has to factor through the maximal pro-`
quotient:

I //

t` !! !!

U2

Z`(1)

ϕ

<<

I need a lemma. Let’s forget about the twists for now; they only affect the Galois action.

Lemma 18.3. Every continuous homomorphism ϕ : Z` → U2 has the form ϕ(x) = exp(xN)
for some matrix N ∈ `2Mn(O).

Proof. exp is a map `2M2(O)→ 1 + `2Mn(O) =: U2; there is a log map going the other
way. These are bijections, not homomorphisms: recall that eA+B = eAeB only if A and B
commute.

If N exists, then ϕ(1) = expN . So define N := logϕ(1). Then for any x ∈ Z, exp(xN) =
exp(N)x = ϕ(1)x = ϕ(x) (the exponential map does respect multiplication of integers because
they commute with each other). This is what we want, but this is just for integers x. By
continuity, this also holds for `-adic integers. �

Lemma 18.3 now says that there exists N ∈ `2Mn(O)(−1) (the −1 is because of the twist in
Z`(1)) such that ρ(σ) = exp(t`(σ)N) for all σ ∈ I.

The only things we haven’t done are uniqueness (left for homework) and nilpotence of N .
This will come from the extra structure of how Frobenius acts on things. Recall: if w ∈ W
and σ ∈ I, then t`(wσw

−1) = |w|t`(σ). Use this to express ρ(wσw−1) = exp(t`(wσw
−1)N).

But since ρ is a representation, ρ(wσw−1) = ρ(w)ρ(σ)ρ(w)−1, so it’s conjugate to ρ(σ) =
exp(t`(σ)N). All of these matrices are in U2. Applying log to the above, we get that
t`(wσw

−1)N = |w|t`(σ)N is conjugate to t`(σ)N . Choose w = Frob, and choose σ such that
t`(σ) 6= 0 (this is OK because t` surjects onto Z`(1)).

So q−1N is conjugate to N . Conjugate matrices have the same eigenvalues. If λ is any
eigenvalue of N , σ−1λ is an eigenvalue of N , and that implies that q−2λ is an eigenvalue, etc.
Matrices can’t have infinitely many eigenvalues, so the only possibility is for λ = 0. That is,
every eigenvalue of N is 0, so N is nilpotent. �

This proof can be found in the appendix to Serre-Tate, 1968.

There’s an even more useful version of this theorem. This only describes the representation
on an open subgroup. You can divide out by the “infinite part” and get a representation
that’s the trivial representation on this subgroup. You get a new representation with an open
kernel, so it’s continuous w.r.t. the discrete topology. The idea is that you can separate the
representation into two pieces, one with discrete topology, and one given by an exponential.
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Definition 18.4. Let E be any field of characteristic zero (no topology, just a field). A
Weil-Deligne representation over E is a pair (r,N) where:

• r is a continuous homomorphism W → GLn(V ), for some finite-dimensional E-vector
space V with the discrete topology (r being continuous means that ker r ⊃ some open
subgroup of I);

• N ∈ EndV is such that r(w)Nr(w)−1 = |w|N for all w ∈W .

Such an N must be nilpotent, by the same argument as in the proof of Theorem 18.1. This
is basically an enhancement of a Weil group.

Lecture 19: April 23

Recall, last time we had a local field K of residue characteristic p, and a residue field k of
size q. Let G = Gal(Ks/K), and W be the Weil group of K. We have an absolute value on

W defined by W �W ab

local
CFT∼= K×

| |→ R.

Define ts,`:

I // //

ts,`

++

I/P ∼=
∏
` Z`(1) // // Z`(1)

Z`

OO

where the map Z` → Z`(1) sends 1 7→ ζ.

Recall we had

1 // I // W //� _

��

FrobZ //� _

��

1

1 // I // G // FrobẐ // 1

Suppose L is a finite extension of Q`, and O is the valuation ring of L. Suppose E is any
field of characteristic 0.

Definition 19.1. A Weil-Deligne representation over E is a pair (r,N) where

• r is a continuous homomorphism W → GL(V ), where V is some finite-dimensional E-
vector space with discrete topology (continuous means that ker r ⊃ some open subgroup
of I);

• N ∈ EndV is such that r(w)Nr(w)−1 = |w|N for all w ∈W .

Just as in Grothendieck’s monodromy theorem, this implies that N is nilpotent (there’s a
conjugate of N that’s = q−1N , so you get an infinite decreasing string of eigenvalues).

Remark 19.2. “Conjugation respects exponentiation”: ifA andB are matrices, thenB exp(A)B−1 =
exp(BAB−1). In general, you need the caveat that this only works when this converges, but
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you don’t need to worry about convergence in our situation, because we’re dealing with
nilpotent matrices.

Theorem 19.3 (Deligne’s classification of `-adic representations of W ). Choose a generator
ζ of Z`(1) := lim←−µ`n (this is free of rank 1 as a Z`-module). Choose Frob ∈ W (by the

diagram above, it’s well-defined modulo an element of the inertia group I). Then there exists
an equivalence of categories

{`-adic representations of W over L}
WDζ,Frob−→ {Weil-Deligne representations over L}

(where L has the `-adic topology on the left, and the discrete topology on the right). Let ρ be
the representation that corresponds to (r,N); it is characterized by

ρ(Frobnσ) = r(Frobnσ) exp(ts,`(σ)N)

for all n ∈ Z and σ ∈ I.

This is basically just a repackaging of Grothendieck’s `-adic monodromy theorem. This is
nontrivial because the r’s in Weil-Deligne representations are much more restrictive, because
the topology is discrete.

If ζ ′ and Frob′ are any other choices, then WDζ,Frob
∼= WDζ′,Frob′ , i.e. there is a unique

isomorphism

(r,N)

∼= ∃!

��

ρ

77

''

(r′, N ′)

Sketch of proof. We’ve already said what the map is in the ← direction. Given r,N ,
a calculation shows that ρ so defined is an `-adic representation (i.e. you have to show it’s a
homomorphism).

Conversely, given ρ, use Grothendieck’s `-adic monodromy theorem to find

• a finite index I ′ ⊂ I such that ρ(σ) = exp(ts,`(σ)N) for all σ ∈ I ′

• N ∈ EndV

and define r(w) = ρ(w) exp(t`,σ(Frob−nw)N), where n is chosen so that Frob−nw ∈ I. Then
r(w) = 1V for all w ∈ I ′. Thus r has open kernel. Then (a few details skipped here) r(N) is
a Weil-Deligne representation. �

What if we only want representations of G instead of W? Note that W = I o FrobZ and

G = I o FrobẐ. (The topology that Ẑ induces on Z is that things are getting close to 0 if
they are getting more and more divisible, so e.g. n!→ 0.)

Given a representation of G, you can always compose to get a representation of W . But you
can’t go the other way, even by using limits, because the topology is wrong.
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Example 19.4. Consider ρ : W �W/I ∼= Z→ L× sending Frob 7→ 1 7→ `−1 (where ` is the
uniformizer of L).

I claim that it’s impossible to extend ρ to a continuous homomorphism G → L×. Look at
the sequence Frobn!; I claim that this converges to 1 ∈ G. This is a profinite group; so you
just have to check that this goes to 1 in each finite quotient. This is obvious because each
we’re looking at finite groups, and eventually the order of the finite group will divide n!, so
gn! = 1 in that finite group. If ρ extends, then ρ(Frobn!) should converge to ρ(1) = 1. But

ρ(Frobn!) = `−n!, and that doesn’t converge.

Proposition 19.5. For A ∈ GLn(Q`), TFAE:

(1) the characteristic polynomial of A is in O[x] and detA ∈ O×;
(2) AM = M for some full (i.e. rank-n) O-lattice M ≤ Ln;
(3) A ∈ C ·GLn(O)C−1 for some C ∈ GLn(L);
(4) the homomorphism Z → GLn(L) sending m 7→ Am extends to a continuous homomor-

phism Ẑ→ GLn(L).

Definition 19.6. Say that A is bounded if it satisfies the conditions of Proposition 19.5.

“Your success in life is determined by how much linear algebra you know.”

Proof. Let f(x) = xn + an−1x
n=1 + · · · + a0 be the characteristic polynomial of A.

Cayley-Hamilton says that f(A) = 0, so An = −an−1A
n−1 − · · · − a0 · 1.

(1) =⇒ (2) Let J be any full O-lattice in Ln. Let M = J + AJ + A2J + · · · + An−1J
(motivation: if J ⊂ M then AJ ⊂ M etc.). This is clearly a finitely-generated O-module; it
contains J which has rank n, but is ⊂ Ln so can’t be higher rank. Then AM = AJ +A2J +
· · ·+AnJ ⊂M because An is a linear combination of lower powers. You can apply this same
argument to the characteristic polynomial of A−1; since detA ∈ O×, detA−1 ∈ O× as well,
so the same argument shows that A−1M ⊂M , so M ⊂ AM . Thus M = AM .

(2) =⇒ (1) Choose an O-basis of M . Compute the characteristic polynomial of A, and
detA, w.r.t. this basis. Get that the characteristic polynomial of A ∈ O[x] and detA ∈ O.
Apply the same to A−1 to get detA ∈ O×.

(2) ⇐⇒ (3) Every full O-lattice is C ·On for some C ∈ GLn(L). Then StabGLn(L)(C ·On) =

C GLn(O)C−1.

(3) =⇒ (4) Without loss of generality, conjugate to assume A ∈ GLn(O). Since GLn(O) is
itself a profinite group, the homomorphism extends.

(4) =⇒ (2) Ẑ is compact and existence of the extension means it acts on Ln. So it stabilizes
a lattice in Ln. One of the elements acts by A, so A stabilizes a lattice. �

Proposition 19.7. For continuous r : W → GLn(L), TFAE:
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(1) r(w) is bounded for all w ∈W
(2) r(w) is bounded for some w ∈W\I
(3) r(W ) is compact (this is the closure of r(W ) in GLn(L), where L has the `-adic topology)

Lecture 20: April 28

Recall: we had an equivalence of categories between `-adic representations of W over L and
Weil-Deligne representations over L, sending ρ ↔ (r,N). This depended on a choice of
Frob ∈ W and a generator ζ for Z`(1) over Z`. The point is that `-adic representations are
complicated, because L has the `-adic topology, and Weil-Deligne representations are easier,
because there L is just considered with the discrete topology. The subset of `-adic represen-
tations that come from Galois representations depended on the notion of boundedness: recall
that A ∈ GLn(L) is bounded iff AM = M for some full O-lattice M in Ln.

Proposition 20.1. For continuous r : W → GLn(L) with open kernel, TFAE:

(1) r(w) is bounded for all w ∈W ;
(2) r(w) is bounded for some w ∈W\I (where I is the inertia group);

(3) r(W ) is compact (this is the closure of r(W ) in GLn(L), where L has the `-adic topology);
(4) r(W ) stabilizes some full lattice.

Proof. (1) =⇒ (2) Trivial.

(2) =⇒ (3) r(I · wZ) = r(I) · r(w)Z. I is closed, so r(I) is compact, and r(w)Z is compact
since r(w) is bounded. This proves that r(I · wZ) is compact.

But I wanted r(W ). Recall W = I · FrobZ, so I ·wZ has finite index in W . So r(W ) consists

of finitely many cosets of r(I · wZ), hence is compact.

(3) =⇒ (4) r(W ) is compact, so it stabilizes a lattice; r(W ) ⊂ r(W ) does too.

(4) =⇒ (1) Each r(w) stabilizes the lattice. �

Here’s a variant of Deligne’s theorem:

Theorem 20.2. There is an equivalence of categories

{`-adic rperesentations of G over L} ←→ {bounded Weil-Deligne representations over L} .

Proof. Suppose ρ is an `-adic representation of W that corresponds to a Weil-Deligne

representation (r,N) under Theorem 19.3. Recall that G = I o FrobẐ and W = I o FrobZ.

ρ extends to G = I o FrobẐ ⇐⇒ ρ|FrobZ extends to ρ|
FrobẐ

Prop.
20.1⇐⇒ r is bounded
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Def.⇐⇒ (r,N) is bounded

(For the second ⇐⇒ , go back to the definition of the correspondence between ρ and
(r,N).) �

Definition 20.3. A unipotent matrix is a matrix of the form 1+ a nilpotent matrix. Equiv-
alently, all its eigenvalues are 1.

If char k = 0, then there is a bijection

{nilpotent n× n matrices}
exp

�
log
{unipotent n× n matrices} .

(Why do you need characteristic zero? These things are defined by power series with de-
nominators.) Note that these might not necessarily be homomorphisms, if the matrices don’t
commute.

Corollary 20.4. Given a unipotent matrix A and m ≥ 1, there exists a unique unipotent B
such that Bm = A.

Proof. To construct B, take the log, divide by m, and then take the exponential. �

Suppose k = k. Recall, any A ∈Mn(k) is conjugate to a block matrix, where each block has
some diagonal entries λ1, . . . , λn and 1’s on the off-diagonal. (This is called Jordan canonical
form.) (E.g. the identity matrix is a bunch of 1× 1 blocks.) You can write this as a sum:λ1 1 0

λ2 1
λ3

 =

λ1

λ2

λ3

+

0 1
0 1

0


To check whether two Jordan form matrices commute, you can check block-by-block.

So A can be written as a sum of a diagonalizable matrix + a nilpotent matrix, and these two
commute. There is a unique way of doing this.

Now relax the assumption that k = k, and just assume k is a perfect field (it is important for
the field extensions to be separable). The problem is that you won’t get the diagonalizable
component, because maybe the eigenvalues aren’t in k. Let V be a finite-dimensional k-vector
space.

Definition 20.5. A ∈ EndV is semisimple if V is a semisimple k-modules; i.e. it’s a di-
rect sum of simple k[A]-modules, where “simple” means “irreducible” (no nontrivial proper
submodules).

If k = k, the only simple modules are 1-dimensional, so in this case, semisimple ⇐⇒
diagonalizable.

Theorem 20.6 (Additive Jordan decomposition). Any A ∈ EndV has a unique decomposi-
tion A = S +N , where S is semisimple, N is nilpotent, and SN = NS.
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(I’m using N to distinguish between this and the Weil-Deligne N .)

Theorem 20.7 (Multiplicative Jordan decomposition). Any A ∈ GL(V ) has a unique fac-
torization A = S · U , where S is semisimple, U is unipotent, and SU = US.

Remarks 20.8.

• You can do both of these by base-changing to k.

• The S is the same in both.

• S, N , and U can be expressed as polynomials over k in A.

• The decomposition is respected if an algebra homomorphism GL(V )→ GL(V ) is applied.

• Every eigenvector of A is also:
◦ an eigenvector of S with the same eigenvalue

◦ an eigenvector of N with eigenvalue 0

◦ an eigenvector of U with eigenvalue 1.

• If A = SU is a multiplicative decomposition, then An = SnUn is a multiplicative decom-
position of An (since S and U commute)

Let (r,N) be a Weil-Deligne representation. r is a representation of W with open kernel,
and N is a nilpotent endomorphism. Write r(Frob) = S · U , where S is semisimple and U is
unipotent. (The Weil-Deligne N has nothing to do with the additive decomposition.)

Lemma 20.9. U and N commute.

Proof. Consider the conjugation action ofGL(V ) on End(V ) (i.e. sendingA 7→ CAC−1).
This is itself a representation. Since r(Frob)Nr(Frob)−1 = q−1N , N is an eigenvector of
r(Frob). So it’s also an eigenvector of U , with eigenvalue 1. This means that UNU−1 =
1 ·N . �

Lemma 20.10. U commutes with r(w) for all w ∈W .

Proof. Exercise 10.1(b) says there exists j ≥ 1 such that r(Frobj) ∈ the center of r(W ).
The unipotent component is U j (which is a polynomial in r(Frobj)). So U j centralizes r(W )
(i.e. it commutes with every element of r(W )). Now I claim that U also centralizes r(W ):
just take jth roots (which are unique) of the previous statement (alternatively, take the log,
divide by j, and take exp, which all preserve the fact that your matrix commutes with
everything). �

Lemma 20.11.

(1) The unipotent component of r(Frobnσ) is Un (here n ∈ Z and σ ∈ I).
(2) The unipotent component of r(Frobnσ) exp(aN) is Un for all n ∈ Z\{0}, σ ∈ I, a ∈ E.

(Excluding 0 is important: if n = 0 and σ = 1, then exp(aN) is its own unipotent
component.)
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Proof. (1) r(Frobnσ) has a positive integer power equal to r(Frob)m for some m ∈ Z.
(This is again by homework, at least for n 6= 0. If n = 0, use the fact that r(I) is a finite
group (by compactness of I), so some power of it is 1.)

So the conclusion is true for r(Frob)m and any power, hence true for any rot of this.

(2) r(Frobnσ) exp(aN) is a conjugate of r(Frobnσ) by exp(bN) for suitable b ∈ E. By (1), the
unipotent component is a conjugate of Un by exp(bN). Since U commutes with N (Lemma
20.9), it commutes with any power series in N , in particular exp(bN). So this is just Un. �

Define rss : W → GL(V ) by

rss(Frobnσ) = r(Frobnσ)U−n.

(Here V is the same E-vector space as in r : W → GL(V ).)

Remarks 20.12.

• By Lemma 20.10, rss is a homomorphism.

• Like r, it has open kernel, since rss|I = r|I .
• (rss, N) is another Weil-Deligne representation.

(r conjugates N in the right way; you need to show that the power of U doesn’t mess it
up, but that’s OK because U commutes with N .)

The Weil-Deligne representation (rss, N) is called the Frobenius semi-simplification of (r,N).
So we’ve forced Frobenius to become semisimple. In fact, it makes almost everything semisim-
ple.

Definition 20.13. Say (r,N) is Frobenius-semisimple if rss = r.

Some equivalent conditions for this:

• U = 1

• r(Frob) is semisimple

• r|〈Frob〉 is semisimple

• r is semisimple

• r(w) is semisimple for some w ∈W\I
Why? Use the fact that 〈r(Frob)〉 has finite index in r(W ) and charE = 0. If you have a

matrix that isn’t semisimple, e.g.

[
1 1
0 1

]
, it won’t become semisimple by raising to a finite

power.

So you just have to check Frobenius. Actually, you can check any element outside the inertia
group: if w ∈W − I, all of the above is equivalent to r(w) being semisimple.

If E = L, Lemma 20.11 allows us to add an extra equivalent condition: ρ(w) is semisimple
for all w ∈W\I, where ρ corresponds to (r,N).
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Lecture 21: April 30

Recall we defined the Frobenius semisimplification of a Weil-Deligne representation r. The
point is to make r(Frob) semisimple; if r(Frob) = S ·U , then you kill the U part by defining
rss(Frobnσ) := r(Frobnσ)U−n. Last time, we showed that (r,N) is Frobenius semisimple iff
rss = r iff r is semisimple iff r(Frob) is semisimple.

Example 21.1. Let VSp be a vector space with basis e0, . . . , en−1 over any E of characteristic
0. Define rSp : W → GL(V ) by rSp(w)ei = |w|iei. Then define N = NSp ∈ EndVSp by:
Ne0 = e1, Ne1 = e2, . . .Nen−1 = 0. Then (rSp, NSp) is a Weil-Deligne representation.

There’s a generalization of this: let r : W → GL(V ) be a representation with open kernel.
Define V = V ⊕ . . .⊕ V . Let w ∈ W act on V by r(w), |w|r(w), . . . , |w|n−1r(w). Let N act
on V by right shift (N applied to something in in the first copy of V is the same element, but
in the second copy of V , etc.). This is called Spn(r). In fact, Spn(r) = (r ⊗ rSp, 1⊗NSp) =
(r, 0)⊗ Spn.

Proposition 21.2. The indecomposable (i.e. ones you can’t write as a nontrivial direct sum)3

Frobenius-semisimple Weil-Deligne representations are Spn(r) for irreducible representations
r : W → GL(V ) and n ≥ 1.

Reference: Antwerp II (see official reference list), Deligne’s GL(2) article, Proposition 3.13(ii).

Sketch of proof. Let (r,N) be a Frobenius semisimple Weil-Deligne representation
on vector space V . So r is semisimple. Let n be the smallest integer such that Nn = 0.
For i = 0, 1, . . . , n define Ki = kerN i. By definition of Weil-Deligne representations, Ki is a
subrepresentation of V . You get a chain of subrepresentations 0 = K0 ⊂ K1 ⊂ · · · ⊂ Kn = V .

Start by writing Kn = Kn−1 ⊕ Zn where Zn is a subrepresentation.

Claim 21.3. N : Zn → NZn is an isomorphism of vector spaces, and Kn−2 ∩NZn = 0 (this
implies that NZn and Kn−2 are direct summands of Kn−1).

Proof of claim. If zn ∈ Zn satisfies Nzn ∈ Kn−2, then Nn−2(Nzn) = 0 so zn ∈ Kn−1.
But we also assumed it’s in Zn, so zn = 0. In addition to showing the second part of the
claim, this also shows N acts injectively.

By the commutation relation on WD representations, r(w)Nzn = |w|Nr(w)zn, so Zn⊗| | =
NZn as representations of W . �

So you can keep going, writing

Kn−1 = Kn−2 ⊕NZn ⊕ Zn−1

Kn−2 = Kn−3 ⊕N2Zn ⊕NZn−1 ⊕ Zn−2

3This is weaker than irreducible, because you might have 0 ⊂ W ⊂ V but if W doesn’t have a complement,
then you might not be able to write V = W⊕??.
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...

K1 = {0} ⊕Nn−1Zn ⊕Nn−2Zn−1 ⊕ . . .⊕ Z1

So the direct summands of Kn are all the pieces NaZb.

Conclusion: V ∼= Kn = Spn(Zn) ⊕ Spn−1(Zn−1) ⊕ . . . ⊕ Sp1(Z1). If V is indecomposable,
then V ∼= Spn(Zn) and Zn is indecomposable. Since r is semisimple, indecomposable =
irreducible.

You also have to check that the Spn’s are actually indecomposable, but that’s not too hard
so I’ll skip it. �

Local Langlands.

Now all representations are over C.

Lemma 21.4 (Schur’s lemma). Let G be a group, and let ρ : G → GL(V ) be a finite-
dimensional irreducible representation over C. If A : V → V is a map of representations (i.e.
A ∈ EndV commutes with ρ(g) for all g ∈ G), then A = λ · 1V for some λ ∈ C.

Proof. Let λ be any eigenvalue of A. Then A − λ · 1 commutes with ρ(g) for all g, so
ker(A−λ) is a subrepresentation of V , so it has to be 0 or V . It can’t be 0 because λ actually
had an eigenvector, so ker(A− λ) = V . This means that A is multiplication by λ. �

Reference for local Langlands stuff: lecture notes for a summer school by Wedhorn (see official
reference list).

Definition 21.5. Let π : GLn(K) → GL(V ), where K is a nonarchimedean local field of
residue field characteristic p (e.g. a finite extension of Qp)4 and V is a (possibly infinite-
dimensional) C-vector space. Say that π is admissible if:

• For every V , Stab(v) is an open subgroup in GLn(Kj). (This condition is often written
“π is smooth”.) I.e., V =

⋃
open H≤GLn(K) V

H .

• For every open subgroup H ≤ GLn(K), V H is finite-dimensional.

Proposition 21.6. If π : GLn(K) → GL(V ) is an irreducible admissible representation,
then for each z ∈ K× = (center of GLn(K)), π(z) = ω(z) · 1V for some ω(z) ∈ C×.

Proof. Homework (basically a variant of Schur’s lemma). �

Definition 21.7. Call ω : K× → C× is the central character of π.

4There’s also local Langlands for the archimedean case (R and C) and it’s easier than the case we’ll discuss.
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Corollary 21.8. dimV ≤ χ0.

Now, time for the local Langlands correspondence for GLn(K)!

Theorem 21.9 (Harris-Taylor, as restated by Henniart). Let K be a local field of residue
characteristic p.

There is a unique sequence of bijections

An :=

{
irreducible admissible

representations of GLn(K)

}
“automorphic/ GLn side”

recn−→
{

n-dim. Frobenius semisimple

Weil-Deligne representations/C

}
“Galois side”

=: Gn

for n ≥ 0 such that

(1) rec1 : {characters K× → C×} → {1-dim. representations W → C×} is composition W �
W ab ∼= K× by local CFT. (Notes on why A1 and G1 are as advertised: by Schur’s lemma,
representations on the left are 1-dimensional because GL1 = K× is abelian; N = 0 on
the right because there’s only one 1× 1 nilpotent matrix, so you can forget about N . . . .)

(2) For π1 ∈ An1, π2 ∈ An2 and any additive character ψ : K → C× (note ψ determines a
self-dual dxon K),

L(π1 × π2, s) = L(recn1(π1)⊗ recn2(π2), s)

ε(π1 × π2, s, ψ) = ε(recn1(π1)⊗ recn2(π2), s, ψ)

(All this stuff is to be defined, but think of it as a generalization of the character L-
functions (i.e. the n = 1 case here) that we defined in the Tate’s thesis part of the
course.)

(3) For π ∈ An, χ ∈ A1,

recn(πχ) = recn(π)⊗ rec1(χ)

(4) There is a commutative diagram:

An
recn //

central
char.

��

Gn
compose with

det:GLn(C)→C×
��

A
rec1 // G1

(5) There is a commutative diagram

An
recn //

dual
��

Gn

dual
��

An
recn // Gn

(I’ve not explained what dual means.)

The automorphic side is supposed to be the “easy side” –GLn(K) is supposed to be something
you know. The RHS is the “hard side”, because it involves the Weil group, which involves
the Galois group.

Trivial case: if n = 0, then GLn(K) = 0, so An
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Lecture 22: May 5

π : GLn(K)→ GL(V ) is smooth ⇐⇒ for every v ∈ V, StabGLn(K)(V ) is open in GLn(K)

⇐⇒ GLn(K)× V → V is continuous for the discrete topology on V

Definition 22.1. Let π : GLn(K) → GL(V ) be an admissible representation. The smooth
dual (contragredient) of V is

V ∨ =
{
λ ∈ Hom(V,C) : StabGLn(K)(λ)

}
is open.

The non-obvious condition here is just to make sure that this is smooth.

Facts 22.2.

• V is admissible

• V ∼= V ab

Setup: let K be a nonarchimedean local field of characteristic p. Let G = Gal(Ks/K), and
let W be the Weil group.

Let L be a finite extension of Q`.

{
finite-image
K×→C×

}
� � //

OO

��

{K× → C×}

∼=
rec1

(local CFT)

��

� � //

{
irred. adm.

GLn(K)→ GL( V
C-VS

)

}
∼recn ��{

n-dim. Frob-ss
WD reps/C

}
� _

��

{G→ C×} �
�

//

v�

))

{W → C×} �
�

//

{
W → GL( V

C-VS

)
}
� �

r 7→(r,0)
// {WD reps/C}

v�

))

{G→ GL(V )}
?�

OO

{
all WD reps
over all E

}
{WD reps/ L}

' �
44

��

{`-adic reps of G} //
{

`-adic reps of W over L
not necessarily open kernel

}
{smooth proj. vars/K}

`-adic cohomology
44

Now the plan is to attach L-factors to the following items in the chart:

(1) {K× → C×}
(2) {W → C×}
(3) {W → GL(V )}
(4) {WD reps/C}
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(5) {WD reps over all E}.

If we do this, then you get L-factors on everything else by looking at what it maps to.

(1) Recall we’ve already done this:

L(χ) =

{
(1− χ($))−1 if χ is unramified (i.e. χ|O×K = 1)

1 if χ is ramified

To get a meromorphic function of s ∈ C, recall that adding a factor of | |s doesn’t change
whether it’s ramified or not, so consider

L(χ| |s) =

{
(1− χ($)q−s)−1 if χ is unramified

1 otherwise

(2) (1-dimensional characters of the Weil group) is isomorphic to the above. Recall the
uniformizer of K corresponds to the geometric Frobenius, so our L-factors are:

L(χ) =

{
(1− χ(Frob))−1 if χ is unramified (χ|I = 1)

1 if χ is ramified

(3) Now let’s try to define L-factors on representations W → GL(V ) where V is a finite-
dimensional C-VS.

Problem: Frobenius is only well-defined up to the inertia group. One idea is to average over
all possibilities. But if the inertia group acts nontrivially, then it all cancels out. Instead,
restrict to the subspace where the inertia group acts trivially. I.e. define:

L(V ) = det(1− Frob|V I )−1.

Now for some intuition that this (especially the determinant part) is the right thing to define:

Example 22.3. Suppose dimV = 1. If V is unramified, V I = V , so L(V ) = (1−r(Frob))−1.

If V is ramified, then V I = 0. Now we’re taking the determinant of a 0× 0 matrix, which is
1; i.e. L(V ) = 1.

This shows that this is compatible with definition (2).

Example 22.4. If V = χ1 ⊕ χ2 where each character is unramified, then V I = V , and

L(V ) = det
(
1−

[
χ1(Frob) 0

0 χ2(Frob)

])−1

= (1− χ1(Frob))−1(1− χ2(Frob))−1

= L(χ1)L(χ2)

So this is a motivation for using the determinant: it’s multiplicative in the appropriate sense.

More generally,
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Proposition 22.5. If 0→ V1 → V2 → V3 → 0 is an exact sequence of representations of W ,
then L(V2) = L(V1)L(V3).

Proof. Usually when you take group invariants, it’s not an exact functor:

0→ V I
1 → V I

2 → V I
3 → H1(I, V1)→ . . .

But I claim that the H1 term is zero. All of these things are complex vector spaces, so the
H1 term is a C-vector space. But it’s a profinite group, i.e. the limit of finite groups, so
every element has finite order. The only complex vector space with this property is 0.

So we have a SES 0 → V I
1 → V I

2 → V I
3 → 0. If you choose a basis for V I

1 and V I
3

and choose the induced basis for V I
2 , the matrix Frob|V I2 looks like

(
Frob|V I1 ∗

0 FrobV I3

)
so

det(FrobV I2
) = det(Frob|V I1 ) det(Frob|V I3 ). �

Proposition 22.6. Let L ⊃ K be a finite separable extension. Note that GL is a finite-index
subgroup of GK , so WL is a finite-index subgroup of WK . Let VL be a representation of WL

over C. Let VK := IndWK
WL

(VL) (this is a representation of WK).

Then L(VK) = L(VL).

Recall: we have exact sequences

1 // IK // WK
// FrobK // 1

1 // IL
?�

OO

// WL
?�

OO

// FrobZL
//

?�

OO

1

FrobL maps to (FrobK)f (where f is residue field degree).

Proof.

V IK
K = (HomWL

(WK , VL))IK where IK acts on WK

= HomWL
(WK/IK , VL

FrobZ
K

)

= HomWL
(FrobZK , V

IL
L ) images have to land in the inertia-invariants

= HomWL
(FrobZK , V

IL
L ) since IL acts trivially on both

= Ind
FrobZ

K

FrobZ
L

(V IL
L )

Idea: we’re inducing from fZ up to Z. A representation of fZ is easy to describe: you just
have to say where the generator goes.

This reduces to a fun linear algebra problem:

Lemma 22.7. Let 〈F 〉 be an infinite cyclic group with generator F , and let n ≥ 1. Let V be a
finite-dimensional representation of 〈Fn〉 over C. Then det(1−F |

Ind
〈F 〉
〈Fn〉

V ) = det(1−Fn|V ).
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(We’re using n = f .)

Proof of Lemma. Without loss of generality take V = Cm. Fn|V is just a matrix in
GLm(C). Both sides are polynomials in the entries of Fn|V . Diagonalizable matrices are dense
in the space of all matrices, so by continuity, we may assume that Fm|V is diagonalizable,
i.e. V is a direct sum of 1-dimensional vector spaces. Without loss of generality V = C, and
Fn|V = a (some element of C).

Ind
〈F 〉
〈Fn〉C =

{
h : 〈F 〉 → C : h(Fn · F i) = ah(F i) ∀i ∈ Z

}
I claim that this is ∼= C, because you just have to specify the first n powers of F ; i.e. the
isomorphism takes h 7→ (h(F 0), . . . , h(Fn−1)). The F -action is a shift action:

A :=


0 a

1
. . .
. . . 0

1 0


Now we need to calculate the determinant: det(1−A) = 1− a.

�

Proposition 22.8. Every irreducible r : W → GL(V ) (where V is a finite-dimensional
C-vector space) is ρ : | |s for some finite-image ρ : W → GL(V ) and some s ∈ C.

Proof. By the homework, there exists some j ≥ 1 such that r(Frobj) ∈ center of r(W ).
By Schur’s lemma, r(Frobj) = c · 1V for some c ∈ C×. Choose s ∈ C so that |Frobj |sc. Let
ρ = r| |−s. Then ρ(Frobj) = 1, so ρ(I) = r(I) is finite. I and Frob generate all of the Weil
group;

〈
I,Frobj

〉
has finite index in W . So ρ(W ) is finite. �

Now let’s get back to defining L-factors. The point about Weil-Deligne representations is that
they encode things about `-adic representations. Over L, suppose the `-adic representation ρ
corresponds to the WD representation (r,N). Recall the correspondence, defined on Frobnσ,
is ρ(Frobnσ) = r(Frobnσ) exp(tζ,`(σ)N). In order for something to be fixed by the inertia
group is if it’s fixed by exp(const ·N), i.e. it has to be in the kernel of N . It should also be
fixed by r. That is,

V ρ(I) = (kerN)r(I).

Now we can define the L-factor for a Weil-Deligne representation (r,N) over C:

L((r,N)) = det(1− Frob|IkerN )−1

L((r,N), s) = det(1− q−sFrob|(kerN)I )
−1

Replacing (r,N) by (rss, N) does not change these.

In case (5) (all WD representations over all E), you can’t get a meromorphic function of
complex numbers: you have a matrix with E-entries. It’s kind of a cop-out, but you can
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define zeta functions similarly by

Z((r,N), t) := det(1− tFrob|(kerN)I )
−1.

This is an element in E(t).

If E ⊂ C, one can substitute t = q−s to get L((r,N), s).

Lecture 23: May 7

Let L ⊃ K be a finite separable extension of local fields. We defined VL, a representation of

the Weil group WL over C, and showed L(IndWK
WL

VL) = L(VL). If K is a local field and V is

a representation of W over C, we defined L(V ) := det(1− Frob|V I )−1.

Virtual representations. Let G be a finite (or profinite) group. Maschke’s theorem
says that the category of finite-dimensional (continuous, if G is profinite) representations V
of G over C is semisimple: every such V is

⊕
irred.
Vi

V ⊕nii for some ni ∈ N that are almost all

zero.

Definition 23.1 (Definition #1 of virtual representations). A virtual representation is a
formal expression

⊕
irred
Vi

V ⊕nii where ni ∈ Z almost all zero. (Think of this as a formal

difference of two actual representations.)

Let R(G) be the set of all virtual representations. This is a commutative ring where + is
induced by ⊕ of representations, and ⊕ is induced by ⊗ (extended linearly).

Definition 23.2 (Definition #2 of virtual representations). There is an embedding

{f.d. representations of G/C} / ∼=↪→ {(locally constant) functions G→ C}
sending V 7→ χV , where χV (g) := Tr(g|V ). Note that the RHS is a commutative ring.

Let R(G) be the additive group generated by the image.

Definition 23.3 (Definition #3 of virtual representations). Let R(G) be the Grothendieck
group of the category of finite-dimensional representations of G over C. That is, take the free
abelian group with basis consisting of symbols [V ] for every finite-dimensional representation
V , and then mod out by the relation [V ] = [V ′] + [V ′′] for every short exact sequence
0→ V ′ → V → V ′′ → 0.

Note that you only need a symbol for every irreducible representation, and if you only take
those, you don’t need any relations.

Definition #3 generalizes to finite-dimensional continuous representations of any topological
group over any field E, even if Maschke’s theorem doesn’t apply. Even if a representation
isn’t the direct sum of irreducibles, you can still break it down to irreducibles using short
exact sequences, so you still have R(G) =

⊕
irred
V
Z as an abelian group.
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R(G) has the following universal property: If A is an abelian group, giving a group homomor-
phism f : R(G)→ A is the same as specifying f(V ) for each finite-dimensional representation
V such that f(V ) = f(V ′) + f(V ′′) for every SES 0→ V ′ → V → V ′′ → 0. (If f satisfies this
property we say that f is additive.)

Example 23.4.

• dim : R(G)→ Z

• det : R(G) → Hom(G,C×) (given a representation ρ, this assigns a function G
ρ→

GLn(C)
det→ C×)

• (−,−) : R(G) × R(G) → Z sending V,W 7→ 1
#G

∑
χV (g)χW (g). This only makes sense

for finite groups; in the profinite case, replace 1
#G

∑
with

∫
G (using Haar measure). If

V,W are irreducible, then (V,W ) is 1 if V ∼= W , and 0 otherwise.

• Given a closed subgroup H ≤ G, get a restriction map Res : R(G)→ R(H).

• Given an open subgroup H ≤ G, get an induced representation IndGH : R(H) → R(G)
sending V 7→ V ⊗CH CG.

Theorem 23.5 (Frobenius reciprocity). Let H ≤ G be an open subgroup. If V ∈ R(G) and
W ∈ R(H), then

(ResV,W )H = (V, IndGHW )G.

(I mean that the pairing on the left is the pairing in H, and the one on the right is the pairing
in G.)

Theorem 23.6 (Brauer’s theorem). Let H ≤ G be an open subgroup. The monomial rep-
resentations (i.e. IndGHχ where χ : H → C× is 1-dimensional) generate R(G) as an abelian
groups.

(Explicitly, IndGHχ looks like a permutation matrix, where instead of 1’s in the matrix, there
are arbitrary nonzero values.)

Artin L-series. Let K be a global field, and G = Gal(Ks/K). If v is a finite place of
K, then we have:

• Kv = the completion at v

• Gv = Gal(Kv,s/Kv) (the image of this in G is the decomposition group)

• Iv = the inertia group

• Frobv

• qv = cardinality of the residue field

Let V be a (possibly virtual) finite-dimensional representation of G. Then you get a repre-
sentation of Gv, namely Vv := V |Gv . These are the same as vector spaces.

Let
L(Vv, s) := det(1− q−sv Frobv|V Iv )−1
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be the local L-factor defined earlier for Vv. (If you want, you can think of this as V Iv
v instead;

it doesn’t matter.) It’s like a characteristic polynomial. . .

Definition 23.7. The Artin L-series is

L(V, s) :=
∏
finite
v

L(Vv, s)

You can expand out L(Vv, s) as a Dirichlet series, and so L(V, s) will also be a Dirichlet series
(i.e. it looks like a ζ-function).

There’s also a completed version where you put in Γ-factors for the archimedean places, but
we haven’t talked about those.

Examples 23.8.

• If V = 1 (the trivial representation), then L(V, s) = ζK(s): you’re talking about a 1× 1
matrix whose entry is 1.

• If dimV = 1, then the completed Artin L-series is a Hecke L-function.

Proposition 23.9. L(V, s) converges (as a function of s) for Re s > 1.

Proof. Let n = dimV . Frobv|V Iv is a matrix of finite order, so its eigenvalues are all
rots of unity. So

Lv(V, s) =
∏
≤n

(1− q−sv λ)

where λ are eigenvalues, and there are ≤ n of them. Thus∏
Lv(s) converges ⇐=

∑
q−sv converges

⇐= ζK(s) converges

⇐= Re s > 1

�

Corollary 23.10. For V ∈ R(G), one can define L(V, s) as a nonvanishing holomorphic
function on Re s > 1.

Proposition 23.11. Let K ′/K be a finite separable extension of global fields. Then we have
an inclusion GK′ ⊂ GK . Let V ′ be a finite-dimensional representation of GK′; then

V = IndK′/KV
′ = IndGKGK′

V ′.

(Note that V ) is a representation of GK and V ′ is a representation of GK′.

We will use the local version L(IndWK
WL

VL) = L(VL) we proved last time in Proposition 22.6.
This is more general than we need – it’s about Weil groups, not Galois groups.
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Sketch of proof. Let v be a finite place of K. Use the fact from group theory

(IndK′/KV
′)v ∼=

⊕
w|v

IndK′w/KvV
′
w.

((−)v means I’m restricting to the decomposition group.) Note that IndK′w/KvV
′
w is a rep-

resentation of GKv , and IndK′/KV
′ is defined to be V . So if we take local L-factors on both

sides, we get

L(Vv, s) =
∏
w|v

L(IndK′w/KvV
′
w, s)

Prop.
22.6=

∏
w|v

L(V ′w, s).

Multiply over all finite v of K to get L(V, s) = L(V ′, s). �

Suppose K ′/K is a finite Galois extension of global fields, with Galois group G. Recall CG
is the regular representation of G, but we can view it as a representation of GK . This is
= IndK′/K1. So

L(CG, s) = ζK′(s).

Also, ∏
irred. reps.
V of G

L(V, s)dimV = L(CG, s).

As an example of this, recall last term we proved

ζQ(ζn)(s) =
∏

χ:(Z/nZ)×→C×
L(χ, s).

The L-function corresponding to the trivial character is the Riemann ζ-function.

Now make a small generalization of this: let K ′/K be a finite separable extension of global
fields (not necessarily Galois). You can still talk about the induced representation IndK′/K1,
but there’s no more G for it to be CG. However, previously we could have viewed G = GK/GK′
(corresponding to the tower diagram Ks/K

′/K). We can still talk about GK/GK′ as a set
of cosets, and it’s still a GK-set. So you can still form the permutation module C[GK/GK′ ]
(vector space spanned by the cosets, with action of GK). I claim that

L(C[GK/GK′ ]) = ζK′(s).

Theorem 23.12. Every Artin L-series extends to a meromorphic function on C and there
is a functional equation relating L(V, s) to L(V ∗, 1− s).

Proof. By Brauer’s theorem, it suffices to check monomial representations V = IndK′/Kχ,

where χ : GK′ → C×. The L-series for V is the same as the L-series for χ, so it suffices to
check just for χ. But now we’re in a special case of Hecke L-series (well, uncompleted. . . ).
So we’re done! �

There’s a conjecture that most of these L-series are holomorphic. We already proved that
in the Hecke case. Here, you’re taking Hecke L-functions, inducing them up, and taking
products and quotients of them. So it’s kind of unusual that you should expect them to be
holomorphic. . .
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Lecture 24: May 12

Last time we were talking about Artin L-series. Let K be a global field, G = Gal(Ks/K),
and V a finite-dimensional representation of G over C. Recall we defined

L(V, s) =
∏
v-∞

det(1− q−sv Frobv|V Iv )−1

where qv is the size of the residue field and Iv is the inertia group of the local version of G.

Recall:

Theorem 24.1 (Brauer’s theorem). Ever finite-dimensional representation of a (pro)finite
group over C is a Z-linear combination of representations induced from 1-dimensional repre-
sentations on subgroups (these are called monomial representations).

As a consequence of this,

Theorem 24.2. Every Artin L-series is a ratio of products of Hecke L-series associated to
idèle class characters of finite extensions of K. (The finite extensions correspond to subgroups
of the Galois group.)

Corollary 24.3. L(V, s) is meromorphic on C.

Conjecture 24.4 (Artin holomorphy conjecture). For every irreducible representation V of
G that is not the trivial representation of GK , L(V, s) is holomorphic on all of C.

The point of the nontriviality condition is you have to exclude the Dedekind zeta function,
which is not holomorphic. But the conjecture says that this is basically the only thing that
can go wrong.

We proved the Artin holomorphy conjecture for dimV = 1. Weil proved this when K is a
global function field (this relates to the Weil conjectures).

Example 24.5. Let K ′/K be a finite separable extension. Then IndK′/KC = C[GK/GK′ ]
(permutation representation, with basis indexed by cosets). Think of those as functions on
the set of cosets; you can embed C ⊂ this by taking the constant functions. I claim that
IndK′/KC = C[GK/GK′ ] = C⊕V (where the copy of C on the left is the trivial representation
of GK′ and the C on the right is the trivial representation of GK). Applying L-factors to
IndK′/KC = C⊕ V , we get ζK′(s) = ζK(s)L(V, s).

Conjecture 24.6. Every zero of ζK(s) is also a zero of ζK′(s).

There are some things that are known about this.
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Remark 24.7 (Aramata-Brauer). If K ′/K is also a Galois extension, then some positive
integer multiple of χV (this is the V in C ⊕ V ) is a nonnegative integer combination of
monomial characters.

So you’re multiplying together a bunch of Hecke L-series, and those are known to be holo-
morphic. So the Artin holomorphy conjecture holds.

A consequence of Theorem 24.2 is:

Theorem 24.8. If the generalized Riemann hypothesis holds for all (completed) Dedekind

zeta functions of number fields (i.e. ζ̂K(s) has all its zeros on Re s = 1
2 – multiplying by

Gamma factors cancels out the trivial zeros) then all zeros and poles of all completed Artin
L-series are on Re s = 1

2 .

Of course, there aren’t supposed to be any poles.

Proof of Chebotarev density theorem using Artin L-functions. There’s actually
a shortcut, where you can use some cheap group theory (groups are generated by cyclic
subgroups, which are abelian) to prove this only using abelian L-series. But we won’t do
this.

Setup:

• K is a global field

• v is a nonarchimedean place of K

• Kv is the completion at v

• Fv is the residue field

• qv = #Fv

Definition 24.9. If P ⊂ {all v}, define its Dirichlet density as

δ(P ) := lim
s→1+

∑
v∈P q

−s
v

log 1
s−1

.

Think of the sum as related to the log of the Dedekind zeta function. At s = 1 it will diverge
(like the harmonic series).

Remark 24.10. Changin P at finitely many places doesn’t change δ. (Each individual term
has a finite limit as s → 1.) So we can just forget about finitely many places we don’t like
(e.g. ramified places).

To explain why this is a good definition:

Proposition 24.11. δ({all v}) = 1.
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Proof. Frob acts as a 1× 1 matrix with a 1 inside. Recall ζK(s) =
∏
v(1− q−sv )−1 has

a simple pole at s = 1. Define f(s) by ζK(s) = 1
s−1f(s); now f has a finite nonzero limit as

s→ 1+. Take the log of 1
s−1f(s) =

∏
v(1− q−sv )−1 to get

log

(
1

s− 1

)
+O(1) =

∑
v

(q−sv +O(q−2s
v ))

=
∑
v

q−sv +O(1)

This proves the density is 1: divide the above equation by log
(

1
s−1

)
, which goes to infinity.

�

If K is a number field, there is also a natural density

δnatural(P ) = lim
X→∞

# {v ∈ P : qv ≤ X}
# {all v : qv ≤ X}

.

(fraction of primes that lie in your set). This only works well when K is a number field;
if you’re working with characteristic p, all the qv’s are powers of p, so the number jumps
whenever you hit a power of p.

If δnatural(P ) exists, so does δ(P ) and they are equal.

Let L/K be a finite Galois extension of global fields. Let G = Gal(L/K). Let v be a place
of K; it might split into several places L.

Recall: if L/K is unramified above v, then we have Frobw ∈ G for each w | v. Changing w
just conjugates Frobw by the element of the Galois group taking one w to the other. Thus
Frobv = {Frobw : w | v} is a conjugacy class in G.

How are these conjugacy classes distributed?

Theorem 24.12. Lt L, K, and G be as above. Let C be a fixed conjugacy class in G. Then

δ({unramified v : Frobv = C}) =
#C

#G
.

Definition 24.13. Let G be a finite group. f : G→ C is a class function if f is constant on
each conjugacy class C in G. Then f(C) = f(c) for any c ∈ C.

Example 24.14. If ρ : G→ GL(V ) is a finite-dimensional representation of G over C, then
its character χρ(g) = Tr ρ(g) is a class function.

Fact 24.15. {χρ : ρ is an irreducible representation of G over C} is a C-basis for the set of
class functions.
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Definition 24.16.

δ(f) := lim
s→1+

∑
v f(Frobv)q

−s
v

log 1
s−1

If f = 1C , then δ(f) = δ({v : Frobv = C}) (the sum is just counting the v’s that you care
about in the Chebotarev density theorem).

Proof of Chebotarev density theorem. We’ll prove more generally that for any
class function f ,

δ(f) =
1

#G

∑
g∈G

f(g).

It’s a generalization of the Chebotarev density theorem, but it’s actually equivalent; any such
f is a formal C-linear combination of the ones you care about. So there are two bases for the
same space: irreducible characters, and f ’s that appear in the Chebotarev density theorem;
the proof involves the first basis.

By linearity, without loss of generality f is a character χ of some irreducible ρ.

L(ρ, s) =
∏

unram. v

det(1− q−sv ρ(Frobv))
−1 · eO(1)

There’s a multiplicative error term coming from the bad (i.e. ramified) Euler factors (it
doesn’t approach 0 or ∞ as s→ 1+). Now factor the characteristic polynomial of ρ(Frob) in
terms of eigenvalues λv,i; say there are d of them (with multiplicity).

=
∏

unram. v

d∏
i=1

(1− q−sv λv,i)
−1

All the eigenvalues are roots of unity – this is because G is finite. Take the log and see what
happens when s→ 1. Use the same estimate for log(1− x)−1 as earlier.

logL(ρ, s) =
∑
v

d∑
i=1

(q−sv λv,i +O(q−2s
v )) +O(1)

If the L-function has order of vanishing m, it looks like (s− 1)m · (something bounded). Also
use the fact that the sum of the eigenvalues is the trace, and the O(q−2s

v )’s are bounded.

(ords=1 L(ρ, s)) · log(s− 1) +O(1) =
∑

χ(Frobv)q
−s
v +O(1)

Divide by − log(s− 1) and take the limit

− ords=1 L(ρ, s) = δ(χ)

On the homework you compute the order of vanishing: it’s −1 if ρ ∼= 1 and zero otherwise.
This is −(χ, 1) = − 1

#G

∑
χ(g). �

Lecture 25: May 14

“Where is the homeland of zeta values to which the true reasons of celestial phenomena of
zeta values are attributed? How can we find a galaxy train to approach it?” – Kazuya Kato
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Why study ζ-function and L-series? ζ-functions go back to Euler, but Dirichlet invented
L-series to prove the theorem on primes in arithmetic progressions.

• Equidistribution theorems
◦ Dirichlet’s theorem on primes in arithmetic progressions

◦ Chebotarev density theorem

◦ Behavior of an elliptic curve over Q mod p as p values

• Prime number theorem (number of primes up to X is asymptotically logX
X )

• Special values at integers

◦ ζ(2) = π2

6 , etc.

◦ Dirichlet analytic class number formula

◦ Birch and Swinnerton-Dyer conjecture ords=1 L(E, s) = rankE(Q)

◦ Relations with algebraic K-theory

Local ε-factors.

Theorem 25.1 (Deligne). There exists a unique function ε : {(V, ψ, dx)} → C× (where V is
a finite-dimensional representation of WK for some local field K, ψ is a nontrivial additive
character of K, and dx is a Haar measure on K) such that:

(1) (Additive) For every exact sequence 0→ V ′ → V → V ′′ → 0,

ε(V, ψ, dx) = ε(V ′, ψ, dx)ε(V ′′, ψ, dx).

This lets us define ε(V, ψ, dx) also for virtual representations V ∈ R(WK).
(2) ε(V, ψ, a dx) = adimV ε(V, ψ, dx) (where a ∈ R>0). In particular, if dimV = 0 (which

happens all the time for virtual representations), ε is independent of dx, and we may
write ε(V, ψ).

(3) (“Inductive in dimension zero”) If L ⊃ K is a finite separable extension of local fields,
and VL ∈ R(WL) is of dimension zero, then ε(IndL/KVL, ψ) = ε(VL, ψ ◦ TrL/K).

(4) (“Normalization”) If V is a 1-dimensional representation (so V corresponds to a multi-
plicative character χ of K×), then ε(V, ψ, dx) = ε(χ, ψ, dx), where the RHS is as defined
in the first half of the class.

The uniqueness is (relatively) easy: once you know how to do it for 1-dimensional characters,
and you know how to induce (albeit for 0-dimensional representations), then you can use
Brauer’s theorem to get all the rest. But existence is hard: there might be many ways to
write a representation as a combination of 1-dimensional characters.

Bonus: Hilbert’s irreducibility theorem. Reference: Serre’s Lectures on the Mordell-
Weil theorem. (This uses some algebraic geometry, which I will try to avoid.)

Theorem 25.2. Suppose f(x, y) ∈ Q(t)[x] is irreducible over the field Q(t). Then there exist
infinitely many t0 ∈ Q such that:

(1) f(x, t0) ∈ Q[x] has no zeros in Q
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(2) (Hilbert irreducibility theorem) f(x, t0) is irreducible over Q
(3) Galf(x,t0) = Galf , where Galf is the Galois group of the splitting field L of f over Q(t).

If λ is a prime in OL over Q[t], then let Fλ denote the corresponding residue field (and note
that the residue field corresponding to the prime (t− t0) is Q). Then there’s a SES

1→ Iλ → Dλ → Gal(Fλ/Q)

Galf(x,t0)

→ 1

where we note that Dλ ⊂ Galf . Also, Iλ is trivial for all but finitely many t0, so you can
view Galf(x,t0) as a subgroup of Galf .

Example 25.3. x2 − t is irreducible over Q(t). The theorem says that there are infinitely
many t0 ∈ Q such that x2 − t0 is irreducible over Q.

Lemma 25.4. Every finite extension of C((t)) is C((t1/n)) for some n ≥ 1.

Elements of C((t1/n)) are called Puiseux series.

Proof. Let L be such an extension. L/C((t)) is totally ramified: there can’t be any
nontrivial residue field because then it would be an extension of the residue field of C((t)),
namely C, which doesn’t have any extensions. It’s also totally tamely ramified: you can
only have wild ramification in characteristic p. But we have a classification for these: L =
C((t))(π1/n) for some π = tu (where u = u0 + u1t+ · · · ∈ C[[t]]× where u0 6= 0). By Hensel’s

lemma, u is an nth power in C((t))×. So 1 = C((t))(t1/n) = C((t1/n)). �

We have C(t) ⊂ C((1
t )), Laurent series expansions at ∞. Take the closure of this: C(t) ⊂

C((1
t )), where the latter is the field of Puiseux series at ∞.

Example 25.5.
√
t3 + t2 = t3/2 + 1

2 t
1/2 − 1

8 t
−1/2 + . . .

Just as Laurent series at∞ converge for some “neighborhood of∞”, you can show that each
Puiseux series at ∞ of an element of C(t) converges for real t ≥ R, for some large number R.

Proposition 25.6. Let ϕ ∈ C((1
t ))\C[t], and suppose ϕ(t) converges for t ≥ R. Let Ω =

{t ≥ R : t ∈ Z and ϕ(t) ∈ Z}. Then there exists ε > 0 such that #(Ω ∩ [1, B]) is O(B1−ε).

Example 25.7. If ϕ(t) = t1/2 + 5t−1/2 + . . . then for large t, I claim that t and t+ 1 cannot

both be in Ω: by the mean value theorem, ϕ(t+ 1)− ϕ(t) ≈ ϕ′(t) ≈ 1
2 t
−1/2 � 1. Similarly, t

and t+ c cannot both be in Ω, at least if c� const · t1/2.

The general proof is along the same lines. But this example wouldn’t work if the leading
term was t3/2. In the case, you have to take second derivatives (i.e. second differences).

To prove Proposition 25.6, we need a lemma:
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Lemma 25.8. Notation as in Proposition 25.6. Choose n ≥ 1 such that ϕ(n) = cut
−u + . . .

for some u > 0. Then there exists α > 0 such that for all t � 1, [t, t+ tα] contains at most
n elements of Ω.

(In the example, we only needed 2 elements to get the contradiction; in the general case, we
need more.)

Proof. Suppose t1, . . . , tn+1 ∈ Ω ∩ [t, t + tα] are distinct. In the mean value theorem,
you compare your function to the linear function that passes through those two points. Here,
let P (x) be the degree n polynomial such that P (ti) = ϕ(ti) for i = 1, 2, . . . , n + 1. This is
Lagrange interpolation; the formula for this is

P (x) =

n+1∑
i=1

ϕ(ti) ·
∏
j 6=i(x− tj)∏
j 6=i(ti − tj)

=: pn
xn

n!
+ · · · ∈ Q[x].

(This should make sense; the quotient term is zero at every tj except ti, and has the value 1
there thanks to the denominator.)

You prove the mean value theorem by applying Rolle’s theorem. Here, you apply it (to
P − ϕ) n times. (If you start with n + 1 zeros, you get n zeros on the derivative, etc.) So

you get τ ∈ [t, t + tα] such that P (n)(τ) = ϕ(n)(τ). I know this isn’t identically zero, so

it’s cut
−u + . . . for some nonzero cu. I know P (n)(τ) is just the coefficient pn, a rational

number with denom(pn) ≤ the lcm of the denominators in the P (x) formula, which is ≤∣∣∣∏1≤i<j≤n+1(ti − tj)
∣∣∣ ≤ tn(n+1)

2
α. Choose α such that n(n+1)

2 α < u to get a contradiction. �

Proof of Proposition 25.6. Divide by interval [1, B] into [1, Bδ] and [Bδ, B], and
subdivide the latter interval into intervals each of width Bαδ. I’ll use the trivial bound for
[1, Bδ], namely #(Ω ∩ [1, Bδ]) ≤ Bδ; for each of the little intervals use Lemma 25.8 to get
an estimate Ω∩ interval ≤ n, and there are B

Bαδ
of them. So the total is O(B1−ε) for some

ε > 0. �

Proof of Theorem 25.2(1). Let f ∈ Q(t)[x] be irreducible. Let ϕ1, . . . , ϕα be its
roots in the field of Puiseux series at∞; they are algebraic over Q(t). You can think of these
as curves in the t vs. x plane. Puiseux series, e.g. x = ϕi(t), are the curves in the plane that
asymptotically approach an x-value as t→∞. I claim that most of the time, when you plug
in t0, you don’t get rational points above it.

Claim 25.9. There are infinitely many t0 ∈ Z≥1 such that none of the ϕi(t0) are in Q.

Proof of claim. Multiply the ϕi by a nonzero polynomial in Z[t] to assume that the
ϕi are integral over Z[t]. Then ϕi(t0) is integral over Z for any t0 ∈ Z large enough, so
ϕi(t0) ∈ Q iff ϕi(t0)inZ. Proposition 25.6 says that the number of t0 ∈ [1, B] such that
ϕi(t0) ∈ Z is O(B1−ε) for each i. Sum over i: there are only d of them, and each of them is
only contributing O(B1−ε) bad values. There are plenty of t0 left over such that there are no
bad values.
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�

Proof of Theorem 25.2(2,3). It suffices to prove (3), as the Galois group acts transi-
tively on the roots. Recall L is the splitting field of f ; we have L = Q(t)(ϕ1, . . . , ϕα). Write
G := Galf ; this is a finite group. For each subgroup H � G, choose ψ generating LJ over
Q(t). Without loss of generality ϕ is integral over Z[t]. Let F (x) be its minimal polynomial
over Q(t). It is irreducible (it’s a minimal polynomial) of degree ≥ 2, because the extension
LH/Q(t) it generates is nontrivial.

For example, suppose G = Sn and H = An, and we want to know when the specialized Galois
group Galf(t0,x) is contained in An. Let ∆ = disc f . Define ψ :=

√
∆ =

∏
i<j(ϕi−ϕj). Then

F (x) = x2−∆. Then I specialize and ask whether Galf(t0,x) ⊂ An; this is true iff x2−∆(t0)
has a root in Q. The point is to relate statements about Galois groups to statements about
auxiliary polynomials.

Lemma 25.10. Excluding finitely many t0’s, if Galf(x,t0) ⊂ H, then F (x, t0) has a root in
Q.

Proof of Lemma. Recall Dλ
∼= Gal(Fλ/Q) = Galf(x,t0) because the inertia group is

(almost always) trivial. So the condition Galf(x,t0) ⊂ H means Dλ ⊂ H. If h ∈ Dλ, then

h(ϕ (mod λ)) = ϕ (mod λ) (because that’s how ϕ was chosen: hϕ = ϕ and hλ = λ since
h ∈ Dλ). So (ϕ (mod λ)) ∈ Q, and ϕ (mod λ) is a root of F (x, t0). �

F (x, t0) has a root in Q happens only for O(B1−ε) t0’s. Do this argument for every H, and
add this up; it’s still rare. �

Another Kato quote (talking about Bloch and Beilinson’s work about relations to algebraic
K-theory):

“It seems to me that the only known general method for discovering general elements is to
open our mouths and wait for such elements to fall from the sky. I don’t know how people
with small mouths can catch such elements so often.”
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