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Adèles

21 November 18 80
4



Regulator; proof of the strong approximation theorem using adèlic boxes; idèles;
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Algebraic number theory Lecture 1

Lecture 1: September 4

Office hours: Mon 3:30 - 4:30, Friday 9:30-10:30 and 3:30 - 4:30

Let K be an arbitrary degree-n extension of Q. Question: is the ring of integers OK a UFD?
No, not always. But it’s “almost” a UFD.

A number field is a finite extension of Q.

You can, analogously, look at function fields – finite extensions of C(t). These extensions K
correspond to curves over C. The ring of integers is the coordinate ring of a regular affine
curve.

You can also ask about Fq[t] ⊂ Fp(t) and finite extensions of this. This is actually closer to
the Z ⊂ Q situation.

Primes in Z correspond to monic irreducible polynomials in Fq[t] and monic irreducible poly-
nomials in C[t] – but those are just t − a. Reduction mod p in Z corresponds to the map
C[t]→ C[t]/(t− a), but that is just ∼= C via the evaluation at a map.

One way to understand polynomials is to understand them locally – understand their power
series around a point. That is often easier, and you can hope to piece together the local
information to get global information. If you complete with respect to the prime t − a, you
get the power series ring C[[t− a]]. Similarly for Z, it helps to understand things “one prime
at a time”.

We also care about analytic objects, like ζ(s) =
∑
n−s. This extends to a meromorphic

function on the entire complex plane. The BSD conjecture tells you about leading terms of
zeta functions. The analytic class number formula relates zeta functions to failure of OK to
be a UFD.

Other topics: statements of class field theory in the modern adelic form; proofs of this; Galois
cohomology; algorithmic number theory. . .

Open question: given a finite group G, can you find a finite extension of Q with G as the
Galois group?

OK, let’s start for real.

Books: Serre Local fields, . . .

1.1. Absolute values.

Definition 1.1. An absolute value on a field k is a function

| | : k → R≥0

such that for all x, y ∈ k:
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Algebraic number theory Lecture 1

• |x| = 0 ⇐⇒ x = 0

• (multiplicativity) |xy| = |x||y|
• (triangle inequality) |x+ y| ≤ |x|+ |y|.

If | | satisfies
|x+ y| ≤ max(|x|, |y|)

for all x, y, then we say that | | is nonarchimedean.

It turns out that almost all absolute values that you care about are nonarchimedean; the one
you’re used to is the weird one.

Example 1.2 (Trivial absolute value).

|x| =

{
1 if x 6= 0

0 if x = 0

This is nonarchimedean.

Absolute values give a distance function, so you can make the field into a metric space; that
is, k has a topology!

Definition 1.3. Two absolute values | | and | |′ on k are equivalent if there is some α ∈ R>0

for which |x|′ = |x|α for all x.

Example 1.4 (Absolute values on Q). Fix a prime p. Define the p-adic valuation

vp : Q× → Z where
∏

primes
q

qen 7→ ep

Also define vp(0) = +∞. Now define the p-adic absolute value

|x|p = p−vp(x)

(interpret this to mean that |0|p = 0). It is easy to check that this is an nonarchimedean
absolute value.

There is also the usual absolute value on Q, which we denote by | |∞. Infinity isn’t a prime,
but it “sort of is”. Geometrically, you have one absolute value for every point on the affine
line, including one for the “point at infinity”.

Theorem 1.5 (Ostrowski). Every nontrivial absolute value on Q is equivalent to | |p for
some prime p ≤ ∞.

Proof. Homework. �

Definition 1.6. A discrete valuation on a field K is a projective homomorphism v : K× � Z,
extended by defining v(0) = +∞, with the added condition

v(x+ y) ≥ min{v(x), v(y)}
7



Algebraic number theory Lecture 1

for all x, y. (You get this by taking the log of the nonarchimedean triangle equality.)

Then
A := {x ∈ K : v(x) ≥ 0}

is a subring. Any ring arising in this way is called a discrete valuation ring (DVR). We call
this the valuation ring of K. Inside of A is the unit group

A× = {x : v(x) = 0}.
Fix π ∈ A such that v(π) = 1; this is called a uniformizer or uniformizing parameter.

Think of K as a disjoint union of elements of the same valuation. π has valuation 1, π2 has
valuation 2, etc. Note that π is unique up to units (of A), and every element x looks like uπn

for a unique u ∈ A×, and n = v(x). This shows that this is a unique factorization domain.

Each nonzero ideal of A looks like

(πn) = {x ∈ A : v(x) ≥ n}
for some n. So you have this descending chain of ideals (π) ⊃ (π2) ⊃ . . . .

There is a unique maximal ideal

m = {x ∈ A : v(x) > 0} = (π).

It is the only prime ideal except for the zero ideal.

The residue field is k = A/m.

Example 1.7. If vp : Q→ Z∪{∞} is the p-adic valuation, then A = {as : a, s ∈ Z and p - s}.
This is just the localization Z(p). This has unique maximal ideal (p), and the residue field is
Z/p.

Example 1.8. Let k be a field, and let k((t)) be the field of Laurent series. Then we have
a valuation v : k((t))→ Z ∪ {∞} defined by

∑
n≥n0

ant
n 7→ n0 (if we’ve written the Laurent

series such that an 6= 0). Then A = k[[t]]. The residue field is k, and the map A → k is the
evaluate-at-0 map.

Example 1.9. For a connected open subset U ⊂ C, define

M (U) = {meromorphic functions on U}.
Define M , the field of germs (this has nothing to do with biology!) of meromorphic functions

M =
⋃
U30

M (U).

So this is meromorphic functions that exist on some unspecified subset of U containing zero.
This is a direct limit over the direct system of neighborhoods of 0. Because of the magic of
complex analysis, you don’t need to worry about the “f ∼ g if they are eventually equal” bit
of the direct limit – if two functions agree on a little open set, they agree everywhere they’re
defined.

(This is also the stalk of the sheaf of meromorphic functions.)
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Algebraic number theory Lecture 1

Let v be the composition M ↪→ C((z))→ Z∪{∞} where the first map takes f 7→ its Laurent
series, and the second map is the valuation we discussed previously. The effect of this is to
compute the order of vanishing of f at 0.

The ring of integers A is the ring of germs of holomorphic functions at 0. A uniformizer is z.
The residue field is C, and the map A→ k is evaluation at 0.

1.2. Properties of DVR’s. (Until further notice, all rings are commutative.)

DVRs are Noetherian: every increasing sequence of ideals eventually stabilizes. Equivalently,
every ideal is finitely generated. (This is obvious for the rings we talked about above – in
fact, every ideal was generated by a single element.)

DVRs are local: there is a unique maximal ideal.

DVRs are 1-dimensional. (Dimension of a ring: length of the longest chain of primes p0 (
p1 ( . . . ( pn.) All nonzero ideals in a DVR have the form (πn), so the only primes are 0
and (π), and the longest chain is 0 ( (π).

DVRs are PID’s so they are unique factorization domains.

DVRs are integrally closed.

Theorem 1.10. For a ring A, TFAE:

(1) A is a DVR
(2) A is a PID with exactly one nonzero prime
(3) A is a 1-dimensional Noetherian local domain and A is integrally closed.
(4) A is a 1-dimensional regular local ring.

(A Noetherian local ring is regular if the unique maximal ideal m satisfies dimk m/m
2 = dimR.

Geometrically, dimm/m2 measures the dimension of the tangent space; a singular point in a
variety has a tangent space that is “too big”.)

Nonexample 1.11. Let A = C[[x, y]]/(y2−x3). (In algebraic geometry, this is a cubic with
a node.) This is a Noetherian local ring (quotients of Noetherian rings are Noetherian), where
the unique maximal ideal is m = (x, y). But this is not principal. dimA = 1 but m/m2 is
2-dimensional (with basis x, y), so A is not a regular local ring.

Integral extensions are kind of like algebraic extensions, but for arbitrary rings.

Definition 1.12. Given rings A ⊂ B and b ∈ B, say that b is integral over A if b is the root
of a monic polynomial f(x) ∈ A[x].

B is integral over A if every b is integral over A.
9



Algebraic number theory Lecture 2

For example,
√

2 is integral over Z but 1
2 is not.

Proposition 1.13. If α and β are integral over A, then α+ β is integral over A.

I think we’re assuming A and B are domains.

Proof. Suppose α is a root of f and β is a root of g:

f(x) = xm + am−1x
m−1 + . . .

g(x) = yn + bn−1y
n−1 + . . .

It suffices to do the “generic case” for each n,m: the coefficients of the polynomials are in-
determinants. That is, we are working over the polynomial ring A′ = Z[a0, a1, . . . , b0, b1, . . . ].
To get the result for A′ and B′, just apply the homomorphism

B
x 7→α,y 7→β

// B′

A
?�

OO

// A′

OO

We’re trying to show that x+ y ∈ B is integral over A. Let K = FracB (algebraic closure).
Let α1, . . . , αm be the roots of f in K, and β1, . . . , βn be the roots of g in K. Then∏

i,j

(x− (αi + βj))

has coefficients expressible as polynomials in the elementary symmetric functions of the αi
(these are just the coefficients of f , because you can write that as a product of its roots), and
same for the βj (ditto, coefficients of g). It has x + y as a root, because one of the α’s is x,
and one of the β’s is y. �

Definition 1.14. A is integrally closed if everything that is integral in the fraction field is
already in A. (Alternatively, if A = integral closure.)

Lecture 2: September 9

Office hours on Monday, September 15 adjusted to be 9:30 - 10:30 (not 3:30 - 4:30).

2.1. More about integrality. Last time, we said that b is integral over A iff there is
a monic polynomial f ∈ A[x] such that f(b) = 0.

Proposition 2.1. If α and β are integral over A, then α+ β is integral over A.

Proof con’t. Remember from last time we’d reduced to the generic case where A =
Z[a0, . . . , b0, . . . ] where α satisfies f(x) = xm + am−1x

m−1 + · · · + a0 and β satisfies g(x) =
xn + · · · + b0. Then we can replace B with A[x, y]/(f(x), g(y)). We need x + y ∈ B to be
integral over A. We gave a proof last time using elementary symmetric functions.
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Algebraic number theory Lecture 2

Alternative proof: B is free as an A-module with basis {xiyj : 0 ≤ i < m, 0 ≤ j < n}.
Look at the multiplication map B

x+y→ B; this is an A-linear transformation, and you can
take its characteristic polynomial h(T ), which has coefficients in A. It is monic, because all
characteristic polynomials are. The Cayley-Hamilton theorem says that h(x+ y) = 0, in the
sense that it acts as the zero map on B. But this shows that h(x+y) is actually zero, because
it acts as zero on 1. �

You can do something similar for αβ.

Proposition 2.2. Suppose A ⊂ B. Then b is integral over A iff A[b] is a finitely generated
A-module.

(See Atiyah-Macdonald.)

Corollary 2.3. Suppose A ⊂ B. Then Ã = {b : b is integral over A} is a subring of B,
called the integral closure of A in B.

Definition 2.4. Say that A is integrally closed if A is integrally closed in its fraction field.

Proposition 2.5. Z is integrally closed [i.e., in Q].

So if a
b satisfies a monic polynomial in Q then it was an integer to begin with.

Proof. Basically, rational root test.

Suppose r
s ∈ Q is expressed in lowest terms, and is integral over Z; that is, it satisfies(r

s

)n
+ an−1

(r
s

)n−1
+ · · ·+ a0 = 0.

Multiply out by sn, to get rn = sx for some x ∈ Z. We assumed gcd(r, s) = 1, so s is just a
unit. So r

s was actually an integer. �

The same proof shows that any UFD is integrally closed (you need it to be a UFD in order
to talk about gcd’s).

This is also a nice way to prove that something is not a UFD.

Example 2.6. Z[
√

5] is not a UFD, because ϕ = 1+
√

5
2 ∈ FracZ[

√
5] satisfies ϕ2−ϕ− 1 = 0

but ϕ /∈ Z[
√

5].

This is why we will start taking integral closures of things: “if you want it to have a chance
at being a UFD, you need it to be integrally closed”.

Definition 2.7. A number field k is a finite extension of Q.
11



Algebraic number theory Lecture 2

The ring of integers Ok of a number field k is the integral closure of Z in k.

Proposition 2.8. Let L/K be an extension of fields, and assume A ⊂ K is integrally closed
and FracA = K. Let α ∈ L and let f ∈ K[x] be the minimal polynomial of α over K.
(Remember minimal polynomials are monic by definition.)

α is integral over K ⇐⇒ f(x) ∈ A[x].

Proof. (⇐= ) Obvious.

( =⇒ ) Factor f =
∏n
i=1(x− αi) over the algebraic closure K. There are K-homomorphisms

L → K sending α 7→ αi. By assumption, α is integral over A, and so αi is integral over A
(it satisfies the same minimal polynomial). So each coefficient of f(x) is a sum of products
of the αi, hence integral over A.

A is integrally closed, so each coefficient is in A. �

2.2. Localization. Localization is like a partial fraction field: you invert some elements
and not others.

Definition 2.9. Let S ⊂ A be closed under finite products (including the empty product,

a.k.a. 1). Also assume for simplicity that S contains no zerodivisors of A (i.e. A
s→ A is

injective for all s ∈ S).

Then S−1 = A[S−1] := {as : a ∈ A, s ∈ S}
/
∼ where we say a

s ∼
a′

s′ if s′a = sa′ in A. This
forms a ring.

There is a map

{primes of S−1A} −→ {primes of A that do not meet S}
sending q 7→ q ∩A. This map is a bijection; the backwards map sends p 7→ p · S−1A.

Important special case 2.10. Let A be a domain and fix a prime ideal p ⊂ A. Let
S = A− p; the fact that p is prime guarantees that S is multiplicative.

Localizing at S has another name: Ap := S−1A. By the bijection above, primes of Ap

correspond to primes contained in p. So Ap has a unique maximal ideal p ·Ap.

Even more special case: if p = (0) then you get the fraction field.

But in general, you can say that A ⊂ Ap ⊂ FracA, and FracAp = FracA.

Example 2.11. Let A = k[x] and let p = (x− 2) (this is the maximal ideal of polynomials
that vanish at 2). Then Ap = {f ∈ k(p) : f(2) is defined.} The maximal ideal consists of
the rational functions such that f(2) = 0.

12



Algebraic number theory Lecture 2

Ap is a PID (because k[x] is a PID). Prime ideals of k[x] are (0), and (f) for monic irreducible
polynomials f . (0) is contained in all of them, and there is no more containment.

The primes of Ap are just (0) ⊂ (x− 2). Ap is a PID with one nonzero prime, hence a DVR.

Example 2.12. Z(p) = {ab : p - b}

Then Z(p) is also a DVR with unique nonzero prime (p).

Generalization 2.13. Suppose A,S, and p are as before. Let M be an A-module. Assume

that no element of S acts as zero on M (i.e. M
s→M is injective for all s ∈ S).

Then S−1M = {ms : m ∈ M, s ∈ S}
/
∼ where ∼ is analogous to before. This is an

S−1A-module.

If S = A− p, then you can define Mp.

Localization is “focusing on one prime at a time”; but there are a lot of theorems that relate
information about all localizations to information about the whole ring.

Proposition 2.14. Suppose A is a subring of a field K, and M is an A-module contained
in a K-vector space V (this says that M →M ⊗AK is injective, or alternatively: if am = 0
then a = 0 or m = 0).

Then
M =

⋂
m⊂A

Mm.

Proof. It is clear that M ⊂
⋂

m⊂AMm, where you identify x ∈M with x
1 ∈Mm.

Suppose x ∈
⋂

m⊂AMm. Look at I = {a ∈ A : ax ∈ M} (this is the set of all possible
denominators for x). This is an ideal of A that is not contained in any m (for every m, there’s
always a denominator not in m). So I = (1), and in particular, x

1 ∈ A. �

Example 2.15. Take A = Z and M = Z. The maximal ideals of A are just (p). Then⋂
p Z(p) is the set of fractions {ab} where b is contained in no (p). This is just Z, as the

proposition says.

2.3. Dedekind domains.

Proposition 2.16. Suppose A is a Noetherian domain. TFAE:

(1) For every nonzero prime p of A, Ap is a DVR.
(2) dimA ≤ 1 and A is integrally closed [in its fraction field].

13
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Such an A is called a Dedekind domain. Note that fields satisfy these conditions.

Proof. If A is a field, (1) and (2) hold.

Now assume A is not a field. Let K = FracA.

(1) =⇒ (2) dimA = sup{dimAp} (the longest chain ends in some p, and the length of
this chain = dimAp). In a DVR, dimAp = 1 for all p, so dimA = 1. Now check that A is
integrally closed. Suppose that a ∈ K is integral over A; I need to prove that a ∈ A.

Given p 6= (0), a is integral over Ap, which is a DVR, and DVR’s are integrally closed (this
was on the homework). So a ∈ Ap for every p. Recall that all maximal chains of primes have
length 1, so all nonzero primes are maximal. Then by Proposition 2.14, A =

⋂
Ap. So a ∈ A.

(2) =⇒ (1) The properties {Noetherian, domain, dimension 1, integrally closed} are inher-
ited by any localization, and in particular by Ap. For p 6= (0), dimAp ≥ 1 so dimAp = 1.

One of the equivalent formulations of the definition of a DVR is a 1-dimension Noetherian
local domain that is integrally closed. �

Corollary 2.17. Every PID is a Dedekind domain.

Proof. Check (1) above. �

Corollary 2.18. Z is a Dedekind domain.

It is not true that every UFD is a Dedekind domain. For example, k[x, y] is a UFD, but
dim k[x, y] = 2, so it is not a Dedekind domain.

It turns out that Z[
√
−5] is a Dedekind domain but not a UFD.

Later, we will show that every ring of integers in a number field is a Dedekind domain. (This
is why they’re important.)

Lecture 3: September 11

Important example: the coordinate ring of a smooth affine curve is a Dedekind domain.

Let A be a Noetherian domain, and let K = FracA.

Definition 3.1. A fractional ideal in A is a finitely generated A-submodule of K (f.g. as a
module, not as an algebra).

Example 3.2. 1
6Z is a fractional ideal of Z.

14
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Example 3.3. If x ∈ K then (x) = x · A is a fractional ideal. This is called a principal
fractional ideal.

If I and J are fractional ideals, then I +J and IJ are fractional ideals. Also define the colon
ideal

(I : J) := {x ∈ K : xJ ⊂ I}.
Why is this finitely generated? If you just impose the condition for one j ∈ J then you get
j−1I ⊃ (I : J) and that is finitely generated (isomorphic to I as a module). Because the ring
is Noetherian, submodules of finitely generated modules are finitely generated.

You should think of this as division.

Example 3.4. If A = Z, then ((12) : (3)) = (4).

Definition 3.5. A fractional ideal I is invertible if there exists a fractional ideal J such that
IJ = (1) = A.

If J exists, then it is unique (this is the same proof as showing in group theory that inverses
are unique). More precisely, J ⊂ (A : I), so the biggest that J could be is (A : I). If there
is an inverse, then (A : I) works – anything that’s bigger than the biggest thing that works
and still maps I into A will also work.

Definition 3.6. The ideal group of A is the set of all invertible fractional ideals.

This is an abelian group under multiplication.

Note that nonzero principal fractional ideals are all invertible (and you can guess what the
inverse is. . . ). These form a subgroup of the ideal group.

Example 3.7. Suppose A is a DVR with uniformizer π. Then every nonzero fractional ideal
has the form (πn) for n ∈ Z. (If you have a collection of generators, take the generator with
the smallest valuation n, and that generates the rest of them. Generators of given valuation
are unique up to unit, so this is (πn).)

So the ideal group ∼= Z and every nonzero fractional ideal is invertible.

(πn)(πm) = (πn+m) (πm) + (πn) = (πmin{m,n}) ((πm) : (πn)) = (πm−n)

The point is that “DVR’s are easy”.

The operations I + J , IJ , and (I : J) respect localization. For example, (I : J)m = (Im : Jm)

Proposition 3.8. “Invertibility can be checked locally”, i.e. in the context of a Noetherian
domain A and a fractional ideal I, then

I is invertible ⇐⇒ Im is invertible ∀m.
(You’re checking that Im is invertible as an ideal of Am.)

15
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Proof. I is invertible ⇐⇒ I · (A : I) = A. Recall that if you have a module ⊂ a vector
space, it is the intersection of its localizations at maximal ideals. So it is determined by its
localizations; i.e. if you have an equality to check, it suffices to do so at every localization.

I · (A : I) = A ⇐⇒ (I ·A : I)m = Am

⇐⇒ Im · (Am : Im) = Am

⇐⇒ Im is invertible.

�

From now on let A be a Dedekind domain.

Corollary 3.9. Every nonzero fractional ideal in a Dedekind domain is invertible.

Proof. By the previous proposition, it suffices to check locally. But we already know
that, over a DVR, every fractional ideal is invertible. �

This means you can make sense of things like p−5.

Proposition 3.10. Each nonzero x ∈ A (in a Dedekind domain) belongs to only finitely
many prime ideals.

(This is also true without the word “prime”, but this proof doesn’t prove it.)

Proof. There are order-reversing bijections

{ideals between (x) and A} ←→
{

fractional ideals between (x−1) and A
}

←→ {ideals between A and (x)}

where the first map sends I 7→ I−1 and the second sends J 7→ xJ . An ascending chain of
ideals between (x) and A gives rise to a descending chain of ideals between (x) and A. The
Noetherian condition says that ascending chains stabilize; thus descending chains between
(x) and A stabilize. (We have not actually proved that A is Artinian.)

Suppose x ∈ p1, p2, . . . . Then p1 ⊃ p1 ∩ p2 ⊃ · · · 3 x. By what we said above, this has to
stabilize. So there exists k such that for all i ≥ k, pi ⊃ p1 ∩ . . . ∩ pk; but the latter contains
the product p1p2 . . . pk. Since pi is prime, it contains one of the p1, . . . , pk.

Since A is a Dedekind domain, every localization has dimension ≤ 1, hence dimA ≤ 1 there
are no nontrivial inclusion relations. So pi = every pk for k ≥ i. �

But it is possible to have uncountably many primes in a Dedekind domain: look at all the
ideals (t− a) in C[t]. The point is that any particular element, say t2 − 4, is only contained
in finitely many primes (in this case t− 2 and t+ 2).

Corollary 3.11. Let vp be the valuation associated to Ap ⊂ K.
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If x ∈ K, then vp(x) = 0 for all but finitely many p.

Proof. This is true if x ∈ A\{0}. The valuation is already ≥ 0, and it’s > 0 iff x ∈ p.
If this property is true for x and y, then it is also true for x

y (finitely many that are bad for

x, and finitely many that are bad for y). �

If I is a nonzero fractional ideal of A, then Ip is a nonzero fractional ideal of Ap. This is good
because we already know what the fractional ideals of a DVR are: Ip = (pAp)

n (this is just
another way of writing the ideal (πn)). This number n is uniquely determined by Ip, which
is determined by I. Call this the valuation of I.

I is a finitely generated A-module I = (x1, . . . , xn) where xi are nonzero elements of K. Then
vp(I) = mini{vp(xi)}.

Corollary 3.12. Given I, vp(I) = 0 for all but finitely many p.

Lemma 3.13. If p, q are distinct nonzero primes in a Dedekind domain, p ·Aq = Aq.

Proof. It suffices to say that there exists some s ∈ p\q. This is the same old fact that
there are no nontrivial inclusions of primes. �

Theorem 3.14. Let A be a Dedekind domain. There is an isomorphism of groups⊕
nonzero
primes p

Z −→ {nonzero fractional ideals of A} .

In particular: a tuple (ep) gets sent to
∏

pep (this is a finite product where you ignore the
terms with ep = 0). In the other direction, send I to the tuple (vp(I)). We already proved
that this makes sense as an element of

⊕
p Z.

Remember that elements of
⊕

are tuples with finitely many elements nonzero.

Proof. We show that → is injective. I is determined by its localizations (. . . , Ip, . . . )
(it’s the intersection of these). But these are fractional ideals in a DVR, so knowing Ip ⊂ Ap

is the same as knowing vp(I).

Now show that → is surjective: given (. . . , ep, . . . ), there is an obvious ideal that might give
rise to this, namely I =

∏
pep . Then Iq =

∏
p(pAq)

ep . But by Lemma 3.13, none of these

terms matter except for (qAq)
eq . So localizing I at q picks out the part of the factorization

at q. So vq(I) = eq. �

So every ideal of a Dedekind domain has unique factorization.
17
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If I =
∏

pep and J =
∏

pfp then I + J =
∏

pmin{ep,fp}, and the other operations (I : J) and
IJ are similarly easy to write. Also J ⊂ I ⇐⇒ fp ≥ ep for all p.

Special case: for x ∈ K×, (x) ⊂ I ⇐⇒ vp(x) ≥ ep for all p. Of course, (x) ⊂ I ⇐⇒ x ∈ I.
Thus

I = {x ∈ K : vp(x) ≥ ep}.
So if all the ep were zero, then you get all of A. (Alternatively, notice that A =

⋂
Ap.)

Special case: If J ⊂ A then say that J is an integral ideal (this means it is just an ideal of
A). This is the same as saying that all the fp are ≥ 0.

If A is the coordinate ring of a regular affine curve X over a field, then A is a Dedekind
domain. Let K = FracA; this is called the function field of the curve – ratios of polynomials
on X. Maximal prime ideals arise as functions that vanish at a particular point (maximal
ideals are kernels of surjective homomorphisms to a field, e.g. “evaluate at a”, and the Hilbert
Nullstellensatz says that this describes everything). Prime ideals of A correspond to closed
points p on X (i.e. in the topology of a scheme), and these correspond to irreducible closed
subschemes of codimension 1, i.e. prime divisors on X.

Fractional ideals are just finite products of these. You can define a divisor to be a formal
sum D =

∑
closed

points P∈X
ePP . Fractional ideals

∏
pep correspond to divisors where ep = 0 for

all but finitely many p.

Integral ideals correspond, by definition, to effective divisors. (Nonzero) principal fractional
ideals correspond to principal divisors (f), i.e. a divisor that measures the order of vanishing
of the rational function f at every point.

Example 3.15. If X = A1
C then the coordinate ring is C[t]. If f = t2−4

(t+3)7 then (f) =

1 · [2] + 1 · [−2]− 7 · [−3] where [2] is the point 2 on the affine line.

Helpful for the homework:

Theorem 3.16 (“Pretty strong approximation theorem”). Let A be a Dedekind domain,
K = FracA, and p1, . . . , pn distinct nonzero primes. Let a1, . . . , an ∈ K and e1, . . . , en ∈ Z.

Then there exists x ∈ K such that vpi(x − ai) ≥ ei (“x is close to ai”) and at all other
(nonzero) primes q, we have vq(x) ≥ 0.

Lecture 4: September 16

Definition 4.1. A number field is a finite extension of Q.

A global function field is a finite extension of Fq(t) (the function field of a curve over Fq).

These are both global fields.

18
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Theorem 4.2 (Weak approximation theorem). Let K be a field, let | |1, . . . , | |n be pairwise
inequivalent (equivalent would mean | |i = | |αj ), let a1, . . . , an ∈ K and ε1, . . . , εn ∈ R>0.

Then there exists x ∈ K such that |x− ai|i < εi.

Proof. Homework. �

Theorem 4.3 (Strong approximation theorem). Let K be a global field. Let | |0, . . . , | |n be
pairwise inequivalent nontrivial absolute values on K. Let a1, . . . , an ∈ K and ε1, . . . , εn ∈
R>0.

Then there exists x ∈ K such that |x− ai|i < εi for i ≥ 1, and |x| ≤ 1 for all absolute values
not equivalent to one of | |0, . . . , | |n.

I claim that this is really just fancy Chinese Remainder theorem, but requires more advanced
techniques to prove.

Example 4.4. Let K = Q and let | |0 be the usual absolute value. There exists x ∈ Q such
that |x− 5|2 ≤ 1

8 , |x− 7|3 ≤ 1
9 , and |x|p ≤ 1 for all (non-infinite) primes. The last condition

shows that x ∈
⋂
p Z(p) = Z. But the first conditions say that x ≡ 5 (mod 8) and x ≡ 7

(mod 9).

This is why I said this is just the Chinese Remainder Theorem.

Note: if we also required |x|0 < 1
2 then we’d be in trouble.

The theorem last time we called the “pretty strong approximation theorem” is a special case
of this for nonarchimedean absolute values only (so | |0 in the strong approximation theorem
corresponds to some archimedean absolute value in the theorem below).

Theorem 4.5 (Pretty strong approximation theorem). Let A be a Dedekind domain, let
K = FracA, let p1, . . . , pn be nonzero primes of A, a1, ., an ∈ K, and e1, . . . , en ∈ Z.

Then there is some x ∈ K such that vpi(x − ai) ≥ ei and vq(x) ≥ 0 for every other nonzero
prime.

Proof. I can assume that n ≥ 2.

Case 1: a1 ∈ A and all other ai = 0. Increase the ei to assume ei > 0 for all i. Consider
pe11 +pe22 . . . penn ; I claim this is A (these ideals are relatively prime). So I can write a1 = y+x
where y ∈ pe11 and x ∈ pe22 . . . penn . Then x ≡ a1 (mod pe11 ) and x ∈ peii for all other i (since
x ∈ peii ). Also, x ∈ A so vq(x) ≥ 0 for all other q.

Case 2: a1, a2, . . . , an ∈ A. Approximate (a1, 0, . . . , 0) by x1, approximate (0, a2, 0, . . . ) by
x2, etc. Let x = x1 + · · ·+ xn and use the previous case.
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Case 3: a1, . . . , an ∈ K (general case). Write ai = bi
s with bi ∈ and s ∈ A (this is the

common denominator). Take x = y
s ; we need vpi(x − ai) ≥ ei and vq(x) ≥ 0. This is

vpi

(
y−bi
s

)
= vpi(y − bi)− vpi(s). Use Case 2 to find y such that vpi(y − bi) ≥ ei + vpi(s) for

i = 1, . . . , n, and vq(y) ≥ vq(s) for all other q.

(Issue: Case 2 only allowed you to say that vq(y) ≥ 0 for all other q. But y has nonzero
valuation at finitely many q, so just move those to the set of pi’s where you can specify
valuation more precisely.) �

A common use of this is to find elements x where v(x) = 3. Suppose you already have an
element a of valuation 3. If you know v(x− a) ≥ 4, then “x is closer to a than a is to zero”
so then v(x) = 3.

Corollary 4.6. Given nonzero primes p1, . . . , pn and e1, . . . , en ∈ Z, there exists x ∈ K such
that vpi(x) = ei and vq(x) ≥ 0 for all other q.

Definition 4.7. If A has only finitely many maximal ideals, then it is called semilocal.

Example: Z(3) ∩ Z(5).

Corollary 4.8. A semilocal Dedekind domain is a PID.

Proof. Let p1, . . . , pn be the nonzero primes. Any nonzero ideal of A is pe11 . . . penn for
some e1, . . . , en ∈ Z≥0. Then you can find some x such that vpi(x) = ei for all i. Then
(x) = pei1 . . . p

en
n . �

4.1. Review of separable field extensions. Let L/K be an algebraic extension of
fields.

Definition 4.9. f ∈ k[x] is separable if gcd(f, f ′) = 1. Equivalently, f has distinct zeros in
any field extension.

α ∈ L is separable over k if there is a separable polynomial f ∈ k[x] such that f(α) = 0.
Equivalently (this is a theorem), the minimal polynomial of α is separable.

L is separable over k if every α ∈ L is separable over k. Otherwise, it is inseparable.

If char k = 0, then it is automatic that the minimal polynomial of α is separable. So every
field extension of a characteristic zero field is separable.

Proposition 4.10. If F1, F2 ⊂ L are separable over K, then F1F2 is separable over K.
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Corollary 4.11. If [L : k] < ∞ then let F be the compositum of all separable extensions of
K in L. (This is separable, so it is the maximal separable extension of K in L. Equivalently,
F = {α ∈ L : α is separable/k}.)

Then F is separable/k.

Note that you get a tower of fields L/F/k.

Definition 4.12. The separable degree [L : k]s is defined to be [F : k].

The inseparable degree [L : k]i is defined to be [L : F ].

These are multiplicative in towers.

Definition 4.13. L/k is purely inseparable if [L : k]s = 1 (“there is no separable part”).

A tower of separable extensions is separable. So if F is the maximal separable extension of
k as above, then L/F is purely inseparable. This still works for infinite algebraic extensions.

Warning 4.14. L/k can’t be both separable and inseparable (inseparable means “not sep-
arable”). But k/k is both separable and purely inseparable.

Theorem 4.15 (Primitive Element Theorem). If L/K is a finite separable extension, then
L = k(α) for some α ∈ L. (Equivalently, L ∼= k[x]/(f(x)) where f is an irreducible polyno-
mial.)

Theorem 4.16. Let k have characteristic p 6= 0. If L/k is purely inseparable of degree p,

then L = k(a1/p) for some a ∈ k\kp. Equivalently, L ∼= k[x]/(xp − a).

Every purely inseparable finite extension is a tower of such degree p extensions.

That is, you can get from F to L by repeatedly adjoining pth roots of elements. A common
proof strategy is to prove something for separable extensions, and for degree p extensions.

Corollary 4.17. The inseparable degree is always a power of p as long as it’s finite?.

Example 4.18. If k = Fp(t) and L = Fp(t1/p) then L/k is a degree p purely inseparable
extension.

Definition 4.19. k is separably closed if k has no finite separable extensions (except for
k/k).

Definition 4.20. L is a separable algebra (or finite étale algebra) over k if L is a finite
product of finite separable extensions of k.
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Example 4.21. If k is already a separably closed field, then the separable algebras are
k × . . .× k.

Why do we care about separable algebras as opposed to just separable fields?

Proposition 4.22. Suppose L/k is a separable algebra, and K ′/k is any field extension, then
L⊗k K ′ is a separable algebra over K ′.

(This is similar to changing a real vector space V into a complex vector space V ⊗R C.)

Even if L is a field, the base change L⊗k K ′ might not be a field.

Proof. Without loss of generality assume that L is a finite separable field extension
of k (if not, just do this argument to each factor). By the Primitive Element Theorem,
L ∼= k[x]/(f(x)) for some irreducible separable polynomial f . (It is irreducible because L is a
field.) Suppose f factors as f1(x) . . . fm(x) in K ′. These are separable (no repeated roots in f ,
so these are distinct factors that also have no repeated roots). Then L⊗kK ′ ∼= K ′[x]/(f(x));
use the Chinese Remainder Theorem to show this is ∼=

∏
iK
′[x]/(fi(x)). Each of these factors

is a finite separable extension of K ′. �

Proposition 4.23. Suppose L/k is a separable algebra, and Ω is a separably closed field
extension of k. Then

L⊗k Ω ∼=
∏
σ∈Σ

Ω

where the indexing set Σ is Homk(L,Ω) (ring homomorphisms that act as the identity on k).

In particular, the map L⊗k Ω→
∏

Σ Ω sends `⊗ 1 7→ (σ(`))σ.

All of the pieces K ′[x]/(fi(x)) are finite separable extensions, so they must be Ω.

Proof. Without loss of generality reduce to the case where L = k[x]/(f(x)) is a field
generated by one element. Then f factors as (x− α1) . . . (x− αn) over the separably closed
field, and these are distinct because we’re talking about a separable extension. Each σ : L ∼=
k[x]/(f(x)) → Ω is specified by sending x to a possible root αi; conversely, each choice of
root corresponds to a homomorphism.

I just need to show that

L⊗k Ω
x⊗1 7→(αi)

//

(σi) ##

∏
Ω[x]/(x− αi)

ww∏
Ω
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commutes. Since x⊗ 1 generates L⊗k Ω over Ω, it suffices to check commutativity for x⊗ 1,
and this is

x⊗ 1 //

$$

(αi)i

zz

(σi(x))i

which commutes by definition of σi. �

Lecture 5: September 18

Maybe you think of number fields as subfields of C. But that requires choosing an embedding:
there are two ways of embedding Q[z]/(x2 − 2) in C – one sending x 7→

√
2 and one sending

x 7→ −
√

2. Is one better than the other? Just think of this as an abstract extension.

5.1. Norm and trace.

Definition 5.1. Let A ⊂ B be rings such that B is free of rank n as an A-module. Let b ∈ B
and consider the multiplication-by-b map B → B as an A-linear map. This is a matrix, and

the norm NB/A(b) is defined to be its determinant. The trace TrB/A(b) is the trace of B
b→ B.

Example 5.2. LetA ⊂ B be R ⊂ C and choose the element b = 2+3i. Then (2+3i)·1 = 2+3i

and (2+3)·i = −3+2i. The matrix is

(
2 −3
3 2

)
. So NC/R(2+3i) = 13 and TrC/R(2+3i) = 4.

Proposition 5.3. “N and Tr respect base change.” That is, let A ⊂ B where B is free of
rank n over A, and let ϕ : A → A′ be any ring homomorphism. Then B′ = B ⊗A A′ is free
of rank n over A (with essentially the same basis). Then

ϕ
(
NB/A(b)

)
= NB′/A′(b⊗ 1) and ϕ

(
TrB/A b

)
= TrB′/A′(b⊗ 1).

The idea is that it’s essentially the same matrix (you just apply ϕ to everything).

Theorem 5.4. In the setup of Proposition 4.23, we have:

NL/K(b) =
∏
σ∈Σ

σb

TrL/K(b) =
∑
σ∈Σ

σb
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Proof. By Proposition 5.3, NL/K(b) = NL⊗kΩ/Ω(b ⊗ 1) and that is NΩ×...×Ω/Ω((σb)σ).

There is an obvious basis for
∏
σ Ω, and the matrix is just the diagonal matrix


. . .

σb
. . .

.

�

Useful trick: if you want to prove something over a field that isn’t algebraically closed, base
change to an algebraically closed field; fields might turn into algebras.

Theorem 5.5. Let C be free of rank m over B, and B be free of rank n over A. Then
NC/A(c) = NB/A(NC/B(c)) and TrC/A(c) = TrB/A(TrC/B(c)).

Proofs of this are unpleasant. But it has to do with the following fact: if you have matrices

A,B,C,D ∈Mn that commute pairwise, then det2n

(
A B
C D

)
= detn(AD −BC).

5.2. Bilinear pairings. Let K be a field, and let V be a finite-dimensional vector space.
Let 〈−,−〉 : V × V → K be a symmetric bilinear pairing.

Definition 5.6. The discriminant of 〈−,−〉 with respect to a basis e1, . . . , en of V is det (〈ei, ej〉)1≤i,j≤n ∈
K. (I mean the determinant of the n× n matrix where the ij-entry is 〈ei, ej〉.) Write this as
disc(〈−,−〉 ; e1, . . . , en).

Applying a change-of-basis matrix A to (ei) gives a new basis, and the discriminant gets
multiplied by (detA)2.

〈−,−〉 induces a map V → V ∗ = HomK-linear(V,K) sending v0 7→ (w 7→ 〈v0, w〉).

Definition 5.7. The left kernel is the set {v0 ∈ V : 〈v0, w〉 = 0 ∀w}. The right kernel is
analogous. If the pairing is symmetric, then these are the same thing.

Proposition 5.8. TFAE:

(1) V → V ∗ is an isomorphism
(2) the left kernel is 0
(3) disc(〈−,−〉 ; any basis) 6= 0

If any of these happen, say the pairing is nondegenerate.

Proof. Elementary linear algebra. �

Given a basis (ei) of V , you get a dual basis (fi) of V ∗, characterized by the fact that
fj(ei) = δij .
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If 〈−,−〉 is nondegenerate, you get a dual basis (e′i) of (fi), characterized by the property
that 〈

e′i, ej
〉

= δij .

5.3. Extensions of Dedekind domains. Consider the finite separable extension Q(i)/Q.
It turns out that the ring of integers Z[i] is a Dedekind domain. This is true in more generality.

Let A be a Dedekind domain, let K = FracA, let L be a finite separable extension (still a
field), and let B be the integral closure of A in L.

Proposition 5.9. B ∩K = A.

Proof. A is integrally closed. �

Proposition 5.10. K ·B = L (K ·B is the K-vector space spanned by B).

Idea: elements of L can be scaled to be in B.

Proof. Use the fact that integral closure commutes with localization (this was on the
HW). Let S = A\{0}. Then S−1(integral closure of A in L) = integral closure of S−1A in L.
This is just K · B = integral closure of K in L, which is just L (every element of L satisfies
a monic polynomial over K). �

Proposition 5.11. If x ∈ B then TrL/K(x) ∈ A.

Proof. Fix a separably closed Ω ⊃ K. Then TrL/K(x) =
∑
σsx. If you apply a

homomorphism to something integral, it stays integral, because you can just apply the ho-
momorphism to the entire monic polynomial. So σx is integral over A, and so is

∑
σ σx. But

we already know that the trace is in K. Since A is integrally closed, anything that is in K
and integral over A, is also A. �

Since L/K is separable, Tr : L → K is not identically zero (this is on the HW – hint: base-
change to an algebraic closure). Take the trace pairing L×L→ K given by (x, y) 7→ Tr(xy).
This is nondegenerate: if Tr(a) 6= 0, then given nonzero x, its pairing with a

x is nondegenerate.

(Note: it’s possible that Tr(1) = 0, if you’re in characteristic p and there are p things on the
diagonal.)

Given an A-submodule M in L (this is analogous to a Z-lattice), define the dual module

M∗ := {x ∈ L : Tr(xm) ∈ A ∀m ∈M}.

Example 5.12. If M is free of rank n with basis e1, . . . , en then M∗ is free of rank n with
basis e′1, . . . , e

′
n (the dual basis we defined earlier using the pairing).
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Proposition 5.13. B is a finitely generated A-module.

Proof. By Proposition 5.10, we know that B spans L as a K-vector space. So we can
find a K-basis e1, . . . , en ∈ B of L. (Or, if they weren’t in B to begin with, scale them by
K to assume they are in B.) Let M = the A-span of e1, . . . , en; this is contained in B.
Then B ⊂ B∗ (this is by Proposition 5.11). But it’s harder to be in B∗ than M∗, so we get
inclusions M ⊂ B ⊂ B∗ ⊂M∗. M and M∗ are finitely generated free A-modules. Since A is
Noetherian (it’s a Dedekind domain), any submodule of M∗ is also finitely generated.

(Bonus: B∗ is finitely generated.) �

Lemma 5.14. Suppose B is integral over A (these are just rings; we’re forgetting the previous
setup for now). Let q0 ( q1 be primes of B. Then q0 ∩A ( q1 ∩A.

Proof. Map everything into B/q0 to reduce to the case where q0 = 0 and B is a domain.
The assumption on q1 is now just that it is not the zero ideal. Choose nonzero x ∈ q1. We
proved that the minimal polynomial xn + an−1x

n−1 + · · ·+ a0 = 0 for x has coefficients in A.
We have a0 6= 0, because otherwise you could divide by x and get a lower-degree polynomial.
Write a0 = −xn − · · · = x(element of B). Since x ∈ q1, this shows a0 ∈ q1. Also a0 ∈ A,
Therefore q1 ∩A is not the zero ideal (i.e. not q0 ∩A), because it contains a0. �

Corollary 5.15. Under the hypotheses of Lemma 5.14, dimB ≤ dimA.

Proof. If B has an n-step chain of distinct primes, then intersect this with A to get a
chain of distinct primes in A. �

Theorem 5.16. Back to the setting at the beginning of this subsection. B is a Dedekind
domain.

Proof. B is Noetherian: B is finitely generated over A.

B is integrally closed: any x that is integral over B is integral over A, and A is integrally
closed.

dimB ≤ 1: By Corollary 5.15, dimB ≤ dimA, and that’s ≤ 1 by assumption. �

It turns out that if L/K is not separable, this is still true, but it’s harder, because B is not
finitely generated as an A-module.

Corollary 5.17. The ring of integers of any number field is a Dedekind domain.

If you have some prime p ⊂ A, then pB is an ideal, but not necessarily a prime. But it is
a fractional ideal in a Dedekind domain, so it factors as pB =

∏
q q

eq (product over nonzero
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prime ideals of B). The q’s that appear are the ones that, if you intersect them with A, you
get p.

Definition 5.18. eq is called the ramification index of q over p.

A/p is a field, because nonzero primes in a Dedekind domain are maximal; similarly, B/q is
a field. The inclusion A/p ⊂ B/q has finite degree: B is a finite A-module, so generators of
B over A also become generators of B/q over A/p.

Definition 5.19. The residue field degree fq of q over p is defined to be [B/q : A/p].

Note: e and f are standard notation.

Example 5.20. Let p = (5) ⊂ Z; this splits into (2 + i)(2− i) in Z[i]. Let q = (2 + i). Then
eq = 1 (there’s no exponent in this product expansion). Now look at Z/5Z ⊂ Z[i]/(2 + i) and
count the elements in Z[i]/(2 + i); there are 5 elements, so fq = 1.

(One way to see this: it is clear that Z[i]/(5) contains 25 elements, and Z[i]/(2 + i) has fewer
elements, and still contains Z/5Z, and is still a field extension.)

Definition 5.21. If q is a prime of B and p is a prime of A, then write q | p if q ⊃ p (the
ones that actually appear in the factorization).

Theorem 5.22. Suppose A ⊂ B are Dedekind domains. Suppose p ⊂ A and p splits as
∏

qeq

in B. Then
∑

q|p eqfq = [L : K].

Lecture 6: September 23

Last time, we talked about a finite separable extension L/K of degree n and a Dedekind
domain A ⊂ K; we proved that the integral closure B of A in L is a Dedekind domain.

Recall we defined q | p to mean that q appears in the factorization of pB. Equivalently,
q ⊃ pB, or q ⊃ p (as a B-ideal), or q ∩A = p.

Example 6.1. Let A = Z, B = Z[i], p = (5) then q = (2 + i) | p.

If we write pB =
∏

q q
eq then eq is the ramification index of q and fq := [B/q : A/p] is the

residue field degree. Today, we will prove:

Proposition 6.2. [B/pB : A/p] = n (the degree of the field extension L/K)

Proof. Let S = A\p so A′ := S−1A = Ap. Write B′ = S−1B. A′/pA′ = S−1(A/p) =
A/p since each s ∈ S acts invertibly on A/p. Similarly, B′/pB′ = S−1(B/pB) = B/pB. So
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we can reduce to the case where A is a DVR, hence a PID. Since B is finitely generated and
torsion-free as an A-module, B is free as an A-module. Also K · B = L, so L is free over K
of the same rank. Thus B is free of rank n as an A-module, so B/pB is free of rank n as an
A/p-module. �

Proposition 6.3.
∑

q|p eqfq = n

Proof. Use the Chinese Remainder Theorem to show B/pB =
∏
B/qeq (you need any

two factor ideals to generate the unit ideal, which is true here). We already checked that
B/pB has dimension n over A/p. We need to show that B/qeq has dimension eqfq. There

is a chain of ideals B ⊃ q ⊃ q2 ⊃ . . . qeq . To get the dimension, add up the dimensions of
successive quotients. qi/qi+1 is a 1-dimensional B/q-vector space, hence an fq-dimensional
A/p-vector space. There were eq steps in the chain, so dimB/qeq = eqfq. �

Corollary 6.4. Given p, the number of q dividing p is between 1 and n.

Proof. Count the number of terms in
∑

q|p eqfq = n. �

Definitions 6.5.

• L/K is totally ramified at q if eq = n. (In that case, fq = 1, and q is the only prime lying
over p.)

• L/K is unramified at q if eq = 1 and B/q is separable over A/p.

• L/K is unramified above p if it is unramified at every q | p. Equivalently, using the
Chinese Remainder Theorem, B/p is a separable algebra (finite étale algebra) over A/p.
(For the other direction of this equivalence, B/pB =

∏
B/qeq is not even a product of

fields unless eq = 1.)

• L/K is inert if pB is prime (so e = 1 and f = n).

• L/K splits (or splits completely) if eq = fq = 1 for all q | p.

Definitions 6.6.

• IA := {nonzero fractional ideals of A}
• The class group is Cl(A) := IA

/
{principal fractional ideals}. This is sometimes called

the Picard group Pic(A) (and coincides with Pic(SpecA) in algebraic geometry).

Definition 6.7. Let L/K be a finite separable field extension; let v be a discrete valuation
on K and w a discrete valuation on L. Say that w extends v with index e ∈ N if w|K = e · v.

Proposition 6.8. Fix p. Then there is a bijection

{primes dividing p} ←→ {discrete valuations on L extending vp}
sending q 7→ vq.
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Proof. First check this is well defined – that vq extends vp. Suppose that q | p and
let e = eq. Localize at q: pBq = (qBq)

e (localizing gets rid of the other factors in the
product). Take the valuation of pmBq = (qBq)

em to get vq(p
mBq) = em. More generally,

vq(IBq) = e · vp(I) for any I ∈ IA since all that matters is the p-part of I, which looks like
pm for some m. Take I = (x) to get vq(x) = e · vp(x).

Injective: if q 6= q′, by weak approximation there exists x ∈ L× such that vq(x) = 3 and
vq′(x) = 5, so vq and vq′ are different functions.

Surjective: Now suppose w is any discrete valuation on L extending vp. So w(x) = e · vp(x)
for all x ∈ K. Let W = {x ∈ L : w(x) ≥ 0} (this is supposed to be Bq) and m = {x ∈ L :
w(x) > 0} (this is supposed to be the maximal ideal qBq). Since w|K = e · vp, which is ≥ 0
on A, W ⊃ A. Suppose W is integrally closed in L, so W ⊃ B. Let q = m ∩ B; this is a
prime ideal containing m ∩ A = p. Since w(x) = e · vp(x), w(x) > 0 ⇐⇒ vp(x) > 0. Now
we have to show that W = Bq (i.e. that w comes from q). We showed on the HW that there
are no rings between L and Bq except for L and Bq. It’s not all of L, so it is Bq. �

Example 6.9. Let A = Z and B = Z[
√
−5] = Z[x]/(x2 + 5) inside the field extension

Q(
√
−5)/Q. Pick p = (3); then B/pB = Z[x]/(x2+5)

/
(3) = Z[x]/(3, x2+5) = Z[x]/(3)

/
(x2+

5) = F3[x]/(x2 + 5) = F3[x]/(x2 − 1) ∼= F3[x]/(x + 1) × F3[x]/(x − 1) (by the Chinese
Remainder theorem). You can undo this as Z[x]/(3, x + 1) × Z[x]/(3, x − 1). So (3) =
(3,
√
−5 + 1) · (3,

√
−5 − 1). By Proposition 6.3, e = 1 = f for both of these. So this splits

completely.

If you do it with p = (2), it’s totally ramified (mod 2, you get x2 + 5 ≡ (x+ 1)2).

(5) is also totally ramified; (7) splits; (11) is inert.

Theorem 6.10. Let A,B,K,L be as usual. Suppose B = A[α] and let f(x) be the minimal
polynomial of α over K (this is actually in A[x]). If f(x) =

∏
(gi(x) (mod p))ei (where gi(x)

are distinct monic irreducible polynomials) is a factorization in A/p[x], then

p =
∏

qeii where qi = (p, gi(α)).

B/qi ∼= A/p[x]
/

(gi(x) (mod p)) has residue field degree fi = deg gi.

Note that if you take the degrees of both sides of f(x) =
∏

(gi(x))ei as polynomials over A/p,
you recover n =

∑
eifi.

In our example above, the gi’s were x− 1 and x+ 1.

Warning 6.11. This works only if B is generated over A by one element. If this is not true,
you could try localizing at p and see if this assumption now holds.

Example 6.12. Let A = C[x] (so all the residue fields are ∼= C). Use the extension L = C(y)
where y =

√
x, over K = C(x). Then y is integral over A (it satisfies y2 − x = 0), and in

fact this is the entire integral closure: B = C[x, y]/(y2 − x) ∼= C[y]; this is integrally closed
because it’s a UFD.
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The primes of A all have the form x − a. Choose a = 4; then (x − 4)B = (y2 − 4)B =
(y + 2) · (y − 2), so it splits completely. If a = 0, then (x)B = (y2)B = (y)2B; this has e = 2
and f = 1 (totally ramified).

(The picture of SpecB over SpecA is the branched cover y2 = x over the x-axis. There are
two preimages everywhere except 0, the point of ramification. Really, you should be drawing
the 2-sheeted cover over C, where the sheets are indexed by Z/2 and are attached at the
origin. Alternatively, “unramified” is the analogue of a covering space. We will show that
there are only finitely many primes that ramify (where it’s not a covering space).)

Note: for curves over C, all the f ’s are 1: there aren’t any (nontrivial) possibilities for B/q
over C. If it’s also unramified, then

∑
eifi = n tells you that you have the “right” number

of preimages.

Lecture 7: September 25

Let A be a Dedekind domain and K = FracA.

Definition 7.1. Let V be an r-dimensional vector space over K. An A-lattice in V is a
finitely generated A-submodule M ⊂ V such that K ·M = V (i.e. the lattice actually spans
the vector space over K).

Suppose M,N are free lattices (free as modules) in V . Then there are isomorphisms M ∼=
Ar ∼= N ; let ϕ : M → N be the composition. This induces a K-linear map ϕK : V =
M ⊗K → N ⊗K = V . Define

(M : N) := (detϕK)

(a fractional ideal of A). Changing bases changes detϕK by a unit, so the fractional ideal is
well-defined.

If M,N are not free, define (M : N) as the fractional ideal such that (M : N)p = (Mp : Np)
is as before. (The local ring is a DVR, hence a PID, and every module over a PID is free.)

Example 7.2. Think about the lattice spanned by, e.g. (1, 2) and (3, 1) in Q2.

More generally, if A = Z and M ⊃ N then (M : N) equals the index (viewed as usual).

Proposition 7.3. If M ⊃ N and M/N ∼= A/I1 ⊕ . . .⊕A/In then (M : N) = I1I2 . . . In.

Proof. Everything involved in these constructions behaves nicely wrt localization, so
without loss of generality assume A is a DVR. Then M ∼= Ar, and there is some ϕ : Ar → Ar

such that N ∼= ϕ(Ar). You can write T1

a1

. . .

ar

T2 where Ti ∈ GLn(A) (changing the

basis on both sides gives you more freedom than the usual diagonalization). This is called
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Smith normal form. Then M/N = cokerϕ ∼= A/(a1)⊕. . .⊕A/(ar). In the problem statement
we assumed that M/N ∼= A/I1 ⊕ . . .⊕A/In.

Over Z, we could just count the number of elements on each side and compute the index.
But these might not be finite as abelian groups. Instead, use length, the number of steps in
a maximal chain of submodules. (For example, a maximal chain for Z/8 is Z/8 ⊃ 2Z/8Z ⊃
4Z/8Z ⊃ 0.) It turns out (Jordan-Hölder) that this works for every Dedekind domain, and
this length is well-defined (if finite).

So take the length of both sides of
⊕
A/(ai) =

⊕
A/Ii (as A-modules), to get (a1 . . . an) =

I1 . . . In and the former is (detϕ) = (M : N). Remember we are working over a DVR, so if
you know the length of an ideal, then you know the ideal. �

Let A,B,K,L as in the last lecture.

Definition 7.4 (i and N (ideal norm)). Let i : IA → IB be the map taking I 7→ IB; let
N : IB → IA be the map sending J 7→ (B : J).

(For example, in Z[i]/Z, if J = (5) then N(J) = (Z[i] : (5))Z = (25).)

Proposition 7.5. There are commutative diagrams

K× �
�

//

��

L×

��

IA
i // IB

L×
NL/K

//

��

K×

��

IB
N // IA

where the vertical maps are x 7→ (x).

Proof. The first diagram is really obvious.

By definition, if x ∈ L× then N((x)) = (B : xB)A = (det(L
x→ L)) (since B

x→ xB is an
isomorphism), and this is the definition of the norm. �

Proposition 7.6. i and N are homomorphisms.

Proof. i: obvious.

N : this would be obvious if every ideal were principal (since we proved that it’s just the
norm, on “elements”). Localize to assume that A is a DVR. Then B is a semilocal Dedekind
domain, hence a PID. NL/K is a homomorphism, so N is a homomorphism. �

Proposition 7.7. For primes q | p, N(q) = pf , where f = fq.
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Proof. B/q is an A/p vector space, so it breaks up as B/q ∼= A/p⊕ . . .⊕ A/p (with f
factors). This is also a decomposition as A-modules. So N(q) = (B : q)A = pf . �

Aside 7.8. For smooth curves over C: there should be n points over p, but at ramified points
there are fewer. Let Y = SpecB and X = SpecA; then IA = DivX, and IB = Div Y . The
maps N and i give rise to maps f∗ : Div Y → DivX and f∗ : DivX → Div Y , respectively. i
sends p 7→ pB =

∏
qeii , so f∗(P ) =

∑
q s.t.
f(q)=p

eqq (this is called the inverse image, or pullback,

of divisors). So in the picture of Y = SpecB over X = SpecA, this is taking the preimage of
a point with multiplicity.

N sends q to pf , but f∗ just takes q 7→ p = f(q). (This is only since X/C.) This is called the
image, or pushforward.

If you start downstairs, go upstairs and then go downstairs (i.e. f∗ ◦ f∗), then this is multi-
plication by f .

Let A be a DVR with maximal ideal p = (π); let K = FracA. Let B = A[x]/(f(x)) for some
monic f . Let f be the image of f in A/p[x], and let β be the image of x in B.

The aim is eventually to show that B is the integral closure.

Lemma 7.9 (Nakayama’s lemma). Let A be a local ring with maximal ideal p, and let M be
a finitely generated A-module. Suppose x1, . . . , xn generate M/pM as an A/p-vector space.
Then x1, . . . , xn generate M as an A-module.

Lemma 7.10. Any maximal ideal m of B contains p.

Proof. If not, then m + pB = B (it’s strictly bigger than a maximal ideal). So m
generates B/pB. Since we’re working over a Noetherian ring, m is finitely generated. By
Nakayama’s lemma, the generators of m are generators of B, i.e. m = B. This is a contra-
diction. �

Corollary 7.11. There is a correspondence

{maximal ideals of B} ←→ {maximal ideals of B/pB} ←→ {irreducible factors of f}
given more precisely by

(p, gi(β))←→ (gi(x))←→ gi.

(Recall β is the image of x in B = A[x]/(f).)

Proof. The first arrow is Lemma 7.10; the second is from writingB/pB = A/p[x]/(f(x)).
�
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There are two special cases in which we can deduce that B is a DVR (and hence is integrally
closed, and f is irreducible over K).

Case 1: f is irreducible. Then, according to this description, the only maximal ideal of B is
(p, f(β)) = pB = πB. Also, π is not nilpotent (because it’s not nilpotent in A ⊂ B). So B
is a DVR.

Its residue field is A/p[x]/(f). Also e = 1 and f = n, so p is inert; it is ramified as long as
the residue field extension is separable. This happens as long as f is a separable polynomial.

Case 2: f is an Eisenstein polynomial. (That is, f = xn + an−1x
n−1 + · · · + a0 with all

ai ∈ p and a0 /∈ p2.) So f = xn, and again there is only one irreducible factor (x). By
the correspondence, there is a unique maximal ideal of B, i.e. (p, β) = (a0, β) (since a0 is
in p but not p2). We need to show that it’s a PID, with a non-nilpotent generator. Write
a0 = −βn(1 + · · · + a1). So a0 is a multiple of β, so the ideal is just (β). Also a0 is not
nilpotent, so β is not nilpotent.

So B is a DVR, with residue field B/(β) = A[x]/(x, p) = A/p. In this case, e = n and f = 1
(so it’s totally ramified).

(There are converses: e.g. if you start with a totally ramified extension, you can show it
comes in this way.)

Lecture 8: September 30

Let K be a field, and L a finite extension of K with [L : K] = n. Let A be a Noetherian,
integrally closed domain, with FracA = K. Let B be the integral closure of A in L. (E.g. if
A = Z, L = Q, then L is a number field and B is the ring of integers.)

Assume L/K is separable, and A is a Dedekind ring. We showed that this implies B is a
Dedekind ring.

Let P be a prime ideal in B, p := P ∩ A (so in the picture of SpecB over SpecA, P is a
preimage of p). Say that P | p. Write

pB =
∏

P∩A=p

P eP

where eP is the ramification index. B/P is a field that contains A/p, and denote [B/P :

A/p] =: fP (the residue index). The extension B/P
/
A/p is called the residue extension.

Then B/pB =
∏
P∩A=pB/P

ep (it’s not a field, and it’s not even a product of fields if there

is nontrivial ramification). Say that

• p is ramified if eP > 1 for some P

• p is unramified if for all P over p, eP = 1

• p is totally ramified if pB = P e for some single P

• p splits completely if for all P lying over p, ep = fp = 1.
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Different primes might have different ramification behavior; the way to unify this is to consider
Galois extensions.

If, e.g. when A = Z, A/p is a finite field, the Galois extensions are cyclic, generated by
Frobenius.

From now on, assume that L is a Galois extension of K. We have a Galois group G(L/K).

Proposition 8.1. The group G(L/K) acts transitively on the set of primes P of B lying
above any given prime p of A.

(Topology analogy: if you have a space with a cover, the cover is called “Galois” if the
automorphism group acts transitively on the fibers.)

Proof. Let’s show that G(L/K) does act on the set of such P . Let s ∈ G(L/K). We
need s(P ) ⊂ B; it’s clearly in L, but it’s in B because B is integrally closed (all the Galois
conjugates of an integral element are integral). You can check that it’s an ideal, and that it’s
prime. s(P ) ∩A = P ∩A = p because s acts trivially on A.

Now we show that the action is transitive. Let P, P ′ be two primes above p. Assume for the
sake of contradiction that, for all s ∈ G(L/K), s(P ) 6= P ′ (i.e. P ′ is not in the orbit). Let
a ∈ P and x = NL/K(a); we know x =

∏
s∈G(L/K) s(a) ∈ A. By assumption, s(a) does not

belong to P ′ for any s. But
∏
s s(a) ∈ A ∩ P = p = P ′ ∩A. This is a contradiction. �

Corollary 8.2. The integers eP and fP do not depend on P as P varies among the primes
above p.

In the Galois case, we write ep, fp for these integers. Let gp be the number of P ’s above p.
Write pB =

∏
P∩A=p P

ep .

Corollary 8.3. n = [L : K] = epfpgp

If it’s an extension of prime degree, there aren’t that many choices (two of these things are
1, and the other is p).

G(L/K) acts on the set {P above p}.

Definition 8.4. Let D(P ) = DP (L/K) be the stabilizer of P , i.e.

D(P ) = {s ∈ G(L/K) : s(P ) = P}.

Question: how does D depend on P? Let P ′ be another prime with P ′ ∩A = P ∩A.

We know that P ′ = t(P ) for some t ∈ G(L/K). So D(P ′) = {s ∈ G(L/K) : s(t(P )) =
t(P )} = tD(P )t−1. (E.g. this vanishes in an abelian extension.)
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(When you talk about the fundamental group of a variety, changing the basepoint corresponds
to conjugation of the group.)

The index of D(P ) in G(L/K) is the size of the orbit = gp. So #D(P ) = epfp. D(P ) is a
subgroup of my Galois group, so it is itself a Galois group. I will show that it is (related to)
the Galois group of the residue extension.

Fix P , and define D = D(P ), e = ep, f = fp, g = gp. D corresponds to an intermediate
extension

K ↪→ KD ↪→ L,

i.e. D = G(L/KD); this is an extension of degree f . KD/K is not necessarily a Galois
extension, but it has degree g. Galois theory says that KD/K is Galois iff D is normal in
G(L/K).

In general, for any K ↪→ E ↪→ L, write BE = B∩E, PE = P ∩E, E = BE/PE . In particular,
write L = B/P and K = A/p.

Let s ∈ D = D(P ). s acts on B, and by definition, s(P ) = P . s induces an automorphism of
B/P = L, and leaves K invariant. So we get a map

ε : D → G(L/K).

Definition 8.5. Define T := ker ε to be the inertia subgroup of P .

Proposition 8.6. L/K is normal (but not necessarily separable), and ε is onto (so D/T
∼=→

G(L/K)).

(I.e., L is the splitting field of a bunch of polynomials – if you have one root of something,
then you have all the roots.)

(This is a computational tool for finding G(L/K); by reducing at different primes, you can
hope to find different cyclic elements.)

Proof. Let a ∈ L. The goal is to show that a is a root of a monic polynomial in K[x],
which is split in L.

Let a ∈ B have image a. Define P (x) =
∏
s∈G(L/K)(x − s(a)) ∈ A[x]; then the reduction P

of P vanishes at a and splits in L. This proves normality.

Now let Ls be the separable closure of K in L. Then there is a tower of fields L/Ls/K, and
L/Ls is purely inseparable. (If you don’t like this, you could assume instead that the field is
perfect, so all the residue field extensions are separable.)

Find a generator a ∈ Ls.

Lemma 8.7. We can find a ∈ B mapping to a such that, for all s ∈ G(L/K)\D, a ∈ s−1(P ).
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(s−1 vs. s is just a notational convenience.) This is a consequence of the approximation
theorem (you can find elements with the right residues). We only require things about s(P )
for s /∈ D, i.e. for s(P ) 6= P .

Now letting again P (x) =
∏
s∈G(L/K)(x − s(a)) ∈ A[x], the roots of P in L are 0 if s /∈ D,

and s(a) if s ∈ D. This means that the conjugates of a are the s(a), for s ∈ D, i.e. D surjects
onto G(L/K). �

Assume now that L/K is separable (e.g. if K is finite).

Proposition 8.8. Let KT ,KD be the fixed fields of T,D. Then:

(1) #T = [L : KT ] = e
(2) #D/T = [KT : KD] = f
(3) [KD : K] = g
(4) KT = L
(5) KD = K

KD/K is nontrivial only when you have ramification, and that only happens at finitely many
primes so this is a phenomenon we can try to minimize.

Proof. Sum up the discussion above. �

Proposition 8.9. Start with K ⊂ E ⊂ L, where L/K is Galois.

(1) D(L/E) = D(L/K) ∩G(L/E) and T (L/E) = T (L/K) ∩G(L/E)
(2) Assume E/K is Galois. Then the following diagram is commutative and all the sequences

are exact:
1

��

1

��

1

��

1 // T (L/E) //

��

T (L/E) //

��

T (E/K) //

��

1

1 // D(L/E) //

��

D(L/K) //

��

D(E/K) //

��

1

1 // G(L/E) //

��

G(L/K) //

��

G(E/K)

��

// 1

1 1 1

Proof. This is supposed to be obvious. (E.g. for the first equality, D(L/E) consists of
the automorphisms of L leaving E invariant and also fixing the prime in question. For the
diagram, the columns are exact, the last row is obviously exact, and that implies that the
rest of the sequences are exact.) �
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Now let’s talk about the case where the residue fields are finite. Let L/K be Galois, P | p,
where p is unramified. Assume that A/p is finite of cardinality q. Then T = {1}, and
D ∼= G(L/K) is cyclic, generated by Frobenius x 7→ xq. We get a unique element sP of D
such that for any x ∈ B, sP (x) ≡ xq (mod P ) (this is the element that maps to Frobenius).
sP is called the Frobenius substitution, and is denoted by (P,L/K).

Frobenius depends on the extension, but in some sense it just depends on the base field,
because it is x 7→ xq where q = |K|. This is compatible with infinite field extensions – you
still have a Frobenius element. It turns out that all the different Frobenius elements are dense
in the Galois group (a profinite group).

Example 8.10. Let d ≡ 3 (mod 4). Let L = Q(
√
d) for square-free d, over K = Q. Then

OK = Z ⊕ Z
√
d (you can work out the other case). Then G(L/K) = G(Q

√
d/Q) = {1, σ}

where σ(a+ b
√
d) = a− b

√
d.

Let p ∈ Z; to make sure we are in the unramified case, require p - 2d. Then (a + b
√
d)p ≡

ap + bp(
√
d)p ≡ a+ b · d

p−1
2

√
d (mod p). Also, d

p−1
2 =

{
1 if d is a square mod p

−1 otherwise.

So the Frobenius element is 1 if d is a square mod p, and σ otherwise.

Lecture 9: October 2

Recall, we had a finite, Galois extension L/K, an integrally closed ring A ⊂ K with FracA =
K, and the integral closure B ⊂ L of A in L (finitely generated over A). Let p be a prime in
A, P a prime above p in B.

Assume that P is unramified, and A/p is finite of order q.

The decomposition group DP (L/K) = {s ∈ G(L/K) : s(P ) = P} maps onto G(L/K).
The Frobenius substitution is the unique element sP ∈ DP mapping to Frobenius. It is
characterized by sP (b) = bq[P ] for all b ∈ B. Denote sP =: (P,L/K). (You’re supposed to
be thinking of this as generalizing the quadratic residue symbol.)

Proposition 9.1. If t ∈ G(L/K) then

(tP, L/K) = t(P,L/K)t−1.

Proof. The RHS is in tDP t
−1 = DtP . Indeed, for b ∈ B, sP t

−1(b) = t−1(b)q[P ]. Apply
t:

tsP t
−1(b) = t(t−1(b)q)[tP ] = bq.

�

Now consider field extensions K ⊂ E ⊂ L. Write BE = B ∩ E (the integral closure of A in
E) and PE = P ∩ E. L/E was a Galois extension.
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Proposition 9.2.

(1) (P,L/E) = (P,L/K)[E:K]

(2) Assume E/K is Galois; then (PE , E/K) is that (P,L/K) in G(E/K).

Proof. Check that the definition sP (b) = bq[P ] holds. �

Interesting case: Suppose L/K is abelian (i.e. G(L/K) is abelian). Then (P,L/K) only
depends on p. We write

(P,L/K) = (p, L/K) =

(
L

p

)
and call this the Artin residue symbol.

Extend by multiplicativity to get
(
L
I

)
where I is an unramified ideal.

Remember that for Q[
√
d]/Q, this depends on whether d is a square mod p.

Example 9.3 (Cyclotomic fields). Let K = Q, L = Q[ζn] where ζn is a primitive nth root
of unity.

First, I show that this is an abelian extension. Let G = G(L/K). We have an injection
G ↪→ (Z/n)× sending σ 7→ x where σ(ζn) = ζxn . Let p be prime to n (if not, there are
problems corresponding to ramification). Then p does not ramify in L. Check that(

L

p

)
= [p] ∈ (Z/nZ)×.

Corollary 9.4. Cyclotomic polynomials are irreducible over Q, i.e. G = (Z/nZ)×.

Application 9.5 (Quadratic reciprocity). First, embed Q[
√
d] in Q[ζn] using Gauss sums∑

r e
2iπp

r2 (their squares are either p2 or ip2, and I claim you can generate
√
d this way).

(Indeed, any abelian extension is contained in a cyclotomic extension; this is a deep theorem
that will show up in the second half of the course.) Now, put together the statement in
the previous lecture (about d (mod p)), and the statement we just made about cyclotomic
extensions (about p (mod n)).

Theorem 9.6 (Artin reciprocity law). Let L/K be an abelian extension, where K is a number
field. Let pi be the primes of K that ramify. Then there exist integers ni such that if x ∈ A
satisfies

(1) vpi(x− 1) ≥ ni (e.g. in the Q case, x ≡ 1 (mod p)nii )

(2) for any embedding K
i
↪→ R, i(x) > 0. (Think of these as the “infinite primes”.)

Then
(
L
x

)
= 1, and any σ ∈ G(L/K) is of the form

(
L
I

)
for some I.
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Algebraic number theory Lecture 9

This is very much related to quadratic reciprocity. It is a consequence of class field theory.

Note about the comment about “infinite primes”: ordinary primes are related to the com-
pletions of Q, i.e. Qp, but R is also a completion of Q.

9.1. Completion.

Intuition 9.7. In the picture of SpecB over SpecA for curves, taking the residue fields
corresponds to just looking at p on the bottom and the fiber above it. Instead of just looking
at p, instead look at the preimage of a small disc around p (this is a covering) – you get
“little pieces of curves” so it says more about L/K than just taking points (residue fields)
does. Idea: you are “zooming in on your curve”.

I want to replace my algebraic functions by power series that have a fixed radius of conver-
gence.

Let K be a field with a discrete valuation v. Let A be the valuation ring. Let 0 < a < 1.
Define, for x ∈ K, ‖x‖ = av(x). (Recall “x is very close to 0 if its valuation is very large, i.e.
it is very divisible by p”.) Then ‖ − ‖ is a nonarchimedean (or ultrametric) absolute value,
i.e.

• ‖xy‖ = ‖x‖‖y‖
• ‖x‖ = 0 ⇐⇒ x = 0

• ‖x+ y‖ ≤ sup(‖x‖, ‖y‖) (equality if ‖x‖ 6= ‖y‖)

Theorem 9.8 (Ostrowski). These are the p-adic absolute values if K = Q. For any K, the
archimedean absolute values are of the form x 7→ |f(x)|c with f : K ↪→ C for 0 < c ≤ 1.

Definition 9.9. Say that K is complete (w.r.t. v) if any Cauchy sequence has a limit in K.

Proposition 9.10. There exists a unique completion K ⊂ K̂ (a complete field K̂ containing
K as a dense subfield).

Ignoring the field structure of K̂, this is a general topology fact: K̂ is the set of Cauchy

sequences modulo those that converge to 0. Now we need to argue that K̂ is a field; you need
to use the fact that the topology is compatible with the field structure of K.

v extends to a valuation v̂ on K̂ with integer values (this uses the last nonarchimedean
axiom).

Let Â be the valuation ring of K̂; it is the closure of A in K̂.

Let π be a uniformizing parameter of v, i.e. π ∈ A, v(π) = 1.
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Proposition 9.11.

Â = lim←−
n→∞

A/πnA

where the limit is taken along the natural reduction maps A/πn+1 → A/πn.

Elements are compatible sequences of elements in A/πnA; this is like how you define elements
in Qp.

Proof. We have an isomorphism A/πn
∼=→ Â/πn; this is because values of v do not

change when you pass to v̂ (given an element of Â, you can take an element of A/πn that is

very close). We get maps Â→ A/πn, and hence a map ϕ : Â→ limA/πn. This is surjective

because Â is complete (an element in the limit corresponds to a Cauchy sequence, which has

a limit). ϕ is also injective: kerϕ =
⋂
n≥1 π

nÂ. Any nonzero element in kerϕ has valuation
≥ n for all n, so kerϕ = 0. �

Example 9.12. If K = Fq(T ), and v is the valuation with respect to T , you can check that

Â = limFq[T ]/Tn = Fq[[T ]].

Proposition 9.13. K is locally compact iff K = A/πA is finite, and K is complete.

The πnA’s form a basis of neighborhoods of 0 in K, and they are closed.

Proof. ( =⇒ ) If K is locally compact, then (using the fact that πnA form a basis
of neighborhoods of 0), some πnA is compact. Divide by πn to show that A is compact.
A/πA is compact (image of a compact set) and discrete (all the points are distance 1 apart).
Therefore, it’s finite. K is certainly complete (take a Cauchy sequence, scale it so it’s in A,
and use the fact that any Cauchy sequence that has a convergent subsequence is convergent).

( ⇐= ) A = lim←−A/π
nA ⊂

∏
A/πnA, and products of compact spaces are compact. A is

compact, so K is locally compact (because πnA form a basis of neighborhoods of 0). �

Remark 9.14. In that case, there is a natural absolute value obtained by taking a = 1
#K

= 1
q ,

i.e. ‖x‖ = q−v(x).

Proposition 9.15. Assume K is locally compact, and that µ is a Haar measure. Then if
x ∈ K, and E ⊂ K is measurable, then µ(xE) = ‖x‖µ(E).

Example: to define a Haar measure on Qp, it suffices to define it on Zp; do this by defining
µ(pnZp) = p−n.

Proof. Assume x 6= 0. Then t 7→ µ(xE) is a Haar measure (measure that is compatible
with the group structure). All Haar measures are proportional, so there exists χ = χ(x) such
that for all E, µ(xE) = χ(x)µ(E). We can assume x ∈ A (and then do this for quotients,
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Algebraic number theory Lecture 10

etc.) Take E = A, and get χ(x)µ(A) = µ(xA). Since xA ⊂ A, A is a union of cosets of xA.
How many cosets? µ(A) = µ(xA) · (xA : A)

index?

= ‖x‖−1µ(xA) (exercise). �

Lecture 10: October 7

Lemma 10.1 (Hensel). Let A be a complete DVR, π the uniformizer, k the residue field.
Let F ∈ A[x]; define f := (F (mod π)) ∈ k[x]. Let α be a simple root of f (i.e. f(α) = 0 but
f ′(α) 6= 0).

Then some lift of α is a root: that is, there exists some a ∈ A such that F (a) = 0 and a ≡ α
(mod π).

Proof.

Claim 10.2. There exists an ∈ A such that F (an) ≡ 0 (mod πn), and an ≡ α (mod π).
Also, an (mod πn) is uniquely determined.

Proof of claim. Induction on n. For the base case (n = 1), let a1 ∈ A be any lift of α.

Inductive step: assume the claim for n, so we have an and we need an+1. Any possible an+1

must be ≡ an (mod πn) so an+1 = an+πnε for some ε ∈ A. How do you estimate F (an+πnε)
if you know F (an)? Use calculus! There is a Taylor expansion

F (an + x) = F (an) + F ′(an)x+ x2

∈A[x]

G(x)

F (an + πnε) = F (an) + F ′(an)πnε+ (πnε)2G(πnε)

≡ F (an) + F ′(an)πnε (mod πn+1)

This is ≡ 0 (mod πn+1) iff

ε =
−F (an)/πn

F ′(an)
∈ A

and that can be accomplished because F (an) ≡ 0 (mod π)n, and F ′(an) ≡ F ′(a1) and that
is a unit. This choice of ε (mod π) yields the unique an+1 (mod πn+1). �

So we have a sequence of better and better approximations of a zero of F .

Existence: Since an+1 ≡ an (mod πn) by uniqueness of an (mod πn), (an) is a Cauchy
sequence (the differences are divisible by higher and higher powers of π). (Actually, you
have to show that any difference starting above a certain an gets small; but because of non-
archimedeanness, the absolute value of a sum of small things can’t get very big. So it suffices
to check consecutive differences.)

Since A is complete, there is a limit a = limn→∞ an ∈ A. Then F (a) = limn→∞ F (an) = 0,
where F (an) is divisible by πn.
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Uniqueness: If a ∈ A is such that F (a) = 0, and a ≡ α (mod π), then a ≡ an (mod πn) ≡ a
for all n (by uniqueness in the claim). So the difference a − a is divisible by an arbitrarily
high power of π. This can only happen if a = a. �

Example 10.3. Let F (x) = x2 − 6 ∈ Z5[x] reduces to f(x) = x2 − 1 ∈ F5[x]. 1 is a simple
root in F5; Hensel’s lemma says that there exists a ∈ Z5 such that a2 − 6 ≡ 0 (mod 5) and
a ≡ 1 (mod 5).

That is, Z5 contains a
√

6; this means that there is a solution in every Z/5nZ.

There is a generalization of Hensel’s lemma, also called Hensel’s lemma:

Lemma 10.4 (Hensel). Let A, π, k, F, f as before, and F is monic. If f(x) = g(x)h(x),
where g and h are coprime monic polynomials in k[x] (this replaces the assumption that the
root is simple), then F (x) = G(x)H(x) for some monic polynomials G,H ∈ A[x] that reduce
to g, h.

Proof. Homework. �

Any local ring satisfying this lifting property for coprime factorizations is called henselian.

Let L/K be a finite separable extension of degree n, and let B be the integral closure of A
in L (where FracA = K). For a prime p ⊂ A, write pB =

∏
q|p q

eq .

Theorem 10.5. If A is a complete DVR, then there is exactly one prime q above p.

Proof. Existence of q: We already proved that the number of q’s is between 1 and n
(this is because n =

∑
q|p eqfq).

Uniqueness of q: Suppose that there are ≥ 2 primes lying over p, say q1 and q2. They are
both maximal, so you can choose b ∈ q1\q2. Then q1 ∩ A[b] and q2 ∩ A[b] are two different
primes of A[b] containing p. So A[b]/pA[b] has at least two prime ideals.

Let f(x) be the minimal polynomial of b over K. Then f(x) ∈ A[x] and A[b]/pA[b] ∼=
A[x]/(p, f(x)) ∼= k[x]/(f(x)) (where f is the reduction mod p). We said that the last ring
has two different primes, which means that f factors nontrivially (not just a power of an
irreducible polynomial) into coprime g, h. By generalized Hensel’s lemma, you can lift that
factorization so that f(x) factors nontrivially in A[x]. But this contradicts the fact that f
was a minimal polynomial. �

Definition 10.6. If V is a K-vector space (where K is a field with an absolute value), a
norm on V is a function ‖ ‖ : V → R≥0 satisfying:

(1) ‖x‖ = 0 ⇐⇒ x = 0
(2) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V
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(3) ‖λx‖ = |λ| · ‖x‖ (where λ ∈ K,x ∈ V )

Example 10.7 (sup norm). Let V = Kn; define ‖(a1, . . . , an)‖ = max(|a1|, . . . , |an|).

Definition 10.8. Say two norms ‖ ‖1 and ‖ ‖2 are equivalent if there exist c, d ∈ R>0 such
that ‖x‖1 ≤ c · ‖x‖2 and ‖x‖2 ≤ d · ‖x‖1.

If you make V into a metric space using each of these norms, they define the same topology.

Theorem 10.9. If K is complete, and V is finite-dimensional, then any two norms on V
are equivalent.

Proof. Omitted. �

Now we can give another proof of Theorem 10.5. Each q above p defines a norm, and that
satisfies the absolute value ‖ ‖q on L (thought of as a K-vector space). x ∈ valuation ring of
q ⇐⇒ ‖x‖q ≤ 1 ⇐⇒ x−1, x−2, x−3, . . . does not converge in the topology defined by ‖ ‖q.
By Theorem 10.9, these topologies are all the same. So the valuation rings are all the same
– that is, q is unique.

Corollary 10.10 (Corollary of Theorem 10.5). If L,K,A,B are as above, with A a complete
DVR, then B is a DVR, and B is a free A-module of rank n. There is a unique discrete
valuation w extending v = vp (with index e).

Proof. Second statement: structure theorem of finitely generated modules over a PID.
�

The formula
∑
eqfq = n becomes, in this case, ef = n (since there is only one q).

Corollary 10.11. L is complete w.r.t. w.

Proof. ‖ ‖q ∼ the sup norm on L ≡ Kn. �

Corollary 10.12. If x, y ∈ L are conjugate over K (i.e. there exists σ ∈ Aut(L/K) such
that σ(x) = y) then w(x) = w(y).

Proof. Otherwise, w and w ◦ σ would be two valuations extending v (w ◦ σ extends v
because σ acts trivially on K). �

Corollary 10.13. w(x) = 1
f v(NL/K(x)) for all x ∈ L.
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Recall that, if q | p, then N(q) = pf , and the ideal norm is compatible with the element
norm.

This normalization is chosen so that w takes values in Z ∪ {∞}, but there are other normal-
izations: e.g. 1

ew restricts to v.

Theorem 10.5 and its corollaries above here work for inseparable fields too (but we will not
discuss this) – you just have to analyze the degree-p pieces of a purely inseparable field
extension.

Corollary 10.14. v : K � Z ∪ {∞} is the restriction of a valuation K � Q ∪ {∞}.

If π is a uniformizer of K, then π1/e ∈ K has valuation 1
e . By taking powers, you can get

any multiple of 1
e .

We’ve really only talked about valuations that take values in Z∪{∞}, but all you need is an
abelian group where you can talk about min. The ordered abelian group that the valuation
surjects onto is called the value group.

For example, the valuation on Qp extends to Qp. But this isn’t complete, so you want to

complete again. This field Q̂ is called Cp; thankfully, it is also algebraically closed. (This is
the p-adic analogue of C.) These all have the same cardinality as R, but the extensions have
infinite transcendence degrees.

Warning 10.15. Each finite extension of K is complete, but infinite extensions of K, like
K, are not.

)
Field

)
Value group Residue field)

Cp
)

Q Fp)
Qp

)
Q Fp)

Qp

)
Z Fp

Why are the value groups the same when you take the completion? If you have a convergent
sequence (an)→ a (in a nonarchimedean context) then |a| = |an| for all sufficiently large n.
(This is because |an+ε| = |an| (“bigger term wins”).) Similarly, the difference will eventually
be so small that it reduces to zero, so you get the same residues.

Weird fact 10.16. Cp is abstractly isomorphic to C: they’re both extensions of Q with
transcendence basis of the same cardinality (you need the axiom of choice to do this). This
actually has uses. . .

Newton polygons. Let v : K → R∪{∞} be a valuation. (This need not be a surjection.)
Let f(x) = anx

n + · · ·+ a0 ∈ K[x].
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Definition 10.17. The Newton polygon NP (f) is the lower convex hull of {(i, v(ai))}0≤i≤n
in R2.

Example 10.18. An Eisenstein polynomial is xn + an−1x
n−1 + · · · + a0 where vp(a0) = 1

and vp(ai) ≥ 1 for i < n.

Lecture 11: October 9

Let K be a field, and v : K → R ∪ {∞} be a valuation.

Definition 11.1. If S ⊂ R2, the lower convex hull of S is the boundary of the intersection
of all regions y ≥ mx+ b containing S.

Theorem 11.2. Let K be an algebraically closed field. Let v : K → R ∪ {∞} be a nonar-
chimedean valuation, and let f ∈ K[x]. For each s ∈ R,

width

(
slope s segment

of NP (f)

)
= #

{
zeros of f having valuation −s

(with multiplicity)

}
(here width means horizontal displacement).

Notice that if you add up all the segments, they have total width = deg f .

In the Eisenstein polynomial example, there is one segment of slope − 1
n , which has width n.

Therefore, f(x) has n zeros of valuation 1
n (and this accounts for all the zeros).

Proof. If v(α) = c, then changing f(x) to f(αx)

• multiplies zeros by 1
α (hence subtracts c from their valuations), and

• multiplies the coefficient ai of xi by αi, hence adds ic to the valuation; this applies the
shear transformation (x, y) 7→ (x, y + cx) to the Newton polygon, hence adds c to the
slopes.

We have just proved that if the theorem is true for f(x), it is true for f(αx). By doing this
adjustment, we can assume that s = 0. Then f looks like

f(x) = const · (x− r1)(x− r2) . . . (x− ra)(x− u1) . . . (x− ub)
(

1− x

R1

)
. . .

(
1− x

Rc

)
where the ri’s are roots of positive valuation, the Ri’s are roots of negative valuation, and
ui’s are zeros of valuation zero. Multiplying f by a constant just shifts the Newton polygon
up or down (and doesn’t change the roots), so without loss of generality we can assume that
the constant is 1.
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Let f be f (mod m): this changes every (x− ri) term to just x, and every 1− x
Ri

to just 1,

so f(x) = xa(x− u1) . . . (x− ub) = xa + · · ·+ (unit) · xa+b.

So in the Newton polygon (for f , not just f), we have zeros at (a, 0) and (a + b, 0) (and
so there is a segment of slope zero from (a, 0) to (a + b, 0)); because the reduction outside
[a, a+ b] is zero for f , we know that these terms in f have positive valuation. So the width
of the slope zero segment is exactly b. And indeed, there were b zeros u1, . . . , ub of valuation
zero. �

11.1. p-adic analysis. Let K be complete w.r.t. a nonarchimedean absolute value | |.
Let a0, a1 · · · ∈ K. Then:

Proposition 11.3.

(1)
∑
an converges ⇐⇒ an → 0

(2) Series can be rearranged without affecting the sum
(3) Given

∑
anx

n ∈ K[[x]], the radius of convergence is

R :=
1

lim supn→∞ |an|1/n
∈ R≥0 ∪ {∞}.

This has the usual meaning: if |x| < R then f(x) converges; if |x| > R then f(x) diverges;
if |x| = R then you don’t know (but if it converges somewhere on the circle, it converges
everywhere, because it only depends on |an|).

(4) f and f ′ have the same radius of convergence

Example 11.4. Define exp(x) :=
∑

n≥0
xn

n! ∈ Qp[[x]].

vp(n!) = n−Sn
p−1 where Sn is the sum of the digits of n, written in base p. Then the radius of

convergence is

R =
1

lim supn→∞ | 1
n! |1/n

= lim
n→∞

∣∣∣∣ 1

n!

∣∣∣∣−1/n

= lim
n→∞

(
p−vp( 1

n!
)
)−1/n

= lim
n→∞

(
pvp(n!)

)−1/n

(∗)
= lim

n→∞

(
pn/(p−1)

)−1/n
= p−1/(p−1) < 1

where (*) is using the fact that Sn grows logarithmically.

The Newton polygon theorem applies also to power series over a complete algebraically closed
field with valuation; it computes the valuations of zeros inside the disk of convergence – it only
works on s such that −s corresponds to valuations of things inside the disk of convergence.

Example 11.5. Look at exp(x) ∈ Cp[[x]]. We’re computing (n, vp
(

1
n!

)
). It’s 0 until you get

to p, at which point it’s −1 until you get to 2p, etc. When you hit p2 it goes down by 2
instead of by 1.
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The Newton polygon has just one segment, of slope − 1
p−1 ; this corresponds to looking at zeros

of valuation 1
p−1 . But that’s not allowed – this is on the boundary of the disk of convergence,

and you’re not allowed to apply the theorem to those. So we conclude that exp(x) has no

zeros inside the disk of convergence (|x| < p−1/(p−1)).

Reference: Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions.

Proposition 11.6. There is a unique homomorphism log : C×p → Cp (where C×p is thought
of as a group under multiplication and Cp is a group under addition) such that

(1) if |x| < 1, then

log(1 + x) = x− x2

2
+
x3

3
− . . .

(this is only enough to specify the log on things of valuation > 0)
(2) log p = 0 (this is an arbitrary choice).

The radius of convergence is 1.

This is called the Iwasawa p-adic logarithm.

Some people write logp instead for this; but it does not mean log base p.

Proof. Let m = {x ∈ Cp : |x| < 1}. For x ∈ m, use (1) as a definition of log(1 + x). To
check it’s a homomorphism, we need

log(1 + x) + log(1 + y) = log(1 + (x+ y + xy))

This holds as an identity of real analytic functions for small x, y. I claim that it also holds
on the level of formal power series (i.e. in R[[x, y]]): the difference is a power series that is
zero in a neighborhood, hence identically zero. All the coefficients are in Q, so this is true in
Q[[x, y]], and is also true in Cp[[x, y]] (it’s still the same power series). As long as everything
converges, you’re allowed to rearrange terms. So this holds when you plug in any x, y ∈ Cp
such that everything converges, i.e. whenever x, y ∈ m.

Now extend to log : G := pZ(1 + m)→ Cp by defining log(pn(1 + x)) = log(1 + x) (the only
choice that makes it a homomorphism).

Now I will show that you can define it everywhere, by showing that everything in C×p has a

power that lands in G. So if xn ∈ G, then define log(x) = log(xn)
n .

Lemma 11.7. C×p /G is torsion.

Proof. There is a well-defined valuation C×p /G → Q/Z. There is an isomorphism

O×Cp/(1 + m)
∼=→ F×p . Q/Z is torsion, and so is F×p . Then C×p /G fits in a torsion sandwich

F×p ∼= O×Cp/(1 + m)→ C×p /G→ Q/Z.

�
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Lemma 11.8. Suppose G′/G is torsion, and suppose we are given

G′
ψ
// V

G
?�

OO

ϕ

>>

where G ↪→ G′ is a homomorphism of abelian groups and V is a Q vector space. Then there
is a unique dotted extension ψ.

Proof. If g′ ∈ G′ choose n ≥ 1 such that ng′ ∈ G and define ψ(g′) = 1
n
ϕ(ng′) ∈ V .

(Check it’s well-defined, etc.) �

To finish the proof of Proposition 11.6, apply this to

C×p
log
// Cp

G
?�

OO >>

�

Lecture 12: October 14

Example 12.1.

Q(i)⊗Q Q5
∼= Q[x]/(x2 + 1)⊗Q Q5

∼= Q5[x]/(x2 + 1)

Question: is this a field? (i.e. is x2+1 irreducible?) It factors mod 5 as x2+1 ≡ (x+2)(x−2),
so by Hensel’s lemma these roots can be lifted to Q5. So Q5[x]/(x2 + 1) ∼= Q5 × Q5. This
matches the way 5 splits in Q(i).

If we try this with Q(i)⊗QQ7
∼= Q7[x]/(x2 + 1), we have that x2 + 1 is irreducible over F7 so

Q7[x]/(x2 + 1) is a field (more precisely, you need the converse – if x2 + 1 had a root in Q7

then you could reduce it to get a root over F7).

Now do this for Q(i) ⊗Q Q2
∼= Q2[x]/(x2 + 1); recall that x2 + 1 has a double root over F2.

Do a change of variables x = t + 1 (which doesn’t change irreducibility) to get Q2[t]/(t2 +
2t + 2). That polynomial is Eisenstein, hence irreducible, and this is totally ramified as a
field extension over Q2. This reflects the fact that (2) = (1 + i)2.

Theorem 12.2. L/K is a finite separable extension of degree n, A is a Dedekind domain
such that FracA = K, and B is integral over A. Fix a prime p ⊂ A; we saw that the valuation

v := vp splits into a bunch of valuations of B arising from the splitting of pB. Let K̂ be the

completion of K at v, and L̂i be the completion of L at wi. Then:

(1) L̂i is a field extension of K̂.

(2) The induced valuation ŵi on L̂i is the unique valuation extending v̂ on K.
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(3) e(ŵi/v̂) = ei := e(wi/v) (i.e. the ramification doesn’t change when you complete)
f(ŵi/v̂) = fi := f(wi/v)

(4) [L̂i : K̂] = eifi

(5) L⊗K K̂
ϕ→
∏
L̂i is an isomorphism.

Proof. (1) The completion of a field is a field (same proof that R is a field). The

inclusion K ↪→ L induces a homomorphism K̂ → L̂i, and field homomorphisms are always
injective.

(2) Fact about complete DVR’s: you only have one prime over a given prime. Since K̂ is

complete, there can be only one other extension of v̂ to L̂i.

(3) (K̂, v̂) has the same value group as (K, v). (If ai ∈ K converge to nonzero a ∈ K̂, then
v̂(a) = v(ai) for sufficiently large i, because of the nonarchimedean triangle inequality – use
the triangle between 0, a, and ai; the segment between a and ai is really small, so it just
loses.)

You can make the same argument for residue fields – if a− ai ∈ m then they have the same

image in the residue field. More formally: if ai ∈ K is a Cauchy sequence representing a ∈ K̂
and v̂(a) ≥ 0, then v(ai) ≥ 0 for large i, and ai− a ∈ m (the maximal ideal of “K̂”) for large
enough i, so ai has the same image in the residue field.

(4) There is only one prime, since it’s complete. So [L̂i : K̂] = e(L̂i/K̂)f(L̂i/K̂); by (3) this
is eifi.

(5) You have a diamond of fields

L̂i

L K̂

K

which gives rise to a homomorphism L⊗K K̂
ϕi→ L̂i via `⊗x 7→ `x. Let ϕ =

∏
ϕi : L⊗K⊗K̂ →∏

L̂i.

Choose a K̂-basis α1, . . . , αn of
∏
L̂i (this n is

∑
eifi by (4)). Use strong approximation

for nonarchimedean valuations to find ` ∈ L close to αi. (
∏
L̂i has the product topology;

being close to an element is the same as being close in each coordinate. So you approximate

elements of each L̂i by elements of Li, and approximate all of those by an element of L. This
is what the strong approximation theorem does.)

If there’s an earthquake, and the basis vectors move a little, then it’s still a basis; check this
by looking at the change-of-basis matrix (and noting that the determinant is continuous).
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Similarly, the matrix in Mn(K̂) expressing the `i in terms of the αi so the determinant is

close to 1 in K̂, hence not 0.

Thus `1, . . . , `n is another K̂-basis of
∏
L̂i. Thus L⊗K K̂

ϕ→
∏
L̂i is surjective.

Both have dimension n as K̂-vector spaces, so ϕ is injective too. �

Corollary 12.3. If in addition L/K is Galois, then L̂i/K̂ is Galois with Galois group Di

(elements of G(L/K) fixing the prime corresponding to Li).

Proof. Each σ ∈ Di acts on L respecting wi (i.e. wi ◦ σ = wi). So it also respects the

process of taking the completion. You get an induced action on the completion L̂i. That is,

you get a homomorphism Di → Aut(L̂i/K̂) (I’m writing Aut instead of Gal because I don’t
yet know it’s a Galois extension).

Injective: If σ ∈ Di acts as the identity on L̂i then σ|L is the identity (since L ⊂ L̂i). So
σ = 1. (I’m identifying σ with its extension.)

Surjectivity: It suffices to show the groups have the same size. Since it’s injective, #Di ≤
# Aut(L̂i/K̂); for any field extension, this is ≤ [L̂i : K̂]. So we have

eifi = #Di ≤ # Aut(L̂i/K̂) ≤ [L̂i : K̂] = eifi

so equality holds in the middle. �

Let Bi be the value ring of wi on L (this is B localized at qi), and let B̂i be the completion

of Bi. This is the ring version B̂i

B Â

A

of the previous diamond of fields: L̂i

L K̂

K

Corollary 12.4. B ⊗A Â ∼=
∏
B̂i

Proof. A is a DVR, B is a free A-module of rank n (if you tensor with K you get Ln),

B ⊗A Â is a free Â-module of rank n, and
∏
B̂i is a free Â-module of rank

∑
eifi = n.

If you have two modules contained in the same K̂-vector space, to check they’re the same
it suffices to check they’re the same after reducing mod p̂; that is, we want to check that

B ⊗ Â→
∏
B̂i is an isomorphism of Â-modules after reducing mod p̂.

On the LHS: Â/p̂ = A/p, so B ⊗ Â/p̂ = B ⊗ A/p = B/pB; on the RHS,
∏
B̂i/p̂B̂i =∏

B̂i/pB̂i =
∏
Bi/pBi; normally p would split, but since I localized at qi, this is just∏

Bi/q
ei
i Bi. This is isomorphic to the LHS = B/pB since pB =

∏
qeii . �
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The different. Let L,K,A,B be as above; let n be the degree of L/K. Recall there is
a pairing L × L → K sending (x, y) 7→ Tr(xy). Since our extension is separable, this is a
perfect pairing. For a finitely generated A-module M ⊂ L, define the dual module

M∗ := {` ∈ L : Tr(`m) ∈ A ∀m ∈M}.
If M is a free lattice with basis e1, . . . , en, then M∗ is a free lattice with the dual basis. If M is
a B-module, so is M∗ (proof: if x ∈M∗, b ∈ B, and m ∈M then Tr(bx ·m) = Tr(x · bm

∈M
) ∈ A

since x ∈M∗).

If M ∈ IB (this is the group of fractional ideals), then so is M∗. (Proof: M contains a free
A-module F of rank n, so M∗ ⊂ F ∗, which is free of rank n, so M∗ is finitely generated.)

Definition 12.5. B∗ = {` ∈ L : Tr(`b) ∈ A ∀b ∈ B} is called the inverse different (of the
extension). We just showed that it is a fractional ideal.

(B∗)−1 is called the different of the extension.

Sometimes people write DB/A = (B∗)−1. If A is obvious from context (e.g. Z), write DL/K

instead.

I claim that B∗ ⊃ B. I just have to check that elements of b satisfy the condition on B∗; this
is because Tr(`b) ∈ A (the trace is a sum of conjugates, which are integral, so it lands in A).

If you take inverses, the inclusions are reversed: DB/A ⊂ B (recall B, the unit ideal, is its
own inverse). So DB/A is an ideal of B.

DB/A respects localization: the different of the localized extension of rings is the part of DB/A

involving the prime.

DB/A also respects completion: if q lies over p, then D
B̂q/Âp

= DB/A · B̂q. Proof: without

loss of generality assume A is a DVR (just localize). Let L̂ := L ⊗KK̂ ∼=
∏
L̂q (this is not

a field). The ring version of this is B̂ = B ⊗A Â ∼=
∏
B̂q. Even though L̂ is not a field, it

still has a trace pairing, and you can define B̂∗ =
∏
B̂∗q (the trace form breaks up as a sum

of all the trace forms, etc., so you can compute everything one prime at a time). This equals

B∗⊗A Â. In other words, B∗ generates the fractional ideal B̂∗q ∈ IB̂q
. Now just take inverses

of these fractional ideals: DB/A generates D
B̂q/Âp

.

Lecture 13: October 16

Let L/K be a finite separable extension, A ⊂ K a Dedekind domain with FracA = K, and
B = the integral closure of A in L.

If A is a DVR, then B is free over A.
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Recall we defined the different as

DB/A := (B∗)−1 ∈ IB.
We also had the trace map Tr : L→ K.

Definition 13.1. Let e1, . . . , en ∈ L. Then define

disc(e1, . . . , en) := det Tr(eiej)1≤i,j≤n ∈ K.
(If all the ei are in B, then disc(e1, . . . , en) ∈ A (it’s a sum of conjugates).)

Proposition 13.2. Let Ω ⊃ K be a field such that there are n distinct K-homomorphisms
σ1, . . . , σn : L→ Ω. (L is generated by one element so Ω is big enough to be a splitting field.)
Then:

disc(e1, . . . , en) = (detσi(ej)1≤i,j≤n)2 .

Proof.

(Tr(eiej)) =

(
n∑
h=1

σh(eiej)

)
= (σh(ei)i,h) (σh(ej)h,j)

= (σh(ei)i,h) (σh(ei)i,h)T

Take determinants; a matrix and its transpose have the same determinant. �

Proposition 13.3. disc(1, x, x2, . . . , xn−1) =

(
detσi(x)j 1≤i≤n

0≤j≤n−1

)2

=
∏
i<j (σix− σjx)2

(It’s a Vandermonde matrix.)

Definition 13.4. If f =
∏n
i=1(X − αi), then define

Disc(f) :=
∏
i<j

(αi − αj)2.

Example 13.5.

Disc(x2 + bx+ c) = b2 − 4c

Disc(x3 +Ax+B) = −4A3 − 27B2

If f is monic and separable of degree n in A[x] and α is the image of x in A[x]/(f(x)), then

Disc f = disc(1, α, α2, . . . , αn−1). (13.1)

Let M be an A-lattice (i.e. a finitely generated A module such that KM = L) in L. Suppose
e1, . . . , en and e′1, . . . , e

′
n are two A-bases for M ⊂ L, then

disc(e′1, . . . , e
′
n) = (detQ)2 disc(e1, . . . , en)
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where Q is the change of basis matrix. (Why squared? look at Proposition 13.2.) In
particular, detQ is a unit in A.

Definition 13.6. In the case that A = Z, define discM := disc(e1, . . . , en) ∈ Z for any
Z-basis e1, . . . , en of M .

In the general case where M is free over A with basis e1, . . . , en, define

D(M) := fractional ideal generated by disc(e1, . . . , en) ∈ IA.

For any A,M (not necessarily free), define

D(M) := the A-module generated by disc(e1, . . . , en) for all e1, . . . , en ∈M .

Why is D(M) finitely generated in the most general case? For any free A-lattice N in L,
there exists nonzero a ∈ A such that M ⊂ a−1N . Then D(M) ⊂ D(a−1N). Since a−1N
is free, D(a−1N) is finitely generated, and since we’re working over a Noetherian ring, so is
D(M).

All of this stuff behaves well w.r.t. localization: if you want to know the exponent of p in
D(M), then look at D(Mp).

Definition 13.7. The discriminant ideal DB/A is defined to be D(B) (where B is thought
of as an A-lattice). This is an ideal of A.

Example 13.8. What is the discriminant of Q(i) (over Q)? (We’re implicitly choosing A = Z
and B = Z[i].)

Solution 1: use the definition.

disc(1, i) = det

(
Tr(1 · 1) Tr(i · 1)
Tr(1 · i) Tr(i · i)

)
= det

(
2 0
0 −2

)
= −4

Solution 2: use Proposition 13.2. Two embeddings of our basis (1, i) are (1, i) and (1,−i).(
det

(
1 1
i −i

))2

= (−2i)2 = −4.

Solution 3: use (13.1). Since B = Z[i] = Z[x]/(x2 + 1),

disc = Disc(x2 + 1) = −4

(using Example 13.5).

We will prove that the only primes that ramify are the ones that divide the discriminant.

Theorem 13.9.
DB/A = NL/KDB/A

(where NL/K is the ideal norm (Definition 7.4)).
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Proof. Localize to assume that A is a DVR. So B is free, say with basis e1, . . . , en.
Then B∗ is free, with basis e′1, . . . , e

′
n. Tr(miej) is the matrix ending e′1, . . . , e

′
n to m1, . . . ,mn

(notice that if mi = e′i for all i, then this would just be the identity matrix). Now take
mi = ei: Tr(eiej) is the matrix ending (e′i) to (ei). Take the determinant: DB/A = (B∗ : B).

If I is a nonzero ideal, then I−1

B
∼= B

I as B-modules. In our case,

DB/A = (B∗ : B)

= (B : (B∗)−1)

= (B : DB/A)

= NL/KDB/A

by definition of ideal norm. �

Theorem 13.10. A,B,L,K as always. The extension L/K is unramified at q iff q - DB/A.

Proof. Without loss of generality assume A is a DVR with maximal ideal p. We can
also assume that A is complete (so there is only one prime q above p). This implies that
B is a complete DVR, and pB = qe. B is automatically free; so we can choose an A-basis
b1, . . . , bn; let b1, . . . , bn be the reductions in B/pB. We know that DB/A looks like qm for

some m ≥ 0; DB/A is the norm of this, i.e. pfm.

L/K is unramified at q ⇐⇒ e = 1 and B/q is separable over A/p

⇐⇒ B/qe = B/pB is a separable field extension of A/p

(recall b1, . . . , bn is a basis for this over A/p)

(∗)⇐⇒ det Tr(bibj) 6= 0 in A/p

(This is because traces of nilpotent elements are zero, and the determinant will be zero if
B/pB has any nonzero nilpotent – choose a basis containing that nilpotent. Actually, see
better explanation below.)

⇐⇒ det Tr(bibj) 6≡ 0 (mod p)

This is the discriminant, so:

⇐⇒ p - DB/A

⇐⇒ m = 0

⇐⇒ q - DB/A.

Now more explanation for (*).

General fact: let k be a field and R a finite-dimensional k-algebra (as a vector space). These
are Artinian rings, and there is a structure theorem which implies that

R is a separable k-algebra ⇐⇒ DR/k 6= 0.
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Case 1: there is a nonzero nilpotent element r. Then Tr( rr′

nilpotent

) = 0 for all r′ ∈ R. (The

multiplication matrix of a nilpotent element is nilpotent.) Then the matrix Tr(rirj) has a
zero row, and its determinant is zero.

Case 2: there is no nonzero nilpotent element. Then R = L1 × . . . × Ls where Li are finite
field extensions of k. On the HW you proved that if it’s inseparable, the entire trace map is
zero. So DR/k = DL1/k · · · · ·DLs/k is nonzero iff each Li is separable over k. �

Corollary 13.11. L/K is ramified (at some q | p) above p iff p | DB/A.

Proof. p | DB/A = NL/KDB/A iff there exists q | p such that q | DB/A. �

Corollary 13.12. There are only finitely many primes of B that ramify. There are only
finitely many primes of A that ramify.

Example 13.13. Let L = Q(α) where α is a root of x3 − x − 1. (This is irreducible,
because if not, there is a linear factor, but there is no rational root by the rational root test;
alternatively, it is irreducible over F2.) We want to compute the ring of integers OL.

We know Z[α] ⊂ OL. These are both rank-3 lattices, so it has to be finite index (say, index
m).

discZ[α] = disc(1, α, α2) = Disc(x3 − x− 1) = −4(−1)3 − 27(−1)2 = −23

Then discOL = −23
m2 ∈ Z. That severely limits the possibilities for m. . .

The factorization of (p) in Z[α] corresponds to the factorization of x3−x−1 (mod p). There
is ramification at p = 23: there are two primes over this; one of them ramifies and one of
them doesn’t.

Lecture 14: October 21

14.1. Computing the different. Let L/K be a finite separable extension of degree n,
and A and B as usual.

Proposition 14.1. If B = A[α], and f is the minimal polynomial of α over K, then DB/A =
(f ′(α)).

Lemma 14.2 (Euler).

Tr

(
αi

f ′(a)

)
=


0 if i = 0, 1, . . . , n− 2

1 if i = n− 1

something in A if i ≥ n
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Proof. Use partial fractions! Factor f(x) =
∏
β∈R(x− β) over K. Then

1

f(x)
=
∑
β∈R

1

f ′(β)(x− β)
.

Write 1
x−β = 1

x(1−β
x

)
= 1

x + β
x2 + β2

x3 + . . . . So:

1

f(x)
=

1

xn
− an−1

xn+1
+ . . . .

Now equate coefficients of 1
xi+1 :

LHS =


0 if i < n− 1

1 if i = n− 1

something in A if i > n− 1.

The coefficient on the RHS is
∑

β∈R
1

f ′(β)β
i = Tr

(
αi

f ′(α)

)
. �

Proof of Proposition 14.1. Let B be the A-span of 1, α, α2, . . . , αn−1. Let I =(
1

f ′(α)

)
= the A-span of 1

f ′(α) ,
α

f ′(α) , . . . ,
αn−1

f ′(α) (as a fractional ideal of B). Then I ⊂ B∗

since Tr
(
αi · αj

f ′(α)

)
∈ A by Lemma 14.2. Since these are free modules,

(B∗ : I) = det Tr

(
αi

basis
for B

αj

f ′(α)

basis
for I

)
0≤i,j≤n−1

.

(You’re expressing the basis for I in terms of the dual basis, by pairing it with the basis for

B.) This matrix is easy to take a determinant of, because it has the form

 1
1 ∗

1 ∗ ∗

 and

the determinant of this is just 1. So B∗ = I, and DB/A = I−1 = (f ′(α)). �

Proposition 14.3. Let M/L/K be a tower of finite separable extensions, and a corresponding
tower of rings C/B/A. Then DC/A = DC/BDB/A. (Note that the first two are C-ideals, but
the last is a B-ideal. But you can still multiply them.) Taking NM/K in two stages, you get
DC/A = (NL/KDC/B) ·Dn

B/A (where n) is the degree of M/L.

Proof. Omitted. Just go back to the definition of the inverse different. �

Aside about algebraic geometry 14.4. Let k be a field, and let K be a finitely generated
(as a field) algebraic field extension of k of transcendence degree 1. (That is, K is a finite
extension of k(t).) Algebraic geometry gives a unique regular projective curve X over k whose
function field is K. Any nonempty open subset of X (in the Zariski topology) is SpecA for
a Dedekind domain A. (E.g. you get the projective line by gluing together two affine lines,
and those are Spec k[t] (a Dedekind domain).)

Suppose you have a finite separable extension L/K of degree n. Suppose K is the function
field of K; then L is the function field of Y , and there is a dominant morphism Y → X.
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Choose a nonempty open affine SpecA ⊂ X. Let SpecB be the inverse image of SpecA;
there is a corresponding inclusion A ↪→ B. Then DB/A is an ideal of B. Nonzero primes
are the points of the curve; an ideal is a product of powers of primes, which corresponds to
an integer combination of points. That is, DB/A is an effective divisor (the coefficients are
≥ 0 since it’s an actual ideal, not just a fractional ideal) on the affine curve SpecB. If you
vary A, you get an open cover of X, and the inverse image gives an open cover of Y . The
different differents DB/A glue together to get a divisor on Y , called the ramification divisor
R of Y → X – it measures which points are ramified in this covering of curves.

You can use this to relate the genus of Y to the genus of X: there is a generalized Riemann-
Hurwitz formula

2gY − 2 = n(2gX − 2) + degR.

(You define the degree of the morphism Y → X to be the degree of the field extension L/K.)

What is the genus? If you’re working over C, then X(C) is a 1-dimensional complex manifold
(this relies on regular-ness), which can be viewed as a 2-dimensional real manifold. Since X
is projective, this is a compact manifold. It also turns out to be an oriented surface. Then
gX is the topological genus of this surface.

14.2. Unramified extensions of a complete DVR.

Theorem 14.5. Let A be a complete DVR, K = FracA, and k = the residue field. There is
an equivalence of categories{

finite unramified extensions K ′ of K

with K-algebra homomorphisms

}
−→

{
finite separable extensions of k

with k-algebra homomorphisms

}
that takes K ′ to its residue field, and on morphisms takes (K ′ → K ′′) to the induced map on
residue fields.

In particular,

• there is a bijection between isomorphism classes of finite unramified extensions of K and
finite separable extensions of k;

• if K ′,K ′′ have residue fields k′, k′′, then HomK-alg(K ′,K ′′)→ Homk-alg(k′, k′′) is a bijec-
tion.

So everything you’d ever want to know about a finite unramified extension over a complete
DVR is preserved after passing to the residue field.

Proof. To check that a functor is an equivalence of categories, you need to show it is

• full and faithful (i.e. HomK(K ′,K ′′)→ Homk(k
′, k′′) is surjective and injective);

• essentially surjective (i.e. every k′ is isomorphic to the residue field of some K ′).

Essentially surjective: Given k′, use the primitive element theorem to write k′ ∼= k[x]/(f(x))
where f is an irreducible, separable polynomial over k. Let f ∈ A[x] be any lift of f . Let
K ′ = K[x]/(f(x)). We proved earlier that K ′/K is an unramified extension with valuation
ring A′ = A[x]/(f(x)) and residue field k′.
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Full and faithful: Let A′, A′′ be value rings corresponding to K ′,K ′′. Write k′ ∼= k(α) for
some α ∈ k′ using the primitive element theorem. Lift α to α ∈ A′. Then A′ = A[α] because
it has the correct degree (since it’s unramified, [K ′ : K] = f = [k′ : k]). Let f ∈ A[x]
be the minimal polynomial of α over K. Then HomK(K ′,K ′′) → HomA(A′, A′′) given by
restriction is a bijection (in the reverse direction, tensor with K). There is also a map
HomA(A′, A′′)→ Homk(k

′, k′′); we need to show that this is a bijection.

HomA(A′, A′′) = HomA(A[x]/f,A′′) so specifying a homomorphism is the same as saying
where x goes, and xmust go to a root of f inA′′. That is, HomA(A′, A′′)↔ {roots of f in A′′}.
Similarly, Homk(k

′, k′′) ∼= Homk(k[x]/f, k′′) ∼= {roots of f in k}. So it suffices to show that
{roots of f in A} → {roots of f in k′′} is a bijection. This is exactly what Hensel’s lemma
says. �

Remark 14.6. We proved that HomK(K ′,K ′′) → Homk(k
′, k′′) is a bijection even if only

K ′ is unramified over K.

Example 14.7. Let A = Zp and K = Qp; then k = Fp. Fix Fp,Qp. For each n ≥ 1, Fp has

a unique extension of degree n in Fp (namely, Fpn). Therefore, Qp has a unique unramified

extension of degree n in Qp (this happens to be FracW (Fpn) where W (Fpn) is the ring of
Witt vectors).

Definition 14.8. Fix a separable closure F sep. Define Kunr to be the maximal unramified
extension: i.e.

Kunr =
⋃

finite unram.
ext. ⊂Fsep

K ′.

The reason I fixed F sep is so that all of these things are contained in it; otherwise, you don’t
know how to take a union.

Example 14.9. Qunr
p /Qp is the union of all the FracW (Fpn)’s; this is an infinite extension

and (by the equivalence of categories) Gal(Qunr
p /Qp) ∼= Gal(Fp/Fp). This is lim←−

n

Gal(Fpn/Fp) =

lim←−
n

Z/nZ = Ẑ (where the n are ordered by divisibility in the limit). This is called the profinite

completion of Z. You can also show that Ẑ =
∏
p Zp.

So if you want to describe an automorphism of the big field, you just have to describe a
compatible collection of automorphisms of the little fields.

Qunr
p has value group Z and residue field F p (the growth of the value group is controlled by

e, which is 1 in the unramified case).

Lecture 15: October 23
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Let A be a complete DVR, L/K a finite separable (but not necessarily unramified) extension
where K = FracA. Also assume that the extension `/k of residue fields is separable. We
denote e := eL/K and f = fL/K .

Theorem 15.1. (1) Among subextensions of L/K unramified over K, there is one containing
all the others; call it K ′.

(2) L/K ′ is totally ramified. [L : K ′] = e and [K ′ : K] = f . The extension of residue fields
corresponding to L/K ′/K is `/`/k.

(3) If L/K is Galois, then Gal(L/K ′) = IL/K (the inertia subgroup in Gal(L/K)).

Proof. (1) Let K ′ be an unramified extension of K with residue field ` (you can do this

by Theorem 14.5). The inclusion ` ↪→ ` induces an inclusion K ′ ↪→ L. If K
unram
⊂ F ⊂ L, then

the corresponding inclusion of residue fields f ⊂ ` ⊂ ` induces a series of field homomorphisms
F → K ′ → L. The composition is an inclusion, and K ′ ↪→ L is an inclusion, so F → K ′ is
an inclusion as well.

(2) Now we have a tower L/K ′/K where K ′/K is unramified. This corresponds to an
extension of residue fields `/`/k. First note that [K ′ : K] = f and [L : K ′] = e. We
showed above that fK′/K = 1 (since the extension of residue fields is `/k), so fL/K′ = 1, so
eL/K′ = [L : K ′] = eL/K . Thus L/K ′ is totally ramified.

(3) IL/K′ ⊂ IL/K and IL/K′ ⊂ Gal(L/K ′). The groups IL/K′ , IL/K ,Gal(L/K ′) have cardi-
nalities eL/K′ , e, and [L : K ′], respectively. We showed in (2) that these are all the same. �

15.1. Tamely ramified extensions. Same setup as in the previous theorem; suppose
char k = p.

Definition 15.2. L/K is tamely ramified if p - e (this is always true when the characteristic
zero.)

L/K is wildly ramified if p | e.

Example 15.3. L = K(π1/e) (where π is the uniformizer of A) is totally ramified of degree
e over K. This is tamely ramified iff p - e.

Theorem 15.4. Let A,K,L,B be as above. If L/K is totally tamely ramified of degree e,

then L = K(π1/e) for some uniformizer π of A.

In general, if you have any tamely ramified extension, you can break it up as an unramified
bottom part and a tamely totally ramified top part.

Proof. It turns out that you have to be careful with the choice of π. But start off by
choosing arbitrary uniformizers πK of K and πL of L. If we normalize so that v(πK) = 1,
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then v(πL) = 1
e (by one definition of the ramification index). Then L = K(πL) because

[L : K] ≥ [K(πL) : K] ≥ e = [L : K] (and hence the inequalities are equalities).

v(πeL) = v(πK), but a priori πeL = u · πK for some “unit” u ∈ L (i.e. v(u) = 0). If u were

1, then L = K(πL) = K(π
1/e
k ) as desired. The goal is to choose πK , πL differently so as to

make u = 1.

You can replace πK with t · πK , where t is a unit (in A). That is, you can multiply u by an
element t ∈ A×. A and B have the same residue field (L/K is totally ramified, so f = 1).
You can multiply u by something that reduces to u−1 in the residue field; so assume that
u ≡ 1 (mod m)B (maximal ideal of B).

You can change πL by multiplying it by a unit in B; this multiplies πeL = uπK by unite. I

claim that u is an eth power; this is because xe = u has a solution in B by Hensel’s lemma.
So we can make u = 1. �

Let A be a complete DVR. Let K = FracA. You can extend the absolute value uniquely to
any extension, and hence you get an absolute value on K.

Definition 15.5. Let α, β ∈ K with α separable over K. Let α = α1, . . . , αn ∈ K be the
conjugates of α. Say that “β belongs to α” if |β−α| < |β−αj | for all j ≥ 2 (it is closer to α
than any of the other conjugates). Equivalently, |β − α| < |α− αj | for all j ≥ 2 (equivalence
is by non-archimedeanness – every nonarchimedean triangle is isosceles).

Lemma 15.6 (Krasner’s lemma). A,B,K,L as before (in particular A is a complete DVR).
If β belongs to α, then K(β) ⊃ K(α).

Proof. If not, then α /∈ K. Then there is some σ ∈ the Galois group that fixes β and
moves α (i.e. β ∈ Gal(K/K(β)) but σα 6= α). We know that |σx| = |x| for all x ∈ K
by uniqueness of absolute values. Take x = β − α; then this tells you |β − σα| = |β − α|,
contradicting the definition of “β belongs to α”. �

Proposition 15.7. Take A,B,K,L as before. Let f ∈ K[x] be a separable polynomial, monic
irreducible of degree n. If g ∈ K[x] is sufficiently close to f (the coefficients are sufficiently
close), then

(1) each root β of g belongs to a root α of f ;
(2) K(β) = K(α);
(3) g is separable and irreducible.

Proof. (1) Fix β. Then f(β) ≈ g(β) = 0 (the coefficients are close, and β is not too big
– the coefficients are bounded, and that bounds the roots). f(β) =

∏
roots α

of f
(β − α). One of

these factors β − α must be small, less than |α′ − α| for distinct roots α, α′ of f if g is close
enough to f .
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(2) By Krasner’s lemma, K(β) ⊃ K(α). But K(β) has degree ≤ n, and K(α) has degree n.
So K(β) = K(α).

(3) K(β) = K(α) is a separable extension of degree n over K. So g is separable and irre-
ducible. �

Corollary 15.8. Let K/Qp be a finite extension of degree n. (This is automatically separable
because we’re in characteristic 0.) Then there exists F ⊂ K such that [F : Q] = n and
F ·Qp = K.

K
finite of degree n

F

degree n

Qp

Q

Proof. By the primitive element theorem, K = Qp(α). Let f be the minimal polynomial
of α over Qp; this lives in Qp[x]. Approximate f by some g ∈ Q[x]; you can do this since Q is
dense in Qp (everything in Qp is a limit of things in Q). By Proposition 15.7, g is irreducible

over Qp (it is irreducible over Q), and has a root β ∈ Qp such that Qp(β) = Qp(α). Let
F = Q(β). Then [F : Q] = deg g = n and F ·Qp = Qp(β) = Qp(α) = K. �

Example 15.9. This sort of works over R too. Suppose f = x2 + π2 over R, and you
approximate this by g = x2 + 9. This leads to

C

Q(
√
−9) R

Q

Corollary 15.10. Choose an algebraic closure Qp of Qp. Let Q be the algebraic closure of

Q inside Qp. Then Q ·Qp = Qp.

Qp

Q Qp

Q
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Corollary 15.11. The homomorphism Gal(Qp/Qp) → Gal(Q/Q) given by restriction of
automorphisms is injective.

Lecture 16: October 28

Definition 16.1. Let V be an n-dimensional real vector space. A lattice in V is a subgroup
of the form

Λ := Ze1 + · · ·+ Zem
where e1, . . . , em ∈ V are linearly independent over R.

A lattice is full if m = n.

Nonexample 16.2. Z + Z
√

2 in R is not a lattice because the generators are not linearly
independent.

Proposition 16.3. Let Λ ⊂ V be a subgroup. Then Λ is a lattice ⇐⇒ Λ is (topologically)
discrete.

Proof. ( =⇒ ) Extend e1, . . . , em to a basis e1, . . . , en of V . Then there is an iso-
morphism V ∼= Rn where the ei’s correspond to the standard basis of Rn. Then Λ ∼=
Zm × {0}n−m ⊂ Rn so Λ is discrete. ( ⇐= ) Assume Λ is discrete. Replace V by the
R-span of Λ. Change basis to assume that V = Rn and Λ ⊃ Zn.

Claim 16.4. (Λ : Zn) is finite.

Proof. If not, the unit cube contains infinitely many elements of Λ. Break the unit cube
into smaller cubes of side length 1

q . By the pigeonhole principle, one of these cubes contains

≥ 2 elements of Λ. Their difference is an element of Λ of length ≤ diam(cube) = 1
q

√
n. But

q was arbitrary, so Λ contains arbitrarily short vectors. So 0 is not an isolated point in Λ.
This contradicts the assumption that Λ was discrete. �

So Λ is finitely generated. So Λ ∼= Zv1⊕ . . .⊕Zvn⊕ a finite abelian group, but the finite group
is zero since Λ ⊂ V (so there are no elements of finite order). v1, . . . , vn are independent since
there are n of them and they span Rn. So Λ is a lattice. �

We want to talk about volume, so from now on assume V is equipped with a positive definite
inner product. So you get a notion of length and volume (i.e. Haar measure – if you identify
V with Rn this will just be Lebesgue measure × a scalar). You can always reduce to the case
V ∼= (Rn with the usual inner product).

Example 16.5. Let Λ = Ze1 + · · · + Zen ⊂ Rn be a full lattice. Let F = {a1e1 + · · · +
anen : 0 ≤ ai < 1}. (E.g. if n = 2 then this is the parallelogram spanned by e1, e2, and
e1 + e2. It is clear that the lattice gives a tiling of the plane by this parallelogram.) Then
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Rn =
⊔
λ∈Λ(F + λ). Also, vol(F ) = |det(e1, . . . , en)| (this is the matrix whose ith column is

ei).

Definition 16.6. A fundamental domain for Λ is a measurable subset F ⊂ V such that
V =

⊔
λ∈Λ(F + λ).

There are many possibilities for this: if F is a fundamental domain, then so is F + e1, or you
can cut it up into pieces and translate them by different elements of Λ. It turns out that this
is basically all that can happen.

Proposition 16.7. If F,G are two fundamental domains for Λ ⊂ V then vol(F ) = vol(G).

Proof. Translation by −λ of (F +λ)∩G is F ∩ (G−λ). Since these are translates, they
have the same volume. But

⊔
λ(F + λ) ∩G = G and

⊔
F ∩ (G− λ) = F , so these also have

the same volume. �

Definition 16.8. Define the covolume to be covol(Λ) := vol(F ) for a fundamental domain.
This is vol(V/Λ). It measures how spread out the lattice is.

Proposition 16.9. If Λ ⊃ Λ′ are lattices in V , covol(Λ′) = (Λ : Λ′) covol(Λ).

Proof. If F is a fundamental domain then
⊔

coset reps
λ for Λ′⊂Λ

F + λ is a fundamental domain for

Λ′. �

Lemma 16.10. Let S ⊂ Rn be any measurable subset. If vol(S) > 1, then there exist distinct
s, s′ ∈ S such that s− s′ ∈ Zn.

Proof. Chop Rn into unit cubes, and translate the pieces of S into the “standard funda-
mental lattice” [0, 1)n. They overlap, because the volume is > 1. If s, s′ are two overlapping
points (after being translated), then s− s′ ∈ Zn. �

Theorem 16.11 (Minkowski’s lattice point theorem for Zn ⊂ Rn). Let S ⊂ Rn be symmetric
(i.e. if x ∈ S then −x ∈ S) and convex (i.e. if x, y ∈ S, then the line segment joining x and
y is completely contained in S). If vol(S) > 2n, then S contains a nonzero lattice point.

It’s kind of obvious that 0 ∈ S: if x ∈ S, then −x ∈ S, and so the line between them – and
in particular its midpoint 0 – is in S.

Proof. vol(1
2S) > 1 (by 1

2S I mean scaling all the vectors in S by 1
2) so by Lemma 16.10

there exist distinct 1
2s,

1
2s
′ ∈ 1

2S such that 1
2s −

1
2s
′ ∈ Zn. Write 1

2s −
1
2s
′ = s+(−s′)

2 , so this
is the midpoint of the segment joining s and −s′. By convexity, it is in S. �
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Theorem 16.12 (Minkowski’s lattice point theorem). Let V be an R-vector space with inner
product, and Λ a full lattice in V . Let S ⊂ V be a symmetric, convex subset. Suppose that
vol(S) > 2n covol(Λ). Then S contains a nonzero element of Λ.

Theorem 16.13. If p is a prime and p ≡ 1 (mod 4), then p is a sum of two integer squares.

There’s another standard proof of this using the fact that Z[i] is Euclidean (but proving that
involves some geometry).

Proof. The group F×p is cyclic of order p − 1, so F×p contains an element i of order 4.

Then i2 is of order 2; the only solutions to x2 − 1 over a field are ±1, so i2 = −1. Let

Λ = {λ ∈ Z2 : (λ (mod p)) ∈ Fp · (1, i)}
(e.g. if p = 5 (so i = 2), then this includes (n, 2n) for all n but also (3, 1) because it
is ≡ (3, 6) = 3 · (1, “i”

2

) mod 5). We have (pZ)2 ⊂ Λ ⊂ Z2. Since covol(Z2) = 1 and

covol((pZ)2) = p2 and the inclusions are strict, the inclusions are both index p so covol(Λ) =
p. Let S = {v ∈ R2 : |v| <

√
2p}; the disk is obviously symmetric and convex. Then

vol(S) = π · 2p > 4p = 22 · covol(Λ). By Minkowski’s theorem, S contains some nonzero
(a, b) ∈ Λ. Then a2 + b2 ≡ 0 (mod p) because (a, b) ∈ Λ, and also 0 < a2 + b2 < 2p since
(a, b) ∈ S. So a2 + b2 = p. �

To prove that every integer is the sum of four squares, try generalizing this. . .

16.1. Places.

Definition 16.14. A place v of K is an equivalence class of nontrivial absolute values on K.
Let MK be the set of places of K.

Example 16.15. Ostrowski’s theorem says that MQ = {| |p : p ≤ ∞}, and that is in
bijection with the set of primes, including the “infinite prime”. The idea is that, in general,
absolute values sort of correspond to primes, possibly infinite primes.

Every v ∈MK is (the equivalence class of) an extension of some | |p for some p ≤ ∞. Write
v | p.

v is archimedean if v | ∞, and nonarchimedean if v | p for some finite prime p.
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Definition 16.16. If v ∈Mk, then let Kv be the completion of K w.r.t. v. Get

Kv

finite

K

finite

Qp

Q

where v | p. (Note that “Qp” might mean R if p =∞.)

Example 16.17. If v is archimedean, then Kv is a finite extension of R; the only possibilities
are R or C. If v is nonarchimedean, then v is associated to a discrete valuation on K extending
vp on Q.

Theorem 16.18. K ⊗Q Qp
∼=→
∏
v|pKv (even if p =∞).

Proof. K⊗QQp is a separable algebra over Qp, so it is ∼=
∏
Li, where each Li is a finite

separable extension of Qp; I need to argue that the factors Li correspond to completions.

We know that | |p on Qp extends to some | |i on Li, and Li is complete, and K is dense in
Li. Let vi = | |i restricted to K. If you have a dense subfield of a complete field, then the
completion of the subfield is the original complete field. So Li = Kvi .

We have a map K ⊗QQp → Kv because both K,Qp ⊂ Kv. This is surjective because they’re
dense. So each Kv appears at least once as an Li.

Now the only thing to rule out is having one Kv multiple times. This can’t happen: K is
dense in K ⊗ Qp

∼=
∏
Li. If two of the factors were the same, then K would be going in as

the diagonal to the product of those two factors. �

Corollary 16.19. There is a bijection

HomQ(K,Qp)
/

Gal(Qp/Q)←→ {places v | p}.

(The LHS is the set of embeddings of K into Qp, up to Galois conjugacy.)

Proof.

HomQ(K,Qp) = HomQp(K ⊗Q Qp,Qp)

=
⊔
v|p

HomQp(Kv,Qp)

Ways of embedding Kv are in bijection with ways of choosing a root. So the Galois group
acts transitively on HomQp(Kv,Qp), so there’s a single orbit here. �

Example 16.20. Hom(K,C)/ complex conjugation is in bijection with {archimedean places}.
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Hom(K,R) is in bijection with the set of size-1 orbits, which is in bijection with the real
places. The number of these is called r1. Homomorphisms K → C not mapping into R
mod complex conjugation correspond to the size-2 orbits; these are the complex places. The
number of these is called r2.

So the size of the whole set is r1 + 2r2, and that is the number of roots, i.e. [K : Q].

Lecture 17: October 30

If Λ = Ze1 + · · · + Zen ⊂ Rn, then we showed last time that covol(Λ) = vol(F ) = |detA|,

where A =


...

...
e1 en
...

...

. There is another formula that is useful: note that this is also equal

to
√

det(AtA) =
√

det(〈ei, ej〉).

Recall that places are equivalence classes of nontrivial absolute values on K; each v is above
some p ≤ ∞. We had

Theorem 17.1. K ⊗Q Qp
∼=
∏
v|pKv

The new information here is about v | ∞. We have

KR := K ⊗ R ∼=
∏
v|∞

Kv
∼= Rr × Cs

where r + 2s = n (r and s this time are the same as r1 and r2 last time). K embeds into
this; HomQ(K,C) is a set of order n with an action of Gal(C/R). Homomorphisms that are
fixed by this Galois group are the ones that land entirely in R. There is a correspondence

{places v | ∞}� Hom(K,C)
/

Gal(C/R) � {factors of KR}
because there are r size-1 orbits (i.e. |Hom(K,R)| = r) and s size-2 orbits (these correspond
to nonreal embeddings K → C, modulo complex conjugation), and r + 2s = n.

Example 17.2. Let K = Q[x]/(x3 − 2). There are three possible embeddings, sending x to
3
√

2 ∈ R, or ζ3
3
√

2, or ζ2
3

3
√

2 ∈ C where ζ3 is a primitive cube root of 1. So in this case, n = 3,
r = 1, and s = 1 (there are two places above ∞).

Definition 17.3. If v | p, the normalized “absolute value” on Kv is

|x|v =
∣∣NKv/Qp(x)

∣∣
p

where |p|p = 1
p for finite p and |x|∞ is what you think it is for x ∈ R.

Warning 17.4. We will show below that this is not always an absolute value.
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Example 17.5 (Nonarchimedean case). Suppose that v | p < ∞. Let Ov be the DVR in
Kv. If x ∈ Ov, then I claim that

|x|v =

(
#
Ov
xOv

)−1

.

Why? (
NKv/Qp(x)

)
= N(xOv)

where these are both fractional ideals for Zp, the norm on the LHS is the element norm, and
the norm on the RHS is the ideal norm. This = (Ov : xOv), where pm = #Ov/xOv. To get
the result, just take | |p.

Example 17.6 (Archimedean case). If v is real, then Kv = Qp = R, so | |v is the usual
absolute value on R.

If v is complex, | |v is the square of the absolute value on C. But this isn’t an absolute value:
|1 + 1|v 6≤ |1|v + |1|v (the triangle inequality fails).

Another interpretation: choose a Haar measure on Kv. Then composing this with multipli-
cation by x gives another Haar measure. There is only one Haar measure, up to scalar, and
it turns out that in this case, the scalar multiple is |x|v.

Theorem 17.7 (Product formula). If x ∈ K× then∏
v∈MK

|x|v = 1.

Proof. NK/Q(x) = NK⊗Qp/Qp(x) (because if you have a basis for K/Q, after tensoring
with Qp you can use the same basis; the norm is the determinant of the multiplication-
by-x map, and it’s the same matrix in each case). Multiplication by an element on K ⊗
Qp
∼=
∏
v|pKv is the same as multiplying each factor, so the norm breaks up as a product:

NK⊗Qp/Qp(x) =
∏
v|pNKv/Qp(x). Now take | |p to get |NK/Q(x)|p =

∏
v|p |x|v. Take the

product over all p ≤ ∞:

1 =
∏

all p≤∞

∣∣NK/Q(x)
∣∣
p

=
∏

all p≤∞

∏
v|∞

|x|v =
∏
v

|x|v

where the first equality is using the product formula over Q. �

There are analogies between number theory and curves:
67



Algebraic number theory Lecture 17

number field object function field analogue∣∣∣Z k[t] (regular functions on A1)∣∣∣Q k(t) (function field of P1
k)∣∣∣vp ←→ | |p vf for some monic irred. f ∈ k[t]∣∣∣| |∞ v∞ (“valuation at ∞”: v∞
( g
h

)
= deg h− deg g)∣∣∣number field K function field K of some regular projective integral curve

(= finite extension of k(t))∣∣∣element of K element of K = rational function on X∣∣∣places of K Zariski-closed points of X∣∣∣product formula degree of principal divisor is 0

If f ∈ k[t], vf (ϕ) is the order of vanishing of ϕ at a.

Part of the reason for introducing | |∞ is because it’s like compactifying SpecZ, analogously
to P1 being better-behaved than A1. Just as vp and | |∞ are all the absolute values on Q (up
to equivalence), on the function field side vf and v∞ are all the nontrivial absolute values on
k(t) that are trivial on k (up to equivalence). The proof of this is basically the same as the
proof of Ostrowski’s theorem.

Think of Z as regular functions on SpecZ, where n is the function p 7→ n (mod p).

There are embeddings

OK ↪→ K ↪→ KR = K ⊗ R ∼= Rr × Cs ↪→ KC := K ⊗ C ∼= Cr+2s = Cn.
(KC = KR⊗RC so the R’s in KR become C’s, and the C’s become C⊗RC ∼= R[x]/(x2 +1)⊗R
C = C[x]/(x2 + 1) ∼= C × C where the last isomorphism sends x 7→ (i,−i).) As topological
abelian groups, this is

Zn ↪→ Qn ↪→ Rn ↪→ Cn.
So OK is a full lattice in KR.

Right now KR just a vector space; we need to choose a measure so we can talk about
Minkowski spaces. It suffices to define length, and for that it suffices to define an inner
product. There is a canonical hermitian inner product on Cn, defined as

〈(a1, . . . , an), (b1, . . . , bn)〉 =
n∑
i=1

aibi ∈ C.

There is a canonical isomorphism K ⊗ C
∼=→ Cn arising from the injection K ↪→ Cn given

by taking x 7→ (σ(x))σ∈Hom(K,C). So we get a canonical inner product on KC. Now restrict
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this to get a canonical inner product on KR. This is a usual inner product (bilinear, not
hermitian).

If x, y ∈ K ↪→ KR, then 〈x, y〉 =
∑

σ:K→C σ(x)σ(y). I claim that this is in R: either σ already
maps into the real numbers, or it is part of a pair.

Example 17.8. Let K = Q(i). There are no real embeddings, and one pair of complex
embeddings, σ1 : i 7→ i and σ2 : i 7→ −i. KR = C and r = 0, s = 1. What is the length of
i⊗ 1 ∈ KR?

〈i⊗ 1, i⊗ 1〉 = 〈(i,−i), (i,−i)〉

= i · i+ (−i)(−i) = 2

so ‖i⊗ 1‖ =
√

2.

Warning 17.9. Although KR ∼= Rr × Cs
as R-V.S.∼= Rr+2s, volume in KR corresponds to 2s·

Lebesgue measure on Rr+2s. The intuition is that C ↪→ C×C embeds C anti-diagonally (i.e.
x 7→ (x, x)), so everything gets stretched by

√
2.

We have proved that OK is a full lattice in KR. What is its covolume?

Proposition 17.10. covol(OK) =
√
|discOK |

(We’re thinking of K as an extension of Q, and OK as a Z-module.)

Proof. Let e1, . . . , en be a Z-basis for OK . Let A = (σ(ej))σ,j ∈ Mn(C) where the

rows are indexed by homomorphisms σ : K ↪→ C. We showed that discOK = (detA)2 by
considering ATA. By the fact at the beginning of this lecture,

covol(OK)2 = det 〈ei ⊗ 1, ej ⊗ 1〉i,j
= det

(∑
σeiσej

)
= det(A

T
A) = detAdetA

= |detA|2 .

Thus |discOK | = covol(OK)2. �

Lecture 18: November 4

HW #9 due on Monday, November 17.

Last time we talked about viewing OK as a lattice in Cn via the inclusions

OK ↪→ K ↪→ KR ∼= Rr × Cs ↪→ KC ∼= Cn

where n = r + 2s = [K : Q]. We proved that covol(OK) =
√
| discOK |.
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Corollary 18.1. Let I be a nonzero fractional ideal of OK . Then

covol(I) =
√
|discOK | ·N(I).

Proof. Multiplying I by a positive integer b multiplies both sides by bn. Without loss
of generality I ⊂ OK . Then covol(I) = covol(OK) · (OK : I). �

If 0 6= a ∈ I, then I | (a), so N(I) | |N(a)| =
∏
σ:K→C |σa| (note that N(I) is the ideal norm,

and N(a) is the element norm). (In fact, I = (a) ⇐⇒ N(I) = |N(a)| in Z; this can be used
as a test for principal-ness.)

Theorem 18.2 (Minkowski bound). Let K be a number field. Then there exists a constant
m = mK ∈ R>0 such that for any nonzero fractional ideal I of K, there exists a nonzero
a ∈ I such that |N(a)| ≤ m ·N(I). In fact, m := n!

nn

(
4
π

)s√|discOK | works, where s is the
same as in n = 2s+ r. This number is called the Minkowski constant of K.

Proof. We will apply the Minkowski lattice point theorem to the lattice I in KR, and a
symmetric convex set S ⊂ KR chosen so that |N(a)| is small for every a ∈ S.

(For example, if K = Q(
√

5), then KR = R × R (there are two real embeddings) and the
norm map KR = R × R → R is given by (x, y) 7→ xy. The region where the norm is ≤ a
constant is

This is not convex, but you can set S to be the diamond {(x, y) : |x|+ |y| ≤ c}; choose c so
this sits inside the original region but it is big enough to make the Minkowski lattice point
theorem work.)

Lemma 18.3. Let S = {z ∈ (zσ)σ∈Hom(K,C) ∈ KR ⊂ KC :
∑
|zσ| ≤ t}. Then vol(S) =

2rπs t
n

n! .

Sketch of proof. The isomorphisms KR ∼= Rr ×Cs ∼= Rr+2s = Rn takes the canonical
measure on KR to 2s· the Lebesgue measure on Rn. The condition

∑
|zσ| ≤ t in KR correp-

sonds to |x1|+ . . . |xr|+2
√
u2

1 + v2
1 + · · ·+2

√
u2
s + v2

s ≤ t. This is basically an 18.02 problem.
(E.g. convert the pairs of coordinates (ui, vi) to polar coordinates; you get an r dr dθ term,
etc. . . ). Remembering the extra 2s, you eventually get the answer. �

Back to the proof of the theorem. Choose t so that vol(S) > 2n covol(I) (the LHS is a
constant ·tn and the RHS is a constant ·N(I)). Then by Minkowski, there exists a ∈ S. Use:
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Fact 18.4 (AM-GM (arithmetic mean – geometric mean)).

x1 + · · ·+ xn
n

≥ n
√
x1 . . . xn.

So

n n
√
|N(a)| = n n

√∏
|σa| ≤

∑
|σa| ≤ t.

Then
|N(a)| ≤ const · tn = const′N(I).

(You can be more precise about the constant to get the Minkowski constant.) �

Recall ClK = ClOK = PicOK = IK/ principal fractional ideals (where IK is the group of
fractional ideals for OK .)

Theorem 18.5. Every ideal class contains an integral ideal (i.e. an actual ideal of OK) of
norm ≤ m (where m is the Minkowski constant).

Proof. Let [I] be the inverse of the target ideal class. Theorem 18.2 gives a nonzero
a ∈ I such that |N(a)| ≤ m · N(I). Then (a)I−1, which is in the ideal class [I]−1, is an
integral ideal of norm ≤ m. (Why integral? Since a ∈ I, I | (a).) �

Lemma 18.6. {Ideals I ⊂ OK : N(I) ≤ B} is finite for any B > 0.

Proof. Proof 1: OK ∼= Zn has only finitely many subgroups I of prescribed index q; by
Lagrange’s theorem, (qZ)n ⊂ I ⊂ Zn, and intermediate subgroups correspond to subgroups
of Zn/(qZ)n, which is finite.

Proof 2: Every such ideal I is p1p2 . . . pu (where pi are possibly non-distinct prime ideals).
Then B ≥ N(I) = N(p1) . . . N(pu). Each prime has norm ≥ 2, so this is ≥ 2u; this bounds
the number of primes. But there are also finitely many possible primes: each pi must lie
above p for some prime p ≤ B, and for each p there are at most n primes p | p. �

Theorem 18.7. The class group is finite.

Proof. Every element is represented by an ideal of norm ≤ m, and there are finitely
many of those. �

Corollary 18.8. 1 ≤ m

Proof. Apply Theorem 18.5 to the trivial ideal class; ideals have norm ≥ 1. �

Corollary 18.9.
√
|discOK | ≥ nn

n!

(
π
4

)s ≥ nn

n!

(
π
4

)n/2
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Proof. Rewrite Theorem 18.5. �

By Sterling’s formula, this grows exponentially with n.

Fact 18.10 (Sterling’s formula).

n! =
(n
e

)n√
2πn · eθ/n

where 0 < θ < 1
12 .

Corollary 18.11. If K 6= Q then |discOK | > 1.

Proof. Estimate an := nn

n!

(
π
4

)n/2
. We have a2 = π

2 > 1, and an+1

an
=
(
π
4

)1/2 (
1 + 1

n

)n
>

1. So all the an’s are > 1, hence so is the discriminant. �

Corollary 18.12. Q has no nontrivial unramified extension.

Digression 18.13. The class number is hK = # PicOK . It is known that hQ(
√
−d) →∞ as

d→∞ (for squarefree d). But it is only conjectured that there are infinitely many squarefree
d > 0 such that hQ(

√
d) = 1. It was an open problem for a long time to find all the imaginary

quadratic fields with class number 1; there were nine known (d = −1,−3, . . . ,−163), and it
was eventually proved that there isn’t a tenth.

Proposition 18.14. {Number fields K : |discOK | < B} is finite for every B > 0.

Proof. Bounding |discOK | bounds [K : Q], so assume [K : Q] = n for a fixed n.

Case 1: K is totally real (i.e. all v | ∞ are real so KR ∼= Rn). Let

S :=
{

(x1, . . . , xn) ∈ Rn : |x1| ≤ 2B1/2 and |xi| < 1 for i ≥ 2
}
.

Then vol(S) = 2n+1B1/2 > 2n |discOK |1/2 = 2n covol(OK). By Minkowski, S contains a
nonzero element α = (α1, . . . , αn) ∈ OK ⊂ KR = Rn. Then

∏n
i=1 |αi| =

∣∣NK/Q(a)
∣∣ ∈ Z≥1.

Since |ai| < 1 for i ≥ 2, we need |α1| > 1.

I claim that Q(α) = K; if not, then each αi would be repeated [K : Q(α)] times. But
α1 6= α2, . . . , αn because their absolute values are different. So [K : Q(α)] = 1.

Look at the coefficients of the minimal polynomial of α: they are elementary symmetric
functions of α1, . . . , αn. But n is fixed and we have an upper bound on the size of each αi.
So the elementary symmetric functions are bounded as well. Since they are coefficients of the
minimal polynomial of α, they are also integers. So there are finitely many possibilities for
the coefficients, hence finitely many possibilities for the minimal polynomial, hence finitely
many possibilities for α, hence finitely many possibilities for K = Q(α).
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Case 2: general case. Redefine S to be

S :=

{
(x1, . . . , xr, z1, . . . , zs) ∈ KR = Rr × Cs : z1 = a1 + ib1 satisfies |a1| <

1

2
, |b1| < cB1/2

}
.

where c is a large constant depending on n. Now do something similar to the above. �

Lemma 18.15. Given a prime p, vp(discOK) is bounded by some function of n = [K : Q].

Proof.
vp(discOK) =

∑
v|p

vp (DKv/Qp)

On the HW you proved that there are only finitely many possibilities for Kv since [Kv : Qp] ≤
n, and there are ≤ n terms. �

Theorem 18.16 (Hermite’s Theorem). Let S be a finite set of places, and n ∈ Z≥1. Then

{K/Q of degree n : K is unramified outside S}
is finite.

Proof. vp(discOK) is bounded for each p ∈ S, so |discOK | is bounded. Now apply
Proposition 18.14. �

Lecture 19: November 6

François Charles is lecturing next Thursday; no office hours next week.

There are two big theorems in basic algebraic number theory: if [K : Q] <∞ then

(1) PicOK is finite;
(2) (Dirichlet unit theorem) O×K is a finitely generated abelian group of rank r + s− 1.

Last time we proved (1); this time we’ll prove (2).

These are analogous to problems that are still open: finiteness of the class group is analogous
to finiteness of the Shafarevitch group; (2) is analogous to the Birch and Swinnerton-Dyer
conjecture.

Definition 19.1. An MK-divisor is a function c : MK → R>0 sending v 7→ cv such that:

• cv = 1 for all but finitely many v;

• if v is nonarchimedean, then cv = |av|v for some av ∈ K.

These are supposed to be values of an absolute value.

Definition 19.2. The size of c is ‖c‖ :=
∏
cv ∈ R>0.
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Definition 19.3. L(c) := {x ∈ K : |x|v ≤ cv for all v}.

Compare with function field notation: if D =
∑
nPP ∈ DivX, then L(D) := {f ∈ K :

vp(f) ≥ −nP for all P ∈ X}.

Example 19.4. Let K = Q(i). Then

c =


c2+i = 1

5

c∞ = 10

cv = 1 for other v

Then
L(c) = {x ∈ (2 + i) : |x|2 ≤ 10}

(where the | | in the |x|2 means the usual absolute value on C). This gets lattice points on
the lattice generated by (2 + i, i · (2 + i)) inside the circle of radius

√
10; there are 9 points

inside.

In general, there is a correspondence

c←→ fractional ideals I together with (cv)v|∞.

Then ‖c‖ = N(I)−1 ·
∏
v|∞ cv. For all x ∈ K, x ∈ L(c) iff x ∈ I and |x|v ≤ cv for all v | ∞.

Corollary 19.5. L(c) is finite.

Proof. I is a lattice in KR. �

Proposition 19.6. If B >

√
discOK

2r(2π)s
· 2n and ‖c‖ ≥ B then L(c) contains a nonzero value.

Proof. Apply Minkowski’s theorem to the lattice I and the region

S = {x ∈ KR : |x|v ≤ cv for all v | ∞}
inside KR. Recall that KR ∼= Rr ×Cs; the constraint puts a constraint on the absolute value
of each piece.

volS

covol Λ
=

∏
v real(2cv)

∏
v complex(2π

√
cv

2)√
|discOK | ·N(I)

≥ 2r(2π)s√
|discOK |

·B using ‖c‖ ≥ B

We need this to be > 2n, which is what the condition says. �

In the function field case, the asymptotic version of the usual Riemann-Roch theorem says
dimL(D) = 1− g + degD if degD is large. The analogous statement for number fields:

#L(c) =

(
2r(2π)s√
|discOK |

+ o(1)

)
· ‖c‖ as ‖c‖ → ∞.
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Proof. Skipped; more counting lattice points. �

I want to convert the multiplicative group structure of O×K ↪→ K×R to an additive structure;
do this by taking the log. Define Log : (xv)v|∞ 7→ (log |xv|). So now we’re talking about

Rr+s. What does the unit group (i.e. O×K) correspond to?

Proposition 19.7. Let Λ = LogO×K ⊂ Rr+s.

(1) There is an exact sequence of abelian groups

0→ (O×K)tors → O×K
Log→ Λ→ 0.

(2) (O×K)tors is finite.
(3) Λ is a lattice in Rr+s.

Proof. Define ker to make

0→ ker→ O×K
Log→ Λ→ 0

exact.

Claim 1: ker is finite. Let c correspond to OK , with (2)v|∞ (i.e. cv = 2 for infinite places).

Let L(c) = {x ∈ OK : |x|v ≤ 2 for all v | ∞}. For x ∈ O×K ,

x ∈ L(c) ⇐⇒ Logx ∈ R := {t ∈ Rr+s : t ≤ (log 2, . . . , log 2)}
(here the ≤ is coordinate-wise) and

x ∈ ker ⇐⇒ Logx = 0

Clearly, the second condition implies the first. Thus ker ⊂ L(c) (which is finite) so ker is
finite.

Claim 2: Λ is torsion-free. This is because Λ ⊂ Rr+s.

By Claim 2, (O×K)tors ⊂ ker. But by Claim 1, ker ⊂ (O×K)tors. This proves (1) and (2).

For (3), recall that R was made by taking the log of L(c); more precisely, Λ ∈ R = Log(O×K ∩
L(c)), and L(c) is finite, so Λ∩R is finite. This means that 9 is isolated in Λ, so Λ is discrete.
We proved that discrete subgroups are lattices. �

Recapping the idea: look at how many units land in the rectangle R; see that finitely many
land on 0, so the kernel is finite, and finitely many land in all of R, so it’s discrete.

(O×K)tors is finite; it is the set of roots of unity in K (a.k.a. µ(K)). The above exact sequence

tells you that O×K is a finitely generated abelian group. (Any group sandwiched between
finitely generated abelian groups is a finitely generated abelian group. Actually, it turns out
that the sequence splits, so you can write it as a direct sum.)

Let H := {t ∈ Rr+s : sum(t) = 0}.
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Lemma 19.8. Λ ⊂ H

Proof. If x ∈ OK and v is nonarchimedean, then |x|v ≤ 1. If x ∈ O×K and v is

nonarchimedean, then |x|v = 1. Suppose x ∈ O×K . Then
∏
v|∞ |x|v =

∏
v |x|v = 1; take the

log of this statement to get sum(Logx) =
∑

v|∞ log |x|v = 0. �

Theorem 19.9. Λ is a full lattice in H.

Corollary 19.10. Λ ∼= Zr+s−1.

Corollary 19.11 (Dirichlet unit theorem). O×K is a finitely generated abelian group of rank
r + s− 1.

Idea of proof. You need to make units. If x, y ∈ K× such that (x) = (y), then x
y

is a unit. Find a lot of elements of small norm, and use the fact that the set of principal
ideals of norm ≤ B is finite. Now use the pigeonhole principle to show that a bunch of them
generate the same principal ideal. Call these principal ideals (α1), . . . , (αj), where the αi’s
are elements of OK .

The region {x : |N(x)| ≤ B} looks like the area under a hyperbola.

If you choose a big enough box (whether it’s tall and narrow or wide and short), it will contain
a lattice point. Take the log of this: you get some hyperplane H ′ where the region below it
satisfies sum(t) ≤ logB. The boxes under the hyperbola turn into rectangles unbounded to
the left under H ′. Algebraic integers have norm ≥ 1, hence their logs are ≥ 0. Let H be the
hyperplane x1 + x2 + · · · = 0. We will show that, for every h ∈ H, there is a lattice point
nearby.

Fix b such that sum(b) = logB (this is the same B as in Proposition 19.6). Given h ∈ H,
form the c corresponding to OK , with eh+b. Then ‖c‖ = B. By Proposition 19.6, there
is some nonzero γ ∈ OK such that γ ∈ L(c). Then Logγ ≤ h + b, so (taking the sum)
log |N(γ)| ≤ logB, so |N(γ)| ≤ B. (γ) has to be some (αi). So γ

αi
∈ O×K , and Log γ

αi
=

Logγ − Logαi ∈ Λ, which is within a bounded amount of h.

Conclusion: every h ∈ H is within a bounded distance of a vector in Λ. Thus Λ is a full
lattice in H. �
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Example 19.12. If K = Q(
√
d) ⊂ R (where d is a nonsquare integer > 1), then r = 2, s = 0

(there are two ways to embed this in R). Then rankO×K = 1, (O×K)tors = µ(K) = {±1}. So

O×K = {±εn : n ∈ Z}.
By picking the right embedding into R, without loss of generality ε > 0; also without loss of
generality you can assume ε > 1. At this point, ε is uniquely determined. This is called the
fundamental unit.

Lecture 20: November 13

Today we will talk about idèles and adèles, due to Chevalley.

You want to study Z ⊂ Q at all the places. Temporarily forget about the infinite places.

Recall Z ↪→ Ẑ = lim←−Z/n; by the Chinese remainder theorem, this is
∏
p Zp. It is compact,

since Zp is compact and the product of compact sets is compact. Alternatively, a limit of
finite groups is compact. But you also want to study Q;

Z� _

��

� � // Ẑ� _

��

Q �
�

// AQ

The adèles AQ is the thing that fits in the bottom right.

You might want to put
∏
pQp there instead, but it is not locally compact (every point has

a compact neighborhood). This is also intuitively the wrong object: any x ∈ Z is invertible
except at finitely many primes. So you should be working with something smaller than∏
pQp; that is the adèles. Another reason the adèles are better than

∏
pQp is that you can

do Fourier analysis on locally compact groups.

Recollections of point-set topology. A basis for a topology of X is a collection (Ui)i∈I
of subsets of X such that

• for all x ∈ X and U1, U2 3 x, there exists U3 with x ∈ U3 ⊂ U1 ∩ U2;

•
⋃
i Ui = X.

There is a unique coarsest topology on X containing the Ui as open sets.

Product topology: Let (Xi)i∈I be topological spaces. The product topology on
∏
i∈I Xi is the

one with basis
∏
i∈I Ui for opens Ui ⊂ Xi such that Ui = Xi for almost all i ∈ I (i.e. for all

but finitely many).

This is the coarsest topology such that the projections
∏
i∈I Xi

pj→ Xj are continuous. You

need p−1
j (Uj) =

∏
i 6=j Xj×Uj to be open; after taking finite intersections you get the product

topology.

Theorem 20.1 (Tychonoff). The product of compact topological spaces is compact.
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(This would not work if you used the box topology!)

Warning 20.2. The product of locally compact spaces is not locally compact in general.

Exercise 20.3.
∏
pQp is not locally compact.

We fix this by using the restricted product.

Definition 20.4. Let (Xi)i∈I be a family of topological spaces, and for (almost) all i ∈ I
let Ui ⊂ Xi be an open subset. (The model you should have in mind is Zp ⊂ Qp.) Define a
topological space X:

• the points are x = (xi)i∈I ∈
∏
Xi such that xi ∈ Ui for almost all i ∈ I

• a basis of open subsets is
∏
i∈I Vi where Vi ⊂ Xi is open for all i, and Vi = Ui for almost

all i.

We say that X is the restricted product of the Xi’s with respect to the Ui’s, and write X =

âi∈I Xi.

Example 20.5. The usual product is the restricted product with respect to the Xi’s.

Remark 20.6. The restricted product does not depend on any single Ui, i.e. if U ′i ⊂ Xi is
open and U ′i = Ui for almost all i, then the two restricted products are the same.

Corollary 20.7. Let S ⊂ I be a finite set. Define XS =
(∏

i∈S Xi

)
×
(∏

i/∈S Ui
)
⊂ X with

the product topology. Then the inclusion XS ↪→ X is continuous, the topology on XS and the
induced topology of the inclusion coincide, and XS is open in X. Furthermore,

X =
⋃
S⊂I
S finite

XS .

Proof. Definition-chasing. �

You could have defined the restricted product using this corollary.

Proposition 20.8. Assume that the Xi’s are locally compact, and that the Ui’s are compact
for almost all i. Then X is locally compact.

Proof. First I claim thatXS is locally compact for all finite S. Indeed, XS =
(∏

i∈S Xi

)
×(∏

i/∈S Ui
)
. The first term is a finite product of locally compact spaces, hence locally compact;

the second term is compact by Tychonoff’s theorem.

Since the XS ’s are open in X, and XS is locally compact, X =
⋃
XS is locally compact. �
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Adèles. Let k be a number field. For any (normalized) valuation v, consider the com-
pletion kv. Let Ov ⊂ kv be the ring of integers. There are only finitely many archimedean
valuations, so we can assume that v is nonarchimedean.

Definition 20.9. Define the ring of adèles to be the restricted product of all the kv’s with
respect to {Ov : v is nonarchimedean}:

Ak =â
v

kv.

The ring structure on Ak is defined component-wise: elements look like (av)v.

Exercise 20.10. Check that this is a topological ring.

Remark 20.11. AQ is the union of

R×
∏
p∈S

Qp ×
∏
`/∈S

Z`

as S runs through finite sets of primes.

We have a natural map k → Ak induced by the maps k → kv →
∏
kv. Why does this map

into Ak? If x ∈ k then the set of valuations such that v(x) < 0 is finite (it’s the set of primes
that divide the denominator of x). (Ak is the smallest subset of

∏
kv that receives a map

like this.)

Z ⊂ R is the setup for Fourier analysis: functions on Z are dual to functions on R/Z. This
works because Z ⊂ Q is discrete, and Q/Z is compact. I will prove that k ⊂ Ak in a way that
it is discrete, and Ak/k is compact. Then the Poisson summation formula, etc., works. . .

Definition 20.12. The principal adèles are the elements of Ak that lie in the image of k.
We will identify these with k.

Lemma 20.13. Let k be a number field, K/k a finite extension. Then we have a canonical
homeomorphism

Ak ⊗k K = AK .

Proof. Write K = kω1 ⊕ . . .⊕ kωn as a k-vector space. Then

LHS =â
v

kv ⊗K with respect to Ov ⊗K.

Indeed, kv ⊗ K = kvω1 ⊕ . . . ⊕ kvωn and Ov ⊗ K = Ovω1 ⊕ . . . ⊕ Ovωn. Furthermore,
kv⊗K =

⊕
iKVi , where the Vi are the valuations of K lying over v. Then Ov⊗K =

⊕
OVi .

As a consequence, LHS = RHS. �

Theorem 20.14. k is discrete in Ak, and the quotient of abelian groups Ak/k is compact.
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Proof. k is a finite extension of Q.

Q �
�

//
� _

��

AQ� _

��

k = k ⊗Q �
�

// Ak = AQ ⊗ k

By the lemma above, it suffices to prove this for the top row, i.e. we can assume that k = Q.

Idea: the only non-compactness comes from the finite number of k factors; so once you mod
out by k, it’s compact.

By the lemma above, we can assume k = Q. To show Q is discrete in AQ, it suffices to prove
that 0 is isolated. Consider the open set of AQ consisting of (αv)v such that |α∞| < 1 and
|αp|p ≤ 1 (this means that αp ∈ Zp). Let x ∈ Q satisfy these inequalities. Write x = a

b for
b > 0 and (a, b) = 1. Then for any p, p - b because vp(x) ≥ 0. So b = 1, and x ∈ Z. Since
|x|∞ < 1, we have x = 0. (So 0 is the only element of Q in this neighborhood.)

Now we show that AQ/Q is compact. Define

W =
{

(αv)v : |α∞| ≤ 1
2 , |αp|p ≤ 1 ∀p

}
.

This is open in AQ.

Claim 20.15. W is compact, and W surjects onto AQ/Q.

Proof. W is the product of [−1
2 ,

1
2 ] ⊂ R and

∏
p Zp. It is compact, because it is the

product of compact spaces.

To show that W surjects onto AQ/Q, for any β ∈ AQ we need to find α ∈ W and b ∈ Q
such that β = α + b. I have a bunch of p-adic numbers that are in Zp for almost all p. For
any p, choose rp = zp/p

np , where zp ∈ Z and |βp − rp|p ≤ 1 (where βp is the p-component of
β). (Idea: I can translate β by Q so that it becomes a p-adic integer for a given p.) We can
assume that rp = 0 for almost all p, because βp already satisfies the condition |βp|p ≤ 1 for
almost all p.

Let r =
∑

p rp. Then, for all p, |βp − r|p ≤ 1, and |βp − r|p =
∣∣βp − rp + (rp −

∑
q rq)

∈Zp

∣∣. Now

let s be such that |β∞ − r − s| ≤ 1
2 . Then β − r − s ∈W . �

Thus AQ/Q is compact (it’s the image of a compact set). �

Lecture 21: November 18

Inside Λ ⊂ Rr+s is H, the space of sum zero. What is the metric on this? Choose any
coordinate projection π : Rr+s → Rr+s−1; restricting to H defines an isomorphism H ∼=
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Rr+s−1, and this isomorphism gives a metric on H. The lattice in H turns into a lattice in
Rr+s−1 under this identification.

Definition 21.1. The regulator of K is R := covol(π(Λ)); this is independent of the choice
of π.

If ε1, . . . , εr+s−1 ∈ O×K form a basis for O×K/torsion, consider
...

...
Logε1 Logεn

...
...

 ∈M(r+s)×(r+s−1)(R);

then R = |any (r + s− 1)× (r + s− 1) minor|.

Proof of the strong approximation theorem using adèles. Last time, we had a
global field K and defined the adèle ring A = AK , which I will be writing as

∏′(Kv,Ov)
instead of â. This is a topological ring. There is a natural inclusion K ⊂ A, which makes
K discrete and cocompact (i.e. A/K is compact). This is just like Z ⊂ R, or OK ⊂ KR. We
showed that there is a compact set that surjects onto AQ/Q, namely W = [−1

2 ,
1
2 ] ×

∏
p Zp

(this is called an “adèlic box” – you’re bounding every absolute value). Similarly, in general
there is a surjection

W := {(xv)v ∈ A : |xv|v ≤ cv ∀v}� AK/K
for a suitable MK-divisor c.

This all means that A = K + W (imagine a lattice in R2, and a sufficiently large box, such
that if you translate the box by all lattice points, it covers R2).

We can finally give a proof of the strong approximation theorem:

Theorem 21.2 (Strong approximation theorem). Given a global field K. Choose a finite set
S and a set T such that

{places of K} = S t {w} t T.
If av ∈ K for v ∈ S and εv ∈ R>0 for v ∈ S, then there exists x ∈ K such that |x− av|v ≤ εv
for all v ∈ S, and |x|v ≤ 1 for all v ∈ T . (Note that there is no condition at w.)

Proof. Recall W = {(xv) ∈ A : |xv|v ≤ cv ∀v}.

We have A = K + w; multiply by some u ∈ K× to get A = K + uW ; this changes the
dimensions of W (without changing its volume) – it multiplies the v-component by |uv|.
Since there’s no constraint at w, the idea is to make the w direction really long so that the
other dimensions can be bounded.

We can choose u ∈ K× so that |u|v ≤ εvc−1
v and |u|v ≤ c−1

v for all v ∈ T . Then make |u|w ≤
some really big number. This defines an adèlic box defined by an MK-divisor of arbitrarily
large size (gotten by making the big number really big).
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Then

uW ⊂
{

(yv)v ∈ A : |yv|v ≤
εv for v ∈ S
1 for v ∈ T

}
.

Now A = K + uW ; apply this to (av), extended to an adèle by defining av = 0 for v /∈ S.

Then |x− av|v = |yv| ≤

{
εv if v ∈ S
1 if v ∈ T.

�

This is strong approximation for the additive group, but there are generalizations; see the
survey of A. Rapinchuk, On strong approximation for algebraic groups.

Idèles. Historically, idèles came before adèles; it was a word that was supposed to sound
like “ideal”. Adèles were then “additive idèles”.

Digression 21.3. If Qab
p denotes the maximum abelian extension, then Gal(Qab

p /Qp) is “ap-

proximately” Q×p (you have to do some compactification). Analogously, Gal(Kab/K) is ap-

proximately A×/K×. This is the 1-dimensional case of the Langlands conjecture, which is
about representations of the Galois group (1-dimensional representations are abelian).

Definition 21.4. The idèle group is A× =
∏′(K×v ,O×v ).

What is the topology of A×?

In general, suppose you have a topological ring R, and you want to make R× into a topological
ring. Naively, you might want to give it the subspace topology. But then, in general, you
don’t get a topological group (the inverse map might not be continuous).

Instead, view R× as the subset defined by xy = 1 in R × R, via x 7→ (x, x−1), and use the
subspace topology of the product topology on R × R. This forces the inverse map to be
continuous, because it comes from swapping the coordinates on R × R, which is continuous
under the product topology.

So we now know how to define a topology on A×. You could also give it the restricted direct
product topology, where the basic open sets are

∏
v Uv such that Uv is an open subset of K×v

(it turns out the subspace topology is OK for Kv) and Uv = O×v for all but finitely many v.

O×v is closed in Ov for all v -∞, so O×v is compact, so A× is locally compact.

Just as K embeds in A, K× embeds in A×, sending a 7→ (. . . , a, a, a, . . . ).

Proposition 21.5. K× is a discrete subgroup of A× (and it is a general topology fact that
discrete subgroups of topological groups are closed).

Proof. K ×K is discrete inside of A× A, and K× is a subset of K ×K. �
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Question 21.6. Is K× a lattice in A×? We just need the quotient to be compact. (This is
asking whether you approximate any idèle by something in K×.)

Answer: no, for the same reason that Rr+s/LogO×K is not compact: there is one infinite
direction still left over. This is because of the product formula.

There is a map A× → R×>0 given by taking a = (av) 7→ ‖a‖ :=
∏
v |av|v.

Definition 21.7. (A×)1 = {a ∈ A× : ‖a‖ = 1}

The product formula is equivalent to saying K× ⊂ (A×)1.

Theorem 21.8. (A×)1/K× is compact.

Modulo a lot of snake lemma, this is roughly equivalent to the unit theorem and the finiteness
of the class group, together.

Proof. Let PK be the group of principal fractional ideals. Clearly, the units are the
kernel of the map K× → PK . Similarly, we have a map (A×)1 → IK given by taking

(av) 7→
∏

p p
vp(ap). This makes sense, because av ∈ O×v for almost all v, and that means its

valuation is zero. So this is actually a finite product. What is the kernel? This map doesn’t
even look at the infinite places, so there has to be a factor of

∏
v|∞K

×
v in the kernel. But

at the nonarchimedean places, the things in the kernel are O×v . I also need to put a “size 1”
condition on the kernel; this is the same as imposing (

∏
v|∞K

×
v )1 ×

∏
v-∞O×v .

0

��

0 // O×K

��

// K×

��

// PK //

��

0

0 //
∏
v|∞K

×
v )1 ×

∏
v-∞O×v //

��

(A×)1

��

// IK

��

// 0

coker // (A×)1/K× // PicOK // 0

The snake lemma gives an exact sequence

0→ coker→ (A×)1/K× → PicOK → 0.

Since PicOK is finite, it suffices to show that the thing labeled “coker” (by which I mean the
cokernel of O×K → (

∏
v|∞K

×
v )1 ×

∏
v-∞O×v ) is compact.
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You can do Log to the archimedean places (and forget the other ones) of (
∏
v|∞K

×
v )1 ×∏

O×v
Log→ (Rr+s)0 = H.

0

��

0 // µK //

��

O×K
Log

//

��

Λ //

��

0

0 //
∏
v|∞(K×v )1 ×

∏
v-∞O×v //

��

(
∏
v|∞K

×
v )1 ×

∏
v-∞O×v

Log
//

��

(Rr+s)0 //

��

0

X // coker // H/Λ // 0

The resulting snake exact sequence is

0→ X → coker→ H/Λ→ 0. (21.1)

Actually
∏
v|∞(K×v )1 is easy to understand; each Kv is either R or C, and (K×v )1 is {±1}

in R or {z : |z| = 1} in C. These are compact, and so are O×v (closed subsets of compact
things). So the thing marked X is the image of something compact, hence it’s compact.

The Dirichlet unit theorem says that H is a full lattice; so H/Λ is compact.

So (21.1) puts coker in a compact sandwich. �

Cyclotomic fields. Let k be any field, and n ∈ Z≥1 such that char k - n. Then xn− 1 is
separable over k (the derivative of nxn−1, and it’s pretty easy to work out the roots of this,
and check that they’re not roots of xn − 1. . . ). So its splitting field L is Galois (= normal
+ separable) over k. µn = {x ∈ L : xn = 1} is a group of order n. Finite subgroups of L×

for any field are cyclic, so µn is generated by some ζ ∈ L (a primitive nth root of 1). Now
L = K(ζ).

You get a homomorphism Gal(L/k) ↪→ Aut(µn) ∼= (Z/nZ)× taking σ 7→ the a such that
σ(ζ) = ζa. But this is not always surjective (e.g. if k = C and n > 2, because then L = C
and Gal(L/k) = 1).

But as a corollary of this injectivity:

Corollary 21.9. L/k is abelian (i.e. its Galois group is abelian).

In L[x]:

xn − 1 =
∏
αn=1

(x− α) =
∏
d|n

∏
α of exact

order d

(x− α).

Definition 21.10. Φd(x) =
∏

α of exact
order d

(x− α) i called the dth cyclotomic polynomial.

84



Algebraic number theory Lecture 22

deg Φd(x) = the number of elements of order d in a cyclic group of order n

= #(Z/nZ)×

= ϕ(n) (Euler phi function)

Example 21.11. Let’s calculate Φ12(x). Start by dividing by the things of order 4 and order

6: x12−1
(x6−1)(x4−1)

; but you’ve double-counted some things, so you have to multiply by x2 − 1:

Φ12(x) =
(x12 − 1)(x2 − 1)

(x6 − 1)(x4 − 1)
= x4 − x2 + 1.

Lecture 22: November 20

Continuing from last time: we had a field k and an integer n ≥ 1 where char k - n; we were
talking about L = k(ζ) where ζ was a primitive nth root of 1. We talked about the cyclotomic
polynomial Φd(x) :=

∏
α∈k of exact

order d

(x− α), and found that

xn − 1 =
∏
d|n

Φd(x).

You can use this to solve for Φn inductively.

Here is a special case of the Möbius inversion formula:

Φn(x) =
∏
d|n

(xn/d − 1)µ(d) where µ(d) :=

{
(−1)r if d is a product of r distinct primes

0 otherwise.

µ is called the Möbius µ-function. This is a generalization of the computation of Φ12 last
time.

Theorem 22.1. Gal(Q(ζ)/Q) ↪→ (Z/nZ)× is an isomorphism.

#(Z/nZ)× = ϕ(n) = deg Φn(x) and # Gal(Q(ζ)/Q) = [Q(ζ) : Q] = deg(minimal polynomial of ζ).
The theorem is equivalent to saying that these orders are equal; since ζ is a root of Φn, the
only way to get equality is if Φn = the minimal polynomial, and this only happens if Φn(x)
is irreducible. Thus we have the equivalent formulation:

Theorem 22.2. Φn is irreducible over Q.

Lemma 22.3. If p - n, then Q(ζ)/Q is unramified above p, and Frobp ∈ G := Gal(Q(ζ)/Q)
maps to p in (Z/nZ)×.

Proof. xn−1 ∈ Fp[x] is separable (by checking the derivative), so Q(ζ)/Q is unramified
above p. Let q be a prime of Q(ζ) over p ∈ Z. (We will show that the ring of integers of Q(ζ)
is Z[ζ] but that is not obvious.) Recall the decomposition group Dq := {σ ∈ G : σ(q) = q}
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satisfies
1→ Iq → Dq → Gal(Fq/Fp)→ 1

(where Iq is the inertia group). |Iq| = eq and |Gal(Fq/Fp)| = fq by definition, so |Dq| = eqfq.
We know that p is unramified, so eq = 1 and Dq → Gal(Fq/Fp) is an isomorphism. (Since
this is Galois, we could be writing ep instead of eq. . . ) Gal(Fq/Fp) is cyclic, generated by
Frobenius x 7→ xp, which has order fq. Define Frobq to be the unique element of Dq that
maps to this.

In general, if you have two subgroups that are defined as stabilizers of a single point, they are
conjugate. So {Frobq : q | p} is a conjugacy class in G, but G is abelian, and any conjugacy
class has just one element; call it Frobp.

Frobp is characterized by Frobp(x) ≡ xp (mod q) for all x ∈ OQ(ζ). In particular, Frobp(ζ) ≡
ζp (mod q).

On the other hand, Frobp maps to some a ∈ (Z/nZ)×, defined by Frobp(ζ) = ζa. Then
ζa ≡ ζp (mod q). Since xn− 1 has distinct roots mod p, there is a bijection between roots in
the residue field and roots in Q(ζ), so we have ζa = ζp. �

Proof of Theorem 22.1. We’re trying to show that Gal(Q(ζ)/Q) → (Z/nZ)× is a
surjection. The lemma tells us that we can hit every prime p - n.

Start with some a ∈ (Z/nZ)×, and lift it to a ∈ Z>0. Then a is a product of primes p - n.
By the lemma, each p is in the image of Gal(Q(ζ)/Q) ↪→ (Z/nZ)×. �

Corollary 22.4. If p - n, then fp = order of p in (Z/nZ)×. Also, ep = 1 and gp = ϕ(n)/fp.

Proof.

fp = [Fq : Fp] = the order of the generator (x 7→ xp) of Gal(Fq/Fp)
= the order of Frobp in Dp ⊂ G
= the order of p in (Z/nZ)×.

�

Theorem 22.5. OQ(ζn) = Z[ζn]

Proof. By induction on the number of prime factors of n.

Base case: no prime factors (i.e. n = 1). Duh.
86



Algebraic number theory Lecture 22

Inductive step: suppose n = mpr where p - m and suppose that the result is true for m.
Choose ζm and ζpr , and take ζn = ζmζpr . Consider the tower of extensions

K(ζpr) = Q(ζn)

K = Q(ζm)

Q

By induction, OK = Z[ζm].

Claim 22.6. OK [ζpr ] is integrally closed.

Proof. Check locally at each prime q of OK .

Case 1: q | p. Consider Φpr(x) = xp
r−1

xpr−1−1
(baby case of Möbius inversion formula). As in

one of the HW solutions, Φpr(x+ 1) is Eisenstein over Z(p), hence it’s Eisenstein over (OK)q
– since q unramified in K/Q, the valuation on (OK)q restricts to the valuation on Qp. Thus
OK [ζpr ]q is integrally closed for all q | p (see the discussion after Corollary 7.11).

Case 2: λ is a prime of OK above a prime ` 6= p. Then xp
r − 1 (mod `) is a separable

polynomial, hence Φpr(x) (mod `) is separable, hence Φpr(x) (mod λ) is separable, hence
OK [ζpr ]λ is integrally closed (again by after Corollary 7.11). �

Thus

OQ(ζn) = OK(ζpr )
Claim

= OK [ζpr ]
ind.
hyp.
= Z[ζm][ζpr ] = Z[ζn].

�

Zeta functions. References for analytic number theory:

• Davenport, Multiplicative number theory (more depth)

• Serre, A course in arithmetic

The Riemann zeta function is

ζ(s) =
∏

primes p

1

1− p−s

=
∏
p

(1 + p−s + p−2s + . . . )

=
∑
n≥1

n−s by unique factorization

for s ∈ C with Re(s) > 1 (in which case all of the above converges). It’s like a “generating
function for the primes”. Things like

∏ 1
1−p−s are called Euler products.

87



Algebraic number theory Lecture 22

There is a generalization to number fields K: the Dedekind zeta function is

ζK(s) =
∏

nonzero primes
p of OK

1

1−N(p)−s

=
∑

nonzero ideals
I⊂OK

N(I)−s

for Re s > 1 (here N is the ideal norm; recall N(p) = #OK/p).

Even more generally, suppose X is a scheme of finite type over SpecZ (e.g. varieties over Fq,
since Fq is a finitely generated Q-algebra) then define

ζX(S) :=
∏

closed points
P of X

1

1−#κ(P )−s
.

for Re s > dimX. Here κ(P ) is the residue field; the arithmetic version of the Nullstellensatz
says that this is finite.

Back to the Riemann zeta function. As s→ 1+ (i.e. approaches along the positive real axis
from the right), ζ(s) →

∑ 1
n = ∞ by the monotone convergence theorem. We also have

log ζ(s) =
∑

p− log(1 − p−s) → +∞. Use the fact that − log(1 − x) = x + x2

2 + x3

3 + · · · =

x+O(x2) as x→ 0 to show that log ζ(s) =
∑

p p
−s +

∑
pO(p−2s) ≤

∑
p p
−s +

∑
pO(p−2) so

the error term converges: it’s O(1), bounded as s→ 1. So
∑
p−s →∞ as s→ 1+.

(Aside about logs: we’re just taking log on the positive real line, but in fact, log makes sense
on all of the domain in question. It’s easy to see that 1

1−p−s is a nonzero complex function,

and since the domain is simply connected, there is a well-defined branch of the logarithm.)

Corollary 22.7.
∑ 1

p diverges.

Corollary 22.8. There are infinitely many primes.

The goal is to say something about the growth rate.

Eventually we will prove that ζ(s) extends to a meromorphic function on C, with a simple
pole at s = 1 and no other poles.

For now, we’ll extend it up to the vertical line s = 0:

Proposition 22.9. For Re s > 1,

ζ(s) =
1

s− 1
+ ϕ(s),

where ϕ(s) extends to a holomorphic function on the domain where Re s > 0.
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Proof. I want to prove that ζ(s)− 1
s−1 extends to a holomorphic function. For Re s > 1:

ζ(s)− 1

s− 1
=
∑
n≥1

n−s −
∫ ∞

1
x−sdx

=
∑
n≥1

n−s −
∞∑
n=1

∫ n+1

n
x−sdx

=
∑
n≥1

∫ n+1

n
(n−s − x−s)dx

ϕn(s)

I want
∑

n
ϕn(s) to extend to a holomorphic function. Each summand is clearly OK on its

own.

Claim 22.10. |ϕn(s)| ≤ |s|
nRe s+1

Out of time; finish later. �

Lecture 23: November 25

Facts about ζ(s) (not all of these will be proven this term):

• there’s a meromorphic continuation to C (next semester, or see Ahlfors’ complex analysis
book)

• and this has a simple pole at 1 and no other poles;

• there’s a functional equation relating ζ(s) to ζ(1− s)
• which shows that there are “trivial zeros” at −2, −4, −6, . . .

• and that all other zeros lie in the “critical strip” 0 < Re s < 1.

• (Riemann hypothesis) All other zeros lie on the “critical line” Re s = 1
2 .

If there was a nontrivial zero off the critical line, then there would be one nearby, across the
critical line (using the functional equation and invariance of ζ by complex conjugation). So
you can check this numerically by taking the contour integral in a box around part of the
critical line and counting how many zeros are inside. If there’s just one, then it has to be on
the critical line.

Last time we were in the middle of proving

Proposition 23.1. ζ(s) = 1
s−1 + ϕ(s) where ϕ(s) extends to a holomorphic function for

Re s > 0.

Proof. For Re s > 1, we showed that

ζ(s)− 1

s− 1
=
∑
n≥1

∫ n+1

n
(n−s − x−s)dx

ϕn(s)

.
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We’re worried about convergence of the sum; so we need to estimate |ϕn(s)|:

Claim 23.2. |ϕn(s)| ≤ |s|
nRe s+1

Proof. By the fundamental theorem of calculus (“in reverse”),

n−s − x−s =

∫ n

x
−st−s−1dt.

The absolute value of the integrand depends only on the real part of s. For x ∈ [n, n+ 1],

|n−s − x−s| ≤
∫ x

n

|s|
nRe s+1

dt ≤ |s|
nRe s+1

.

�

By the claim and the Weierstrass M-test,
∑

n≥1
ϕn(s) converges uniformly in Re s ≥ ε for any

ε > 0 (you can’t say that it converges for Re s > 0, because you need to (temporarily) fix an
upper bound ε 6= 0). A uniformly convergent sum of holomorphic functions is holomorphic,
so
∑

n≥1
ϕn(s) =: ϕ(s) is holomorphic for Re s > 0. �

Recall from last lecture that log ζ(s) =
∑

p p
−s +O(1) as s→ 1+, and log ζ(s)→∞. (From

this we deduced that there are infinitely many primes.)

Theorem 23.3 (Dirichlet’s theorem on primes in arithmetic progressions). If gcd(a,m) = 1
then there are infinitely many primes ≡ a (mod m).

As a warm up, let’s try to find primes ≡ 1 (mod 4). As a first try, consider∏
p≡1 (mod 4)

1

1− p−s
=

∑
n=p1...pk

s.t. pi≡1 (mod 4)

n−s.

But the RHS is hard to do analysis on. Instead, define the Dirichlet character

χ(n) :=


1 if n ≡ 1 (mod 4)

−1 if n ≡ 3 (mod 4)

0 if n is even

and

L(s, χ) :=
∏
p

1

1− χ(p)p−s
=
∑
n≥1

χ(n)n−s = 1−s − 3−s + 5−s − 7−s + . . . .

This is much easier to analyze.

Then

logL(s, χ) =
∑
p

χ(p)p−s +O(1) as s→ 1+

=
∑

p≡1 (mod 4)

p−s −
∑

p≡3 (mod 4)

p−s +O(1)
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On the other hand,

log ζ(s) =
∑

p≡1 (mod 4)

p−s +
∑

p≡3 (mod 4)

p−s +O(1)

so
log ζ(s) + logL(s, χ)

2
=

∑
p≡1 (mod 4)

p−s +O(1)

We need the LHS to go to∞ as s→ 1+. We know that log ζ(s)→∞, but we’re worried that
these might cancel out. We will show that logL(χ, s) remains bounded as s→ 1+. (I.e. we
need to show that L(χ, s) tends to something nonzero.) Eventually, we’ll show that L(s, χ)
extends to a holomorphic function near 1 (unlike ζ(s)) and L(1, χ) 6= 0. This is hard – it is
basically the content of Dirichlet’s theorem.

Let’s do this more generally. χ above was a mod 4 Dirichlet character ; a mod m Dirichlet
character is a homomorphism

χ : (Z/mZ)× → C×.
Extend it to a function χ : Z>0 → C by setting χ(n) = 0 whenever n is not a unit mod m
(i.e. whenever gcd(n,m) > 1).

Characters of finite abelian groups. Let G be a finite abelian group. The character
group is

Ĝ := Hom(G,C×).

(Since every element in G has finite order, these will all land in S1.) This group is noncanon-
ically isomorphic to G. (Why? This is true if G is cyclic – the nth roots of unity is cyclic
of order n, and the noncanonical-ness is because you have to choose a generator. This is
compatible with products.)

Digression about Artin L-functions 23.4. If the group is not abelian, you need to look
at all irreducible representations, not just the 1-dimensional ones. (For abelian groups, all
irreducible representations are 1-dimensional.) But you can define Artin L-functions for
higher-dimensional representations (the group in question is usually a Galois group). Consider
ρ : Gal(Q/Q)→ GL(V ) (in the abelian case case, this would be the composition Gal(Q/Q) �

(Z/mZ)× → C×). The Artin L-function is
∏
p

1

det(1− ρ(Frobp)|V Ipp−s)
(you have to restrict

to the subspace fixed by the inertia subgroup Ip).

Let 1 denote the trivial character (the one that is 1 everywhere).

Proposition 23.5. For χ ∈ Ĝ,∑
g∈G

χ(g) =

{
#G if χ = 1

0 if χ 6= 1.

Proof. If χ 6= 1, choose a ∈ G such that χ(a) 6= 1. Let S =
∑

g
χ(g). Then χ(a)S =∑

g
χ(ag) =

∑
h∈G χ(h) = S (where the second equality is because {ag}g∈G also runs through

all the elements of G). So S = 0. �
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Proposition 23.6. For g ∈ G,∑
χ∈Ĝ

χ(g) =

{
#G if g = 1

0 otherwise.

This is the same as the previous proposition, if you replace G by Ĝ.

Corollary 23.7.

1

#G

∑
χ

χ(g) =

{
1 if g = 1

0 otherwise.

This gives a way to test whether a group element is trivial or not.

You can also use this to prove a Fourier inversion formula (this is on the HW).

In the following, χ will be a mod m Dirichlet character.

Definition 23.8. The Dirichlet L-function is

L(s, χ) :=
∏
p

1

1− χ(p)p−s
.

If χ = 1, you don’t quite get back the Riemann zeta function (because it’s zero when
gcd(m, p) 6= 1); instead, ζ(s) = L(s,1)

∏
p|m

1
1−p−s . But if you’re looking at the behavior as

s → 1, the extra factor tends to some nonzero constant, so it doesn’t interfere with any of
the asymptotics we’ll be dealing with. You’re supposed to think of L(s,1) as “essentially the
Riemann zeta function”.

Proposition 23.9. If χ 6= 1, then L(s, χ) extends to a holomorphic function for Re s > 0.

Proof. By “summation by parts” (think of this as integration with delta functions).
The idea is to take L(s, χ) =

∑
n≥1

χ(n)n−s and “integrate” χ(n) and “differentiate” n−s.

Let T (x) =
∑

n<x
χ(n). Since T (x) is periodic mod m, it is bounded. (E.g. for the mod

4 Dirichlet character considered above, we have T (x) = 0 for x ∈ (4n − 1, 4n + 1] and 1 for
x ∈ (4n+ 1, 4n+ 3].)

I’m going to do something kind of sketchy: you can make this rigorous using Stieltjes integrals.

L(s, χ) =
∑
n≥1

n−s χ(n)

=

∫ ∞
1

x−sdT (x) (Stieltjes integral)

= x−sT (x)
∣∣∞
1
−
∫ ∞

1
T (x)(−sx−s−1dx)

= s

∫ ∞
1

T (x)x−s−1dx
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This extends to a holomorphic function for Re s > 0 since it converges uniformly on Re s ≥ ε
for any ε. �

For Re s > 1,∑
p≡a (mod m)

p−s =
∑
all p

p−s ·

{
1 if p ≡ a (mod m)

0 otherwise

=
∑
all p

p−s
1

ϕ(m)

∑
χ

χ(a−1p) Corollary 23.7 applied to g = a−1p

Note that p ≡ a (mod m) ⇐⇒ a−1p ≡ 1 (mod m)

=
∑
χ

χ(a−1)
ϕ(m)

∑
p

χ(p)p−s

Note that
∑

p
χ(p)p−s are the most important terms of the power series expansion of logL(s, χ) =∑

− log(1− χ(p)p−s).

=
∑
χ

χ(a−1)
ϕ(m)

logL(s, χ) +O(1)

=
1

ϕ(m)
log ζ(s) +

∑
χ 6=1

χ(a−1)
ϕ(m)

logL(s, χ) +O(1) as s→ 1+

Key claim 23.10. If χ 6= 1 then L(1, χ) 6= 0.

(We’ve already proved that it’s holomorphic.) So logL(s, χ) = O(1) as s → 1+. We’ve
proven that ζ(s) = 1

s−1+ something holomorphic as s → 1; so by the discussion above, the

key claim implies
∑

p≡a (mod m) p
−s = 1

ϕ(m) log 1
s−1 + O(1) as s → 1+. This also shows that

primes are equally distributed in terms of classes mod m.

Lecture 24: December 2

Last time, we had reduced the proof of Dirichlet’s theorem on primes in arithmetic progres-
sions to the statement that

L(1, χ) 6= 0 for all χ 6= 1.

To prove this, we need:

Theorem 24.1. [Dirichlet analytic class number formula] Suppose that [K : Q] = n. Then
ζK(s) extends to a holomorphic function for Re s > 1 − 1

n except for a simple pole at s = 1
with residue

2r(2π)shR

w · | discOK |1/2
where r, s (by abuse of notation) are the real and complex places, h is the class number
# PicOK , R is the regulator, and w is the number of roots of unity in K.
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Example 24.2 (Evaluating the formula for the Riemann zeta function). We’re supposed to
get residue = 1. By the formula:

ress=1ζ(s) =
21(2π)01 · 1

2 · 11/2
= 1.

The regulator is the covolume of a zero-dimensional lattice, so it’s the determinant of a 0× 0
matrix; this is 1.

The proof is, unsurprisingly, rather involved. We need some preliminaries.

Definition 24.3. Let X,Y be metric spaces. Say that f : X → Y is Lipschitz iff there exists
C such that for all x, x′ ∈ X, d(f(x), f(x′)) ≤ Cd(x, x′). This is a bit stronger than continuity;
it says your function doesn’t stretch things too much. (E.g. it rules out space-filling curves.)

Say that B ⊂ Rn is d-Lipschitz parametrizable if there exist finitely many Lipschitz maps
f : [0, 1]d → B whose images cover B.

Lemma 24.4. Let S ⊂ Rn be such that its boundary ∂S is (n− 1)-Lipschitz parametrizable.
Then #(tS ∩ Zn) = vol(S)tn +O(tn−1) as t→∞.

Why does the Lipschitz hypothesis matter? Imagine a finite-volume star-shaped region with
infinite spikes, one hitting every integer point.

Proof. Idea: get a lower bound by counting the number of cubes that fit inside the
shape, and get an upper bound by counting the cubes that intersect the shape. So

#boxes contained in tS ≤ vol(tS) ≤ #boxes intersecting tS

but also I claim that

#boxes contained in tS ≤ #(tS ∩ Zn) ≤ #boxes intersecting tS.

(How to relate boxes and lattice points? For every lattice point, form the box that has that
point as its lower left corner.) We want to bound the difference between the upper and lower
bounds, i.e. the number of boxes that touch tS but aren’t completely contained in it. This is
≤ #boxes within O(1) of ∂(tS). By hypothesis, we know that ∂S is covered by finitely many
images of the unit cube; subdivide this into τ := btc pieces. By the Lipschitz hypothesis,
each point of ∂S is within O( 1

τ ) of one of the points fi(
a1
τ , . . . ) with 0 ≤ ai < τ . If you scale

this up by a factor of t, each point of ∂(tS) is within O(1) of one of the points t · fi(a1
τ , . . . ).

There are O(τn−1) points fi(
a1
τ , . . . ). �

Open problem 24.5. If S is the unit disc, how many lattice points are inside tS? The
lemma says that it’s πt2 +O(t), but it turns out that the error is a lot smaller than this. . .

Generalization 24.6. Let Λ be a full lattice in Rn. Then

#(tS ∩ Λ) =
vol(S)

covol(Λ)
tn +O(tn−1).
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Let K be a number field with [K : Q] = n; recall

O×K = U × µ(K)

where µ(K) is the set of roots of unity, and U is free of rank r + s − 1 (µ is canonically
defined, but U is not canonical – you can always change a generator of U by an element of
µ.) Set w := #µ(K).

To understand ζK(s) =
∑

I⊂OK
1

N(I)s as s → 1+, we need to understand the rate of growth

of this series; equivalently, we need to estimate #{I : N(I) ≤ t} as t → ∞. (We know this
is finite: I must be composed of primes whose norms are ≤ t, and the exponents are also
bounded.)

First consider the set of nonzero principal ideals I such that N(I) ≤ t. Equivalently, we want
to count generators – nonzero α ∈ OK such that |N(α)| ≤ t. But two α’s will generate the
same ideal if they differ by a unit; so we want to consider

{nonzero α ∈ OK : |N(α)| ≤ t}/O×K .
Recall OK is a full lattice in KR. So we are just counting lattice points in a bounded region.

Rewrite this set as
(K×R,≤t ∩ OK)/O×K

(where K×R,≤t is the set of units in KR whose norms are ≤ t).

There is a w-to-1 map

(K×R,≤t ∩ OK)/U → (K×R,≤t ∩ OK)/O×K
∼= F≤t ∩ OK

where F is a fundamental domain for the action of U on K×R .

Example 24.7. If K is a real quadratic field, KR ∼= R×R. The norm is just the product of
the coordinates. So the set where N(α) = 1 is a hyperbola. The lattice is not Z×Z, though.
You actually end up with infinitely many points below the hyperbola in the first quadrant
– e.g. take any lattice point and multiply it by a unit to get another one. But we want to
count orbits, so just concentrate on a fundamental domain:

Look at the map

K×R,1
Log→ Rr+s0
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where the LHS is the norm-1 elements and the RHS is the sum-0 elements. This restricts
to U → LogU = LogO×K ; this is the lattice we used in proving the rank of O×K . Let R be a

fundamental domain for the lattice LogU in Rr+s0 .

(So in our example, the image of the hyperbola N(α) = 1 is the line x+ y = 0, and the units
1, ε, ε2, . . . map to a lattice on this 1-dimensional subspace. R is a fundamental domain of
this lattice, and its volume is the regulator.)

Then Log−1R is a fundamental domain for U acting on K×R,1. (E.g. the part of the hyperbola

between 1 and ε.) But I wanted a fundamental domain for the action on all of K×R , not just

the norm-1 things. So consider the map K×R
σ→ K×R,1 taking x 7→ x

N(x)1/n , and define the

fundamental domain to F := σ−1Log−1R. Then:

(1) F≤t = t1/nF≤1;
(2) ∂F≤1 is (n− 1)-Lipschitz parametrizable.

So we can apply Generalization 24.6; this gives

#(F≤t ∩ OK) =
vol(F≤1)(t1/n)n

covol(OK)
+O((t1/n)n−1).

Lemma 24.8. vol(F≤1) = 2r(2π)sR where R is the regulator.

This is basically a calculus problem. (In the example, we’re computing the volume below the
hyperbola, in the wedge.)

Proof. Let’s change coordinates by taking the log:

R× → R× {±1}
x 7→ (log |x|, sgn(x))

εe` ←[ (`, ε)

dx 7→ e`d`× (counting measure)

Do this to C× as well:

C× → R× [0, 2π)
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z 7→ (2 log |z|, arg z)

e`/2eiθ ←[ (`, θ)

2dA 7→ 2e`/2d(e`/2)dθ = e`d`dθ

Under the isomorphism

K×R = (R×)r × (C×)s ∼= Rr+s × {±1}r × [0, 2π)s,

the canonical measure on K×R corresponds to esum· Lebesgue measure on Rr+s; so F≤1 corre-

sponds to
(
R+(−∞, 0]( 1

n , . . . ,
2
n)
)
×{±1}×[0, 2π)s. (What’s with the first term? Multiplying

by an element of norm ν ≤ 1 corresponds to shifting by log ν < 0. What’s with the 2
n ’s?

The Log map sends (x1, . . . , xr, z1, . . . , zs) 7→ (log |x1|, . . . , log |xr|, 2 log |z1|, . . . , 2 log |zs|), so
there are 2’s for each copy of C.)

To be continued. . . �

Lecture 25: December 4

We were in the middle of proving the Dirichlet analytic class number formula; to this end we
were trying to prove:

Theorem 25.1.

#{I ⊂ OK : N(I) ≤ t} =
2r(2π)shR

w| discOK |1/2
t+O(t1−1/n)

Proof. Recall we had a w-to-1 map

F≤t ∩ OK → {nonzero principal ideals I with N(I) ≤ t}.
Let F be a fundamental domain for K×R /U . (Remember O×K = µk×U where U is free.) Last

time we explained why Log(F≤1) =
(
R +(−∞, 0]( 1

n , . . . ,
2
n)
)
×{±1}× [0, 2π)s. Last time we

showed how taking Log takes the canonical measure on K×R = (R×)r × (C×)s to the measure
esum(Lebesgue measure) on Rr+s × {±1}r × [0, 2π)s.

We want to do another coordinate change: take Rr+s → Rr+s−1 × R by (x1, . . . , xr+s) 7→
(x1, . . . , xr+s−1, x1 + · · ·+ xr+s

y

). How does this affect the measure? It sends esum(Lebesgue)

to ey(Lebesgue). This is essentially because det


1 1

1 1
. . .

1

 = 1.

Now actually do the integral!∫
R+(−∞,0]( 1

n
,..., 2

n
)
esumLebesgue =

∫ 0

y=−∞
vol(R + y(

1

n
, . . . ,

2

n
))eydy
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=

∫ 0

y=−∞
Reydy = R

Thus

vol(F≤1) = R · 2r(2π)s

#F≤t ∩ OK = 2r(2π)sRt+O((t1/n)n−1)

The denominator is covol(OK); we proved this a while ago. Dividing by w, we get

#

{
nonzero principal ideals I

with N(I) ≤ t

}
=

1

w

(
2r(2π)sRt+O((t1/n)n−1)

)
But we’re not done – this only counts the principal ideal classes; we have to redo it for all
the other ideal classes.

For any fractional ideal c, there is a correspondence{
ideals I ⊂ OK in the class of c−1

such that N(I) ≤ t

} mult.
by c−→

{
nonzero principal ideals J

divisible by c s.t. N(J) ≤ tN(c)

}
.

But the latter set is the same as {nonzero α ∈ c : |N(α)| ≤ tN(c)}
/
O×K . I claim there are

2r(2π)sR

w| discOK |1/2N(c)
tN(c) +O(t1−1/n)

of these, because the new covolume is | discOK |1/2N(c) instead of just |discOK |1/2.

But N(c) cancels (this says that ideals are equidistributed over ideal classes); summing over
the h ideal classes gets what we want. �

Lemma 25.2. Let a1, a2, · · · ∈ C and σ ∈ R. Suppose |a1 + · · · + at| = O(tσ) as t → ∞.
Then

∑
n≥1 amm

−s converges to a holomorphic function for Re s > σ.

Instead of a radius of convergence, Dirichlet series have an x-coordinate (“abscissa”) of con-
vergence.

Proof. For x ∈ R≥0, let A(x) =
∑

m≤x am. Then for Re s > σ, using integration by
parts using Stieltjes integrals,∑

amm
−s = x−sA(x)|∞1− −

∫ ∞
1

A(x)(−sxs−1dx)

= (0− 0) + s

∫ ∞
1

By the assumption on A(x), this converges uniformly on the region Re s ≥ σ+ε for any fixed
ε. So it is holomorphic on all of these regions, hence holomorphic on the region Re s > σ. �

Lemma 25.3. Let a1, a2, · · · ∈ C, 0 ≤ σ < 1, and ρ ∈ C. If a1 + · · · + at = ρt + O(tσ)
as t → ∞, then

∑
m≥1 amm

−s converges for Re s > 1 and has an analytic continuation to
Re s > σ except for a simple pole at s = 1 with residue ρ.

Note that if all the ai’s are 1, then you get the Riemann zeta function!
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Proof. Let bm = am − ρ ∈ C. Then b1 + · · ·+ bt = O(tσ).∑
amm

−s = ρ
∑

m−s +
∑

bmm
−s.

The first term on the RHS is the Riemann zeta function; we proved before that it is holo-
morphic fr Re s > 1 and has an analytic continuation to Re s > 0 except for a pole at 1
with residue 1. By Lemma 25.2, the second term on the RHS is holomorphic for Re s > σ.
Since σ < 1, this piece is holomorphic at s = 1, so the residue is just the coefficient ρ of the
Riemann zeta function. �

Proof of the Dirichlet analytic class number formula 24.1. We have

ζK(s) =
∑
I⊂OK

N(I)−s

=
∑
m≥1

amm
−s where am := #{I : N(I) = m}

a1 + · · ·+ at = #{I ⊂ OK : N(I) ≤ t}
25.1
=

2r(2π)shR

w|discOK |1/2
t+O(t1−1/n)

Lemma 25.3 says:

• ζK(s) converges for Re s > 1

• there is an analytic continuation to Re s > 1− 1
n except for a simple pole at s = 1 with

residue
2r(2π)shR

w|discOK |1/2
.

�

There is also a Riemann hypothesis for general number fields K; the hypothesized zeros are
the same, plus some more trivial zeros.

Theorem 25.4.

ζQ(ζm)(s) “=”
∏

χ:(Z/mZ)×→C×
L(s, χ), ignoring Euler factors corresponding to primes p | m.

If 1 temporarily denotes the trivial character mod m, then L(s,1) =
∏
p-m(1−p−s)−1 ≈ ζ(s).

Proof. Let p - m. Look at the Euler factors on each side corresponding to p. On the
LHS, you get

∏
p|p(1−N(p)−s)−1. Q(ζm)/Q is a Galois extension, so we can talk about e, f, g

corresponding to p; recall we proved that e = 1, f = the order of Frobenius = the order of p

in (Z/mZ)×. Since efg = n = ϕ(m), we have g =
ϕ(m)
f . So∏

p|p

(1−N(p)−s)−1 = (1− (pf )−s)−g

= (1− (p−s)f )−g
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On the RHS, the factors coming from p are
∏
χ(1− χ(p)p−s)−1. We need to show this is the

same thing as (1− (p−s)f )−g. Do a change of variables T := p−s; it suffices to prove:

Lemma 25.5. (1− T f )g =
∏
χ(1− χ(p)T )

Proof. If p has order f , then χ(p) will be a f th root of unity. That is, there is a
surjective homomorphism

̂(Z/mZ)× → µf sending χ 7→ χ(p)

with fibers of size ϕ(m)/f = g. So the RHS is (
∏
αf=1(1 − αT ))g. You can see that this =

LHS. �

Key claim 25.6. If χ 6= 1, then L(1, χ) 6= 0.

Proof. Compute ords=1 in Theorem 25.4. Any individual factor 1 − p−s is nonzero at
s = 1 (because primes 6= 1. . . ). So if you throw away finitely many factors, it doesn’t affect
the order of vanishing. So you might as well replace with the Riemann zeta function, which
has order of vanishing −1 at s = 1. Then

−1 = −1
from
1

+
∑
χ 6=1

ords=1 L(s, χ)

but we proved that all of the terms ords=1 L(s, χ) are ≥ 0; so they must all be zero. �

Definition 25.7. If P is a set of primes, then the Dirichlet density of P is

δ(P ) := logs→1+

∑
p∈P p

−s

log 1
s−1

.

Example 25.8. δ({all primes}) = 1.

If P is the set of primes p ≡ a (mod m), then the Key Claim shows that δ(P ) = 1
ϕ(m) .

Lecture 26: December 9

Today we’ll talk about class field theory.

Profinite completion. Let G be a topological group. If G� F is a continuous surjec-
tion onto F then F ∼= G/U for some finite-index open finite subgroup U ≤ G.
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Definition 26.1.
Ĝ = lim

fin.index
open subgroupsU≤G

G/U

It has the universal property that for every continuous homomorphism G→ P to a profinite
group P , there is a unique continuous dotted homomorphism.

G //

��

Ĝ

∃!
��

P

We’ve already encountered Ẑ; on the other hand, Q̂ = 0.

There is a bijection between the set of finite-index open subgroups of G and those of Ĝ.

Profinite groups are always compact.

Local fields. There are two kinds of local fields: archimedean ones (R or C) and nonar-
chimedean ones. Start with a complete DVR O; assume the residue field k is finite. Embed
O in its fraction field K (K is the local field). The maximal abelian extension Kab (the
compositum of all extensions with abelian Galois group) sits in a tower

K ⊂ Kunr ⊂ Kab ⊂ Ks.

Why does it contain Kunr? Unramified fields are in bijection with finite separable extensions
of the residue field, which is finite, and Galois groups of extensions of a finite field are all
abelian.

Local nonarchimedean fields are defined to be either finite extensions of Qp, if the character-
istic is 0, or Fq((t)), if char = p > 0.

There is a homomorphism
θ : K× → Gal(Kab/K)

inducing an isomorphism K̂×
∼=→ Gal(Kab/K). θ is called the local Artin homomorphism. If

K is archimedean, then θ is surjective and ker θ is the connected component of 1 in K×.

If K is nonarchimedean, then θ is injective. There are isomorphisms

K× ∼= O× · πZ ∼= O×Z
which induces an isomorphism K̂× ∼= O× × Ẑ. This is not canonical, but

0 //

��

O× // K×

θ
��

v // Z //

��

0

0 // Gal(Kab/Kunr) // Gal(Kab/K) // Gal(Kunr/K) // 0

is, and I claim that the first vertical map is an isomorphism, and the third is after completion.
What is this last map? By the bijection involving unramified extensions, Gal(Kunr/K) ∼=
Gal(ks/k), and I claim this is = lim←−Z/nZ = Ẑ (the generator of each Z/nZ corresponds to

Frobenius).
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Gal(Kab/Kunr) is the inertia group of Kab/K. The bottom row is profinite completion of
the top row. On elements,

π //

��

1

��

Frob // Frob

Recall we have a sequence of subgroups Ox ⊃ 1 + p ⊃ 1 + p2 ⊃. These correspond to a
sequence of subgroups in the inertia group called ramification subgroups. An element of the
inertia group is, by definition, an automorphism that acts as the identity on the residue field
B/q. The nth ramification subgroup contains the ones that act as the identity on B/qn. (But
this is the wrong numbering. . . ) If an automorphism acts as the identity on all of the B/qn’s,
then it is the identity.

Functoriality. Let L/K be a finite extension of local fields. I claim the diagram

L×

NL/K

��

θL // Gal(Lab/L)

restriction
��

K×
θK // Gal(Kab/K)

is commutative. (Inclusion K× ⊂ L× corresponds to the transfer homomorphism on Galois
groups.)

There are bijections

{finite index open subgroups} ←→ {finite index subgroups of Gal(Kab/K)}
Galois theory←→ {finite abelian extensions of K inside Ks}

The first thing is easy; the last thing is something you want to know about. More explicitly,
an extension L/K corresponds to the open subgroup NL/KL

×.

If L/K is a finite abelian extension, I claim there is a surjection

K× → Gal(Kab/K) � Gal(L/K)

with kernel NL/KL
×. I said the inertia group in Gal(Kab/K) is the image of O×; the inertia

subgroup in Gal(L/K) is also the image of O×. A uniformizer π ∈ O× maps to Frobenius.

Example. Let p > 2. Suppose we want to describe all the extensions of Qp with Galois
group Z/pZ. This is the same as understanding the quotients Q×p � Z/pZ, or equivalently

understanding the surjections Q×p /(Q×p )p � Z/pZ. But Q×p = Z×p ×pZ = (1+pZp)×F×p ×pZ ∼=
Zp × Z/(p − 1)Z × Z. Take quotients of each piece by the pth power; the middle piece goes
away to get

Q×p /(Q×p )p ∼= Z/pZ× Z/pZ.
Answer: there are p+ 1 such extensions.

Global fields. If the characteristic is 0, global fields are number fields (finite extensions
of Q); in characteristic p, global fields are global function fields (finite extensions of Fp((t))).
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If you choose the right constant field, these are function fields of a geometrically integral
curve X over a finite field k.

Let K be a global field, and Kv be the completion of K at v (this is a local field). Let
Ov be a valuation ring (if v is archimedean, set Ov = Kv). You can define the adèle ring
AK =

∏′(Kv,Ov) and the idèle group A×K , which comes with a map A×K → IK (the ideal
group) in the number field case: for each element, take vp to get the exponent of p in the
ideal.

The idèle class group is CK := A×K/K
×.

Global CFT. Recall that local CFT said that there is an “almost isomorphism” K× →
Gal(Kab/K). Global CFT says that there is a homomorphism

θ : CK → Gal(Kab/K)

inducing an isomorphism ĈK
∼=→ Gal(Kab/K). This is called the global Artin homomorphism.

If K is a number field, θ is surjective, and ker θ is the connected component of the identity.
If K is a global function field, then θ is injective and the image consists of automorphisms
σ ∈ Gal(Kab/K) restricting to an integer multiple of Frobenius in Gal(ks/k) (here k is the

residue field, the largest finite field contained in K). Note that Gal(ks/k) ∼= Ẑ is topologically

generated by Frobenius; things in the image are the elements corresponding to Z ⊂ Ẑ.

Functoriality. Let L/K be a finite extension of global fields. Recall AL ∼= AK ⊗K L;
this is a free AK-module with rank [L : K]. So you can define the norm map on adèles
NL/K : AL → AK (take the determinant of the multiplication-by-α matrix wrt some basis).
The claim is that there is a commutative diagram

CL
θL //

NL/K

��

Gal(Lab/L)

res
��

CK
θK // Gal(Kab/K)

There are correspondences

{finite-index open subgroups of CK} ←→ {finite-index open subgroups of Gal(Kab/K)}
←→ {finite abelian extensions of K inside Ks}

More explicitly, an extension L/K corresponds to the subgroup NL/KCL.

If L/K is a finite abelian extension, by Galois theory there is a map CK → Gal(Kab/K) �
Gal(L/K) coming from the tower Kab/L/K; I claim that this is a surjection with kernel
NL/KCL.

Local-global compatibility. Suppose we know the global θ. Let v be a place of K.
You get a map K×v ↪→ A×K taking α 7→ (· · · , 1, 1, 1, α, 1, · · · ) (where α is in the vth position).

Compose this with A×K to get a map K×v → CK . I claim there is a unique θv making the
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following diagram commute:

K×v� _

��

θv // Gal(Kv)� _

res
��

CK
θ // Gal(Kab/K)

and it is the local Artin homomorphism for Kv. (Injectivity is essentially Krasner’s lemma.)

Conversely, if we know the local Artin homomorphism θv for every v and L is a finite abelian
extension of K, define

A×K → Gal(L/K) sending (av), t
∏
v

θv(av).

This is an infinite product; why does it make sense? For all but finitely many v, L/K is
unramified at v and av ∈ O×v . The image of this under the local Artin map is the inertia
group; since it’s unramified, θv(av) ∈ Iv = {1}. You can check that these are all compatible
as you vary L; so you get a map to the inverse limit of all of these:

A×K → Gal(Kab/K).

I claim that this factors through CK ; this claim is Artin reciprocity (i.e. that K× is in the
kernel). This is hard.

If you apply this to a quadratic extension, quadratic reciprocity comes out. If you want to
read more about Artin reciprocity, read Bjorn’s essay “A brief summary of the statements of
CFT” on his website.

The End.
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