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These notes present a self-contained proof of the following recent result from [16] which

verifies Zimmer’s conjecture on the finiteness of actions by cocompact lattices in SLpn,Rq
for n ě 3.

Theorem 3.4. For n ě 3, let Γ Ă SLpn,Rq be a cocompact lattice. Let M be a compact

manifold.

(1) If dimpMq ă n´ 1 then any homomorphism Γ Ñ Diff2pMq has finite image.

(2) In addition, if vol is a volume form on M and if dimpMq “ n ´ 1 then any

homomorphism Γ Ñ Diff2
volpMq has finite image.

See Conjecture 3.2 and Conjecture 3.3 for precise statements of the conjecture.

Outside of this text, we also refer the reader to the excellent exposition by Serge Cantat

[25] that also presents (in French) a complete proof of Theorem 3.4.

These notes are organized as follows. In the introduction, Section 1, we discuss group

actions, some general rigidity programs, and discuss and motivate the Zimmer program.

In Part 1, we present background on lattices in Lie groups, examples of standard algebraic

actions,, and state the main conjecture, Conjecture 3.2, as well as the main results, Theo-

rem 3.4 and Theorem 3.5, discussed in this text. We reduce the proof of Theorem 3.4 to

Theorem 5.2 in Section 5. In Part 2 we present a number of tools and constructions from

smooth ergodic theory with an emphasis on Lyapunov exponents, metric entropy, and ge-

ometry of conditional measures along foliations for actions of higher-rank abelian groups.

In Part 3 we use the tools developed in Part 2 to prove Theorem 3.5 and Theorem 5.2.
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Introduction

1. GROUPS ACTING ON MANIFOLDS AND THE ZIMMER PROGRAM

In the classical theory dynamical systems, one typically studies actions of 1-parameter

groups: Given a compact manifoldM , a diffeomorphism f : M Ñ M generates an action

of the group Z; a smooth vector field X on M generates a flow φt : M Ñ M or an action

of the group R. However, one might consider groups more general than Z or R acting

on a manifold M . Natural families of group actions arise naturally in many geometric

and algebraic settings and the study of group actions connects many areas of mathematics

including geometric group theory, representation theory, Lie theory, geometry, and dynam-

ical systems.

This text focuses on various rigidity programs for group actions. Roughly, such rigid-

ity results aim to classify all actions or all invariant geometric structures (such as closed

subsets, probability measures, etc.) under

(1) suitable algebraic hypotheses on the acting group, and/or

(2) suitable dynamical hypotheses on the action.

This primarily takes the first approach: under certain algebraic conditions on the acting

group, we establish certain rigidity properties of the action. Specifically, we will consider

actions of lattices Γ in higher-rank simple Lie groups such as Γ “ SLpn,Zq for n ě
3. In this introduction, we also impose certain dynamical hypotheses for instance, by

considering affine Anosov actions.

1.1. Smooth group actions. Let M be a compact manifold without boundary and denote

by DiffrpMq the group of Cr diffeomorphisms f : M Ñ M . Recall that if r ě 1 is not

integral then, writing

r “ k ` β for k P N and β P p0, 1q,
we say that f : M Ñ M is Cr or is Ck`β if it is Ck and if the kth derivatives of f are

β-Hölder continuous.

For r ě 1, the set DiffrpMq has a group structure given by composition of maps. Given

a (typically countably infinite, finitely generated) discrete group Γ, a C
r action of Γ on

M is a homomorphism

α : Γ Ñ DiffrpMq
from the group Γ into the group DiffrpMq; that is, for each γ P Γ the image αpγq is a Cr

diffeomorphism αpγq : M Ñ M and for x P M and γ1, γ2 P Γ we have

αpγ1γ2qpxq “ αpγ1q
`

αpγ2qpxq
˘

.
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If the discrete group Γ is instead replaced by a Lie group G, we also require that the map

GˆM Ñ M given by pg, xq ÞÑ αpgqpxq be Cr.

If vol is some fixed volume form on M we write Diffr
volpMq for the group of Cr-

diffeomorphisms preserving vol. A volume-preserving action is a homomorphismα : Γ Ñ
Diffr

volpMq for some volume form vol.

As discussed above, actions of the group of integers Z are generated by iteration of a

single diffeomorphism f : M Ñ M and its inverse. For instance, given an integer n ą 1,

the diffeomorphism αpnq : M Ñ M is defined as the nth iterate of f : for x P M
αpnqpxq “ fnpxq :“ f ˝ f ˝ ¨ ¨ ¨ ˝ f

looooooomooooooon

n times

pxq.

Given a manifold M , any pair of diffeomorphisms f, g P DiffpMq naturally induces an

action of F2, the free group on two generators, by associating to every reduced word in

tf, g, f´1, g´1u the diffeomorphism obtained by composing elements of the word. If a

pair of diffeomorphisms f : M Ñ M and g : M Ñ M commute, we naturally obtain a

Z2-action α : Z2 Ñ DiffpMq given by

αpn,mqpxq “ fn ˝ gmpxq.

1.2. Representations of higher-rank lattices and the Zimmer program. The primary

family of discrete groups considered in this text are lattices Γ in (typically higher-rank,

see Section 2.2) simple Lie groups G. That is, we consider discrete subgroups Γ Ă G

such that G{Γ has finite volume. Examples of such groups include Γ “ SLpn,Zq where

G “ SLpn,Rq (which is higher-rank if n ě 3) and the free group F2 on two generators

where G “ SLp2,Rq (which has rank 1.) See Section 2.1 for background and additional

details.

1.2.1. Linear representations. To motivate the results and conjectures concerning smooth

actions of such Γ, first consider the setting of linear representations ρ : Γ Ñ GLpd,Rq.

A linear representation π : Z Ñ GLpd,Rq of the group of integers is determined by a

choice of a matrix A P GLpd,Rq; similarly, a linear representation π : F2 Ñ GLpd,Rq
of the free group F2 is determined by a choice of a pair of matrices A,B P GLpd,Rq.
These representations may be perturbed to non-conjugate representations π̃. When G “
SLp2,Rq, the inclusion ι : Γ Ñ G of a lattice subgroup is not locally rigid. Indeed, when

Γ is the fundamental group of a closed orientable surface of genus g ě 2, the space of

deformations is the p6g ´ gq-dimensional Teichmuller space.

In contrast, for groups such as Γ “ SLpn,Zq for n ě 3 (and other lattices Γ in

higher-rank simple Lie groups), linear representations π : Γ Ñ GLpd,Rq are very rigid

as demonstrated by various classical results including [78, 80, 85, 94, 106, 113]. For in-

stance, for cocompact Γ, local rigidity results in [106, 113] established that any repre-

sentation π : Γ Ñ SLpn,Zq sufficiently close to the inclusion ι : Γ Ñ SLpn,Zq is con-

jugate to ι. A cohomological criteria for local rigidity of general linear representations

π : Γ Ñ GLpd,Rq was given in [114], further studied in [83, 99], and is known to hold for

lattices in higher-rank simple Lie groups. Margulis’s superrigidity theorem (see Theorem

4.3 below and [80]) establishes that every linear representation π : Γ Ñ GLpd,Rq extends

to a representation π : SLpn,Rq Ñ GLpd,Rq up to a “compact error;” this effectively

classifies all representations Γ Ñ GLpd,Rq up to conjugacy.

1.2.2. Smooth actions of lattices. As in the case of linear representations, actions of Z or

F2 on a manifold M are determined by a choice of diffeomorphism f P DiffrpMq or pair

of diffeomorphisms f, g P DiffrpMq. Such actions may be perturbed to create new actions
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that are inequivalent under change of coordinates. In particular, there is no possible classifi-

cation of all actions of Z or F2 on arbitrary manifoldsM . The free group on two generators

F2 and the group SLp2,Zq are lattices in the Lie group SLp2,Rq. Both F2 and SLp2,Zq
admit actions that are “non-algebraic” (i.e. not built from modifications of algebraic con-

structions) and the algebraic actions of such groups often display less rigidity then actions

of higher-rank groups. For instance, there exists a 1-parameter family of deformations (see

Example 2.12) of the standard SLp2,Zq-action on the 2-torus T2 (see Example 2.5) such

that no continuous change of coordinates conjugates the deformed actions to the original

affine action. See Examples 2.11 and 2.12 for further discussion.

However, as in the case of linear representations, the situation is expected to be very

different for actions by lattices in SLpn,Rq for n ě 3 and other higher-rank simple Lie

groups. In particular, the Zimmer program refers to a collection of conjectures and ques-

tions which roughly aim to establish analogues of rigidity results for linear representations

π : Γ Ñ GLpd,Rq in the context of smooth (often volume-preserving) actions

α : Γ Ñ Diff8pMq
or “nonlinear representations.” In particular, it is expected that all nonlinear actionsα : Γ Ñ
DiffrpMq are, in some sense, of “an algebraic origin.” We note that genuinely “non-

algebraic” actions exist; see for instance the discussions in Example 2.10 and [40, Sections

9, 10]. In particular, a complete a classification of all actions of higher-rank lattices up

to smooth conjugacy is impossible. However, it seems plausible that certain families of

actions (Anosov, volume-preserving, low-dimensional, actions on specific manifolds, ac-

tions preserving a geometric structure, etc.) are classifiable and that all such actions are

constructed from modifications of standard algebraic actions. See Section 2.3 for examples

of standard algebraic actions. We refer to the surveys [38,40,41,66] for further discussion

on various notions of “algebraic actions,” the Zimmer program, and precise statements of

related conjectures and results.

For volume-preserving actions, the primary evidence supporting conjectures in the Zim-

mer program is Zimmer’s superrigidity theorem for cocycles, Theorem 4.2 below. This

extension of Margulis’s superrigidity theorem (for homomorphisms) shows that the deriv-

ative cocycle of any volume-preserving action α : Γ Ñ Diffr
volpMq is—up to a compact

error and measurable coordinate change—given by a linear representation Γ Ñ GLpd,Rq.

1.3. Low-dimensional actions. Precise conjectures in the Zimmer program are easiest to

formulate for actions in low dimensions. See in particular Questions 3.1. For instance,

if the dimension of M is sufficiently small, Zimmer’s conjecture states that all actions

α : Γ Ñ DiffpMq should have finite image αpΓq (see Definition 2.4). For lattices in

SLpn,Rq the precise formulation of the conjecture is as follows.

Conjecture 3.2. For n ě 3, let Γ Ă SLpn,Rq be a lattice. Let M be a compact manifold.

(1) If dimpMq ă n´ 1 then any homomorphism Γ Ñ DiffpMq has finite image.

(2) In addition, if vol is a volume form on M and if dimpMq “ n ´ 1 then any

homomorphism Γ Ñ DiffvolpMq has finite image.

The focus of these notes is to this presents recent progress towards this conjecture made

in [16]. See Theorem 3.4. See also Conjecture 3.3 for statement of this conjecture for

general Lie groups.

Early results establishing this conjecture in the setting of actions the circle appear in [23,

51, 117] and in the setting of volume-preserving (and more general measure-preserving)

actions on surfaces in [47,48,93]. See also [50] and [36] for results on real-analytic actions
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and [24, 26, 27] for results on holomorphic and birational actions. There are also many

results (usually in the C0 setting) for actions of specific lattices on manifolds where there

are topological obstructions to the group acting; a partial list of such results includes [12,

13, 90, 115, 116, 120, 121, 128].

1.4. Rigidity of Anosov diffeomorphisms. As a prototype for general rigidity results dis-

cussed below, we recall certain rigidity properties exhibited by Anosov diffeomorphisms

f : M Ñ M . We first recall the definition of an Anosov diffeomorphism.

Definition 1.1. A C1 diffeomorphism f : M Ñ M of a compact Riemannian manifoldM

is Anosov if there is a Df -invariant splitting of the tangent bundle TM “ Es ‘ Eu and

constants 0 ă κ ă 1 and C ě 1 such that for every x P M and every n P N

}Dxf
npvq} ď Cκn}v} for all v P Espxq

}Dxf
´npwq} ď Cκn}w} for all w P Eupxq.

As a primary example, consider a matrixA P GLpn,Zq with all eigenvalues of modulus

different from 1. Then, with Tn :“ Rn{Zn the n-torus, the induced toral automorphism

LA : Tn Ñ Tn given by

LApx` Znq “ Ax` Zn

is Anosov. More generally, given v P Tn we have f : Tn Ñ Tn given by

fpxq “ LApxq ` v

is an affine Anosov map. In dimension 2, a standard example of an Anosov diffeomorphism

is given by LA : T2 Ñ T2 where A is the matrix A “
ˆ

2 1

1 1

˙

.

A prototype for local rigidity results, it is known (see [2, 84], [58, Corollary 18.2.2])

that Anosov maps are structurally stable: if f is Anosov and g is C1 close to f then g is

also Anosov and there is a homeomorphism h : Tn Ñ Tn such that

h ˝ g “ f ˝ h. (1.1)

The map h is always Hölder continuous but in general need not be C1 even when f and g

are C8. The map h in (1.1) is called a topological conjugacy between f and g.

All known examples of Anosov diffeomorphisms occur on finite factors of tori and nil-

manifolds. From [46, 76] we have a complete classification—a prototype global rigidity

result—of Anosov diffeomorphisms on tori (as well as nilmanifolds) up to a continuous

change of coordinates: If f : Tn Ñ Tn is Anosov, then f is homotopic to LA for some

A P GLpn,Zq with all eigenvalues of modulus different from 1; moreover there is a home-

omorphism h : Tn Ñ Tn such that

h ˝ f “ LA ˝ h.
Again, the topological conjugacyh is Hölder continuous but need not beC1. Conjecturally,

all Anosov diffeomorphisms are, up to finite covers, topologically conjugate to affine maps

on tori and nilmanifolds.

1.5. Local and global rigidity programs. Though the finiteness of actions in low dimen-

sions is the focus of these notes, there are a number of local and global rigidity problems

concerning actions of lattices and higher-rank Lie groups and related problems concerning

actions of higher-rank abelian groups.

1.5.1. Local rigidity. Local rigidity conjectures aim to classify perturbations of actions.

We recall one common definition of local rigidity of a C8 group action:
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Definition 1.2. An action α : Γ Ñ Diff8pMq of a finitely generated group Γ is said to be

locally rigid if, for any action α̃ : Γ Ñ Diff8pMq sufficiently C1-close to α, there exists

a C8 diffeomorphism h : M Ñ M such that

h ˝ α̃pγq ˝ h´1 “ αpγq for all γ P Γ. (1.2)

In Definition 1.2, using that Γ is finitely generated, we define the C1 distance between

α and α̃ to be

maxtdC1pαpγq, α̃pγqq | γ P F u
where F Ă Γ is a finite, symmetric generating subset.

Local rigidity results have been established for actions of higher-rank lattices in many

settings. For instance, local rigidity is known to hold for isometric actions by [8, 43]. In

the non-isometric setting, local rigidity has been established for affine Anosov actions.

Definition 1.3. We say an action α : Γ Ñ DiffpMq is Anosov if αpγq is an Anosov

diffeomorphism for some γ P Γ.

See Example 2.5 and Remark 2.6 for examples of affine Anosov actions of lattices on tori.

For Anosov actions, note that while structural stability (1.1) holds for individual Anosov

elements of an action, local rigidity requires that map h in (1.2) intertwines the action of the

entire group Γ; moreover, unlike in the case of a single Anosov map where h is typically

only Hölder continuous, we ask that the map h in (1.2) be smooth.

There are a number of results establishing local rigidity of affine Anosov actions on

tori and nilmanifolds including [52, 54, 59, 61, 95, 98]. The full result on local rigidity of

Anosov actions by higher-rank lattices was obtained in [62, Theorem 15]. See also related

rigidity results including [54] for results on deformation rigidity and [54, 56, 74, 96] for

various infinitesimal rigidity results. Additionally, see [44, 81] for local rigidity of closely

related actions and [57] and [62, Theorem 17] for results on the local rigidity of projective

actions by cocompact lattices.

1.5.2. Global rigidity. Beyond the study of perturbations, there are a number of conjec-

tures and results on the global rigidity of smooth actions of higher-rank lattices. Much of

the global rigidity results in the literature focus on various families of Anosov actions. Such

conjectures and results aim to classify all (typically volume-preserving) Anosov actions by

showing they are smoothly conjugate to affine actions on (infra-)tori and nilmanifolds. See

for instance [37, 45, 52, 54, 60, 61, 81, 97] for a various global rigidity results for Anosov

actions.

Recently, [22] gave a new mechanism to study rigidity of Anosov actions on tori; in

particular, it is shown in [22] that all Anosov actions (satisfying a certain lifting condi-

tion which holds, for instance, when the lattice is cocompact) of higher-rank lattices are

smoothly conjugate to affine actions, even when the action is not assumed to preserve a

measure. This provides the most general global rigidity result for Anosov actions on tori

and nilmanifolds.

Outside of Anosov actions, we have the following global rigidity conjecture for actions

of lattices Γ Ă SLpn,Rq in the critical dimension pn´ 1q.

Conjecture 3.7. For n ě 3, let Γ Ă SLpn,Rq be a lattice, let M be a pn´1q-dimensional

manifold, and let α : Γ Ñ Diff8pMq be an action with infinite image. Then, either M “
Sn´1 or M “ RPn´1 and the action α is C8 conjugate to the projective action on either

Sn´1 or RPn´1 in Example 2.7.
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Part 1. Actions of lattices in Lie groups and Zimmer’s conjecture

2. SMOOTH ACTIONS BY LATTICES IN LIE GROUPS

We present some background on lattices in semisimple Lie groups and a number of

examples of smooth actions of lattices on manifolds. References with additional details

for this and the next section include [6, 40, 65, 66, 80, 119].

2.1. Lattices in semisimple Lie groups. Recall that a Lie algebra g is simple if it is non-

abelian and has no non-trivial ideal. A Lie algebra g is semisimple if it is the direct sum

g “ ‘ℓ
i“1gi of simple Lie algebras gi; this is equivalent to the fact that rg, gs “ g.We say a

Lie groupG is simple (resp. semisimple) if its Lie algebra g is simple (resp. semisimple).

The main example for this text is the simple Lie group G “ SLpn,Rq.

Let G be a connected semisimple Lie group with finite center. Semisimple Lie groups

are unimodular and hence admit a bi-invariant measure, called the Haar measure, which

is unique up to normalization. A lattice in G is a discrete subgroup Γ Ă G with finite

co-volume. That is, if D is a measurable fundamental domain for the right-action of Γ on

G then D has finite volume. If the quotientG{Γ is compact, we say that Γ is a cocompact

lattice. If G{Γ has finite volume but is not compact we say that Γ is nonuniform. The

quotient manifold G{Γ by the right action of Γ admits a left-action by G and the Haar

measure on G descends to a finite, G-invariant measure on G{Γ which we normalize to be

a probability measure.

Example 2.1. The standard example of a lattice in G “ SLpn,Rq is Γ “ SLpn,Zq.

Note that SLpn,Zq is not cocompact in SLpn,Rq. However, SLpn,Rq and more general

simple and semisimple Lie groups possess both nonuniform and cocompact lattices. (See

for example [119, Sections 6.7, 6.8] for examples and constructions.)

Example 2.2. In the case G “ SLp2,Rq, the fundamental group of any finite area hyper-

bolic surface is a lattice inG. In particular, the fundamental group of a compact hyperbolic

surface is a cocompact lattice in G. This can be seen by identifying the fundamental group

of S with the deck group of the hyperbolic plane H “ SOp2,RqzSLp2,Rq. For instance,

the free group Γ “ F2 on two generators is a lattice in G as can be seen by giving the

punctured torus S “ T2 r tptu a hyperbolic metric.

See [119] for further details on constructions and properties of lattices in Lie groups.

2.2. Rank of G. Every semisimple matrix group admits an Iwasawa decomposition G “
KAN whereK is compact,A is a simply connected free abelian group ofR-diagonalizable

elements, and N is unipotent. For general semisimple Lie groups with finite center, we

have a similarly defined Iwasawa decomposition G “ KAN where the images of A and

N under the adjoint representation are, respectively, R-diagonalizable and unipotent. The

dimension ofA is the rank ofG. We call such a groupA a maximal split Cartan subgroup.

In the case of G “ SLpn,Rq, the standard choice of K , A, and N are

K “ SOpn,Rq, A “ tdiagpet1 , et2 , . . . , etnq : t1 ` ¨ ¨ ¨ ` tn “ 0u,
and N the group of upper-triangular matrices with all diagonal entries equal to 1. Note

that, as elements in SLpn,Rq have determinant 1, we have

diagpet1 , et2 , . . . , etnq P SLpn,Rq
if and only if t1 ` ¨ ¨ ¨ ` tn “ 0. Thus A » Rn´1 and the rank of SLpn,Rq is n ´ 1.
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We say that a simple Lie group G is higher-rank if its rank is at least 2. We will say

that a lattice Γ in a higher-rank simple Lie groupG is a higher-rank lattice. In particular,

G “ SLpn,Rq and its lattices are higher-rank when n ě 3.

In Example 2.9 below, we present an example of a cocompact lattice Γ in the group

G “ SOpn, nq when n ě 4. The group SOpn, nq has rank n and thus Γ is a higher-rank,

cocompact lattice.

For further examples, see Table 1 for calculations of the rank for various matrix groups

and see [65, Section VI.4] for examples of Iwasawa decompositions for various matrix

groups.

2.3. Standard actions of lattices in Lie groups. We present a number of standard exam-

ples of “algebraic” actions of lattices in Lie groups. We also discuss in Example 2.10 some

modifications of algebraic actions and constructions of more exotic actions.

Example 2.3 (Finite actions). Let Γ1 be a finite-index normal subgroup of Γ. Then F “
Γ{Γ1 is finite. Suppose the finite group F acts on a manifold M . Since F is a quotient of

Γ we naturally obtain a Γ-action on M .

Note that an action of a finite group preserves a volume simply by averaging any volume

form by the action.

Definition 2.4. An action α : Γ Ñ DiffpMq is finite or almost trivial if it factors through

the action of a finite group. That is, α is finite if there is a finite-index normal subgroup

Γ1 Ă Γ such that αæΓ1 is the identity.

We remark that by a theorem of Margulis [79], if Γ is a lattice in a higher-rank simple

Lie group then all normal subgroups of Γ are either finite or of finite-index.

Example 2.5 (Affine actions). LetΓ “ SLpn,Zq (or any finite-index subgroup of SLpn,Zq).

Let M “ Tn “ Rn{Zn be the n-dimensional torus. We have a natural action α : Γ Ñ
DiffpTnq given by

αpγqpx ` Znq “ γ ¨ x` Zn

for any matrix γ P SLpn,Zq.

To generalize this example to other lattices, let Γ Ă SLpn,Rq be any lattice and let

ρ : Γ Ñ SLpd,Zq be any representation. Then we have a natural action α : Γ Ñ DiffpTdq
given by

αpγqpx` Zdq “ ρpγq ¨ x` Zd.

Note that these examples preserve a volume form, namely, the Lebesgue measure on Td.

Also note that these actions are non-isometric.

Remark 2.6. Both constructions in Example 2.5 give actions α : Γ Ñ DiffpTdq that have

global fixed points. That is, the coset of 0 in Td is a fixed point of αpγq for every γ P Γ.

The construction can be modified further to obtain genuinely affine actions without

global fixed points. Given a lattice Γ Ă SLpn,Rq and a representation ρ : Γ Ñ SLpd,Zq,

there may exist non-trivial elements c P H1
ρpΓ,Tdq; that is, c : Γ Ñ Td is a function with

cpγ1γ2q “ ρpγ1qcpγ2q ` cpγ1q (2.1)

and such that there does not exist any η P Td with

cpγq “ ρpγqη ´ η (2.2)

for all γ P Γ. (Equation (2.1) says that c is a cocycle with coefficients in the Γ-module Td;

(2.2) says c is not a coboundary.) We may then define α̃ : Γ Ñ DiffpTdq by

α̃pγqpx ` Zdq “ ρpγq ¨ x` cpγq ` Zd.
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Equation (2.1) ensures that α̃ is an action and (2.2) ensures that α̃ is not conjugate to the

action α.

In the above construction, any cocycle c : Γ Ñ Td is necessarily cohomologous to a

torsion-valued (that is, Qd{Zd-valued) cocycle. This follows from Margulis’s result (see

[80, Theorem 3 (iii)]) on the vanishing of H1
ρpΓ,Rdq. In particular, α̃ and α are conjugate

when restricted to a finite-index subgroup of Γ. See [55] for more details.

Example 2.7 (Projective actions). Let Γ Ă SLpn,Rq be any lattice. Then Γ has a natural

linear action on Rn. The linear action of Γ on Rn induces an action of Γ on the sphere

Sn´1 thought of as the set of unit vectors in Rn: we have α : Γ Ñ DiffpSnq given by

αpγqpxq “ γ ¨ x
}γ ¨ x} .

Alternatively we could act on the space of lines in Rn and obtain an action of Γ on the

pn´1q-dimensional real projective space RPn´1. This action does not preserve a volume;

in fact there is no invariant probability measure for this action. Additionally, these actions

are not isometric for any Riemannian metric.

Remark 2.8 (Actions on boundaries). Example 2.7 generalizes to actions of lattices Γ inG

acting on boundaries of G. Given a semisimple Lie group G with Iwasawa decomposition

G “ KAN , letM “ KXCGpAq be the centralizer ofA inK . A closed subgroupQ Ă G

is parabolic if it is conjugate to a group containingMAN . When G “ SLpn,Rq we have

that M is a finite group and any parabolic subgroup Q is conjugate to a group containing

all upper triangular matrices. See [65, Section VII.7] for further discussion on the structure

of parabolic subgroups.

Given a semisimple Lie group G, a (finite-index subgroup of a) proper parabolic sub-

group Q Ă G, and a lattice Γ Ă G, the coset space M “ G{Q is compact and Γ acts on

M naturally as

αpγqpxQq “ γxQ.

These actions never preserve a volume form or any Borel probability measure and are not

isometric.

In Example 2.7, the action on the projective space RPn´1 can be seen as the action on

SLpn,Rq{Q where Q is the parabolic subgroup

Q “

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

˚ ˚ ¨ ¨ ¨ ˚
0 ˚ ¨ ¨ ¨ ˚
...

...
. . .

...

0 ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

.

Example 2.9 (Isometric actions). Another important family of algebraic actions are iso-

metric actions obtained from embeddings of cocompact lattices in Lie groups into compact

groups.

Isometric actions of cocompact lattices in split orthogonal groups of type Dn. For n ě 4,

consider the quadratic form in 2n variables

Qpx1, . . . , xn, y1, . . . , ynq “ x21 ` ¨ ¨ ¨ ` x2n ´
?
2py21 ` ¨ ¨ ¨ ` y2nq.

Let

B “ diag
´

1, . . . , 1,´
?
2, . . . ,´

?
2
¯

P GLp2n,Rq
be the matrix such that Qpxq “ xTBx for all x P R2n and let

G “ SOpQq “ tg P SLp2n,Rq | gTBg “ Bu
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be the special orthogonal group associated with Q. We have that

SOpQq » SOpn, nq
is a Lie group of rank n with restricted root system of type Dn when n ě 4.1

Let K “ Qr
?
2s and let Zr

?
2s be the ring of integers in K. Let

Γ “ tg P SLp2n,Zr
?
2sq | gTBg “ Bu.

ThenΓ is a cocompact lattice inG. (See for example [119], Proposition 5.5.8 and Corollary

5.5.10.)

Let τ : K Ñ K be the nontrivial Galois automorphism with τp
?
2q “ ´

?
2. Let τ act

coordinate-wise on matrices with entries in K. Given γ P Γ we have τpγq “ Id if and only

if γ “ Id. Moreover, as τ2 “ Id we have

τpγq P SOpτpQqq :“ tg P SLp2n,Rq | gT τpBqg “ τpBqu » SOp2nq.
In particular, the map γ Ñ τpγq gives a representation Γ Ñ SOp2nq with infinite image

into the compact group SOp2nq.

As SOp2nq is the isometry group of the sphereS2n´1 “ SOp2nq{SOp2n´1q we obtain

an action of Γ by isometries on a manifold of dimension 2n´ 1.

Isometric actions of cocompact lattices in SLpn,Rq. A more complicated construction can

be used to build cocompact lattices Γ Ă SLpn,Rq that possess infinite-image representa-

tions π : Γ Ñ SUpnq (see discussion in [119, Sections 6.7, 6.8] as well as [119, Warning

16.4.3].) In this case, one obtains isometric actions of certain cocompact lattices Γ in

SLpn,Rq on the p2n´ 2q-dimensional homogeneous space

SUpnq{SpUp1q ˆ Upn ´ 1qq.
Example 2.10 (Modifications of standard examples and exotic actions). Beyond the “al-

gebraic actions” discussed in Examples 2.5–2.9, it is possible to modify certain algebraic

constructions to construct genuinely new actions; these actions might not be conjugate to

algebraic actions and may exhibit much weaker rigidity properties. One such construction

starts with the standard action of (finite-index subgroups of) SLpn,Zq on Tn and creates a

non-volume-preserving action by blowing-up fixed points or finite orbits of the action. In

[60, Section 4], Katok and Lewis showed this example can be modified to obtain volume-

preserving, real-analytic actions of SLpn,Zq that are not C0 conjugate to an affine action;

moreover, these actions are not C1-locally rigid. In [7, 9, 39], constructions of non-locally

rigid, ergodic, volume-preserving actions of any lattice in a simple Lie group are con-

structed by more general blow-up constructions.

Another example due to Stuck [110] demonstrates that it is impossible to fully classify-

ing all lattice actions. LetP Ă SLpn,Rq be the group of upper triangular matrices. There is

a non-trivial homomorphism ρ : P Ñ R. Now consider any flow (i.e. R-action) on a man-

ifold M and view the flow as a P -action via the image of ρ. Then G acts on the induced

space N “ pG ˆ Mq{P and the restriction induces a non-volume-preserving, non-finite

action of Γ. This example shows—particularly in the non-volume-preserving-case—that

care is needed in order to formulate any precise conjectures that assert that every action

should be “of an algebraic origin.” Note, however, that we obtain a natural mapN Ñ G{P
that intertwines Γ-actions; in particular, this action has an “algebraic action” as a factor.

We refer to [40, Sections 9 and 10] for more detailed discussion and references to mod-

ifications of algebraic actions and exotic actions.

1For n “ 1, SOp1, 1q is a one-parameter group and for n “ 2, SOp2, 2q is not simple (it is double covered by

SLp2,Rq ˆ SLp2,Rq). For n “ 3, SOp3, 3q is double covered by SLp4,Rq.
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2.4. Actions of lattices in rank-1 groups. Actions by lattices in higher-rank Lie groups

are expected to be rather constrained. Although Example 2.10 shows there exist exotic,

genuinely “non-algebraic” actions of such groups, these actions are build from modifying

algebraic constructions or factor over algebraic actions. For lattices in rank-one Lie groups

such as SLp2,Rq, the situation is very different. There exist natural actions that have no

algebraic origin and the algebraic actions of such groups seem to exhibit far less rigidity

(for example Example 2.12 which is not locally rigid) than those above.

Example 2.11 (Actions of free groups). Let G “ SLp2,Rq. The free group Γ “ F2

is a lattice in G. (For instance, F2 is the fundamental group of the punctured torus; more

explicitly, SLp2,Zq contains a copy ofF2 as an index 12 subgroup.) LetM be any manifold

and let f, g P DiffpMq. Then f and g generate an action of Γ on M that is in general is

of an algebraic origin. In particular, there is no expectation that any rigidity phenomena

should hold in general for actions by all lattices in SLp2,Rq.

For the next example, recall Definitions 1.1 and 1.3 of Anosov actions.

Example 2.12 (Non-standard Anosov actions of SLp2,Zq). Consider the standard action

α0 of SLp2,Zq on the 2 torus T2 as constructed in Example 2.5. In [54, Example 7.21],

Hurder presents an example of a 1-parameter family of deformations αt : SLp2,Zq Ñ
DiffpT2q of α0 with the following properties:

(1) Each αt is a real-analytic, volume-preserving action;

(2) For t ą 0, αt is not topologically conjugate to α0, (even when restricted to a

finite-index subgroup of SLp2,Zq.)

Moreover, since α0 is an Anosov action and since the Anosov property is an open property

we have that

(3) each αt is an Anosov action.

This shows that even affine Anosov actions of SLp2,Zq fail to exhibit local rigidity prop-

erties and that there exist genuinely exotic Anosov actions of SLp2,Zq. This is in stark

contrast to the affine Anosov actions of higher-rank lattices which are known to be locally

rigid by [62, Theorem 15].

In contrast, it is expected that all Anosov actions of higher-rank lattices are smoothly

conjugate to affine actions as in Example 2.5 or Remark 2.6 (or analogous constructions in

infra-nilmanifolds). See Question 3.1(6) below. Recent progress towards this conjecture

appears in [22].

Remark 2.13. There are a number of rank-1 Lie groups whose lattices are known to exhibit

some rigidity properties relative to linear representations. For instance, Corlette established

superrigidity and arithmeticity of lattices in certain rank-1 simple Lie groups in [29]. In

particular, Corlette establishes superrigidity for lattices in Sppn, 1q and F´20
4 , the isometry

groups of quaternionic hyperbolic space and the Cayley plane. It seems plausible that

lattices in certain rank-1 Lie groups would exhibit some rigidly properties for actions by

diffeomorphisms; currently, there do not seem to be any results in this direction other than

results that hold for all groups with property (T) groups such as [43, 87].

3. ACTIONS IN LOW DIMENSION AND ZIMMER’S CONJECTURE

3.1. Motivating questions. For actions by lattices in rank-1 groups, we have seen that it

is easy to construct exotic actions of free groups and Example 2.12 shows there are exotic

Anosov actions of SLp2,Zq on tori.
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However, for actions of lattices in higher-rank, simple Lie groups, the situation is ex-

pected to be far more rigid. In particular, the examples from the previous section lead to

a number of more precise questions and conjectures. For concreteness, fix n ě 3 and

let G “ SLpn,Rq. Let Γ Ă G be a lattice. Recall the action of Γ on Sn´1 and the

volume-preserving Anosov action of Γ “ SLpn,Zq on Tn.

Questions 3.1. Consider the following questions:

(1) Is there a non-finite action of Γ on a manifold of dimension at most n ´ 2?

(2) If the answer to (1) is unknown, does every action of Γ on a manifold of dimension

at most n´ 2 preserve a volume form?

(3) Is there a non-finite, volume-preserving action of Γ on a manifold of dimension at

most n ´ 1?

(4) Is every non-finite action of Γ on an n-torus of the type considered in Example

2.5? What about volume-preserving actions? That is, if α : Γ Ñ DiffpTnq is a

non-finite action is α smoothly conjugate to an affine action as in Example 2.5 (or

as in Remark 2.6)?

(5) Are the only non-finite actions of Γ on a connected pn ´ 1q-manifold those con-

sidered in Example 2.7? That is, if α : Γ Ñ Diff8pMq is a non-finite action is M

either Sn´1 or RPn´1 and is α smoothly conjugate to the projective action.

Motivated by various conjectures on the classification of Anosov diffeomorphisms and

Question 3.1(4), we also pose the following.

(6) Is every non-finite (volume-preserving) Anosov action of Γ of the type considered

in Example 2.5? That is, if α : Γ Ñ DiffpMq is an Anosov action is M a (infra-

)nilmanifold and is α smoothly conjugate to an affine action as in Example 2.5 (or

as in Remark 2.6)?

Questions 3.1(1) and (3) are referred to as Zimmer’s conjecture, discussed in the next

section. Question 3.1(2) is irrelevant given a negative answer to Question 3.1(1) but mo-

tivated the result stated in Theorem 3.5 below and was natural to conjecture before an

answer to Question 3.1(1) was known. It may be that answering Question 3.1(2) is possi-

ble in dimension ranges where Conjecture 3.3(1) below is expected to hold but is not yet

known.

3.2. Zimmer’s conjecture for actions by lattices in SLpn,Rq. Recall Example 2.5 and

Example 2.7. For lattices in SLpn,Rq, Zimmer’s conjecture asserts that these are the

minimal dimensions in which non-finite actions can occur. We have the following precise

formulation.

Conjecture 3.2. For n ě 3, let Γ Ă SLpn,Rq be a lattice. Let M be a compact manifold.

(1) If dimpMq ă n´ 1 then any homomorphism Γ Ñ DiffpMq has finite image.

(2) In addition, if vol is a volume form on M and if dimpMq “ n ´ 1 then any

homomorphism Γ Ñ DiffvolpMq has finite image.

We are intentionally vague about the regularity in Conjecture 3.2 (and Conjecture 3.3

below). Zimmer’s original conjecture considered the case of C8 volume-preserving ac-

tions. See [122,125,126]. Most evidence for the conjecture requires the action to be at least

C1. It is possible the conjecture holds for actions by homeomorphisms; see for instance

[12, 116, 117] for a partial list of results in this direction. The results we discuss below

require the action to be at least C1`β as we use tools nonuniformly hyperbolic dynamics

though some of our results still hold for actions by C1 diffeomorphisms (see Theorem 3.6

below.)
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˚3.3. Zimmer’s conjecture for actions by lattices in other Lie groups. To for-

mulate Zimmer’s conjecture for lattices general Lie groups, to each simple, non-compact

Lie group G we associate 3 positive integers d0pGq, dreppGq, dcmtpGq defined roughly as

follows:

(1) d0pGq is the minimal dimension ofG{H asH varies over proper closed subgroups

H Ă G. (We remark that H is necessarily a parabolic subgroup in this case.)

(2) dreppGq is the minimal dimension of a non-trivial linear representation of (the Lie

algebra) of G.

(3) dcmtpGq is the minimal dimension of a non-trivial homogeneous space of a com-

pact real form of G.

See Table 1 where we compute the above numbers for a number of matrix groups, (split)

real forms of exceptional Lie algebras, and complex matrix groups. We also include an-

other number rpGq which is defined in [16, 20] and arises from certain dynamical argu-

ments2; this number gives the bounds appearing in the most general result, Theorem 3.9

below, towards solving Conjecture 3.3. For complete tables of values of dreppGq, dcmtpGq,

and d0pGq, we refer to [25].

G
restricted

root system
rank dreppGq dcmtpGq d0pGq rpGq

SLpn,Rq An´1 n´ 1 n 2n´ 2 n´ 1 n´ 1

SOpn, n ` 1q Bn n 2n` 1 2n 2n´ 1 2n´ 1

Spp2n,Rq Cn n 2n 4n´ 4 2n´ 1 2n´ 1

SOpn, nq Dn n 2n 2n´ 1 2n´ 2 2n´ 2

EI E6 6 27 26 16 16

EV E7 7 56 54 27 27

EV III E8 8 248 112 57 57

F1 F4 4 26 16 15 15

G G2 2 7 6 5 5

SLpn,Cq An´1 n´ 1 2n 2n´ 2 2n´ 2 n´ 1

SOp2n,Cq Dn n 4n 2n´ 1 4n´ 4 2n´ 2

SOp2n ` 1,Cq Bn n 4n` 2 2n 4n´ 2 2n´ 1

Spp2n,Cq Cn n 4n 4n´ 4 4n´ 2 2n´ 1

SOpp, qq
p ă q

Bp p p` q p` q ´ 1 p ` q ´ 2 2p´ 1

TABLE 1. Numerology in appearing in Zimmer’s conjecture for various

groups. See also [25] for more complete tables. See Theorem 3.9 where

the number rpGq appears and [16, 20] or Footnote 2 for definition.

Given the examples in Section 2.3 and the integers dreppGq, dcmtpGq, d0pGq defined

above, is it natural to conjecture the following full conjecture.

Conjecture 3.3 (Zimmer’s conjecture). Let G be a connected, simple Lie group with finite

center. Let Γ Ă G be a lattice. Let M be a compact manifold and vol a volume form on

M . Then

2A precise definition that is equivalent to that in [16, 20] is that rpGq is d0pG1q where G1 is the largest R-split

simple subgroup in G.
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(1) if dimpMq ă mintdreppGq, dcmtpGq, d0pGqu then any homomorphism α : Γ Ñ
DiffpMq has finite image;

(2) if dimpMq ă mintdreppGq, dcmtpGqu then any homomorphismα : Γ Ñ DiffvolpMq
has finite image;

(3) if dimpMq ă mintd0pGq, dreppGqu then for any homomorphismα : Γ Ñ DiffpMq,

the image αpΓq preserves a Riemannian metric;

(4) if dimpMq ă dreppGq then for any homomorphism α : Γ Ñ DiffvolpMq, the

image αpΓq preserves a Riemannian metric.

3.4. Recent progress on Zimmer’s conjecture. Recently, the author with David Fisher

and Sebastian Hurtado answered Questions 3.1(1) and (3) for actions by cocompact lat-

tices in SLpn,Rq (and other higher-rank simple Lie groups) in [16]. They also announced

the analogous result for actions by SLpn,Zq in [17] and for actions by general lattices in

[18]. This solves Conjecture 3.2 for actions by C2 (or even C1`β) diffeomorphisms. See

Remarks below for discussion of actions by C1 diffeomorphisms.

We also refer the reader to the excellent article by Serge Cantat [25] that presents (in

French) a complete proof of Theorem 3.4.

Theorem 3.4 ([16, Theorem 1.1]). For n ě 3, let Γ Ă SLpn,Rq be a cocompact lattice.

Let M be a compact manifold.

(1) If dimpMq ă n´ 1 then any homomorphism Γ Ñ Diff2pMq has finite image.

(2) In addition, if vol is a volume form on M and if dimpMq “ n ´ 1 then any

homomorphism Γ Ñ Diff2
volpMq has finite image.

Before Theorem 3.4 gave answers to Questions 3.1(1) and (3) above, the author together

with Federico Rodriguez Hertz and Zhiren Wang studied Question 3.1(2) and were able to

show that all such actions preserve some probability measure.

Theorem 3.5 ([20, Theorem 1.6]). For n ě 3, let Γ Ă SLpn,Rq be a lattice. Let M be a

manifold with dimpMq ă n ´ 1. Then, for any C1`β action α : Γ Ñ Diff1`βpMq, there

exists an α-invariant Borel probability measure.

For actions on the circle, an analogue of Theorem 3.5 is shown in [51, Theorem 3.1] for

actions by homeomorphisms.

The proof of Theorem 3.4 uses ideas and results from [20], particularly the proof of

Theorem 3.5, as ingredients. Thus, while Theorem 3.5 follows trivially from Theorem 3.4,

we include the proof of Theorem 3.5 below as key ideas (namely, Theorem 11.1, Theo-

rem 11.11, and Proposition 11.5) will be needed in the proof of Theorem 3.4.

Remarks on Theorem 3.4. We give a number of remarks on extensions of Theorem 3.4.

See also the discussion in Section 3.5.

(1) Recently, the authors announced in [17] that the conclusion of Theorem 3.4 holds

for actions of SLpn,Zq for n ě 3. The result for general lattices in SLpn,Zq as

well as analogous results for lattices in other higher-rank simple Lie groups, has

been announced [18]. See Theorem 3.9. The results for actions of SLpn,Zq and

of general nonuniform lattices use many of the ideas presented in this text but also

require a number of new techniques (including the structure of arithmetic groups,

reduction theory, and ideas from [75]) and will not be discussed.

(2) We state Theorem 3.4 for actions by C2 diffeomorphisms though the proof can be

adapted for actions by C1`β actions. Our proof below will assume the action is

by C8 diffeomorphisms to simplify certain Sobolev space arguments.
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(3) The result for actions by lattices in general Lie groups is stated in Theorem 3.9 be-

low. In particular, by Theorem 3.9, Conjecture 3.3(1) and (2) hold for allC1`β ac-

tions by lattices in all simple Lie groups that are non-exceptional, split real forms.

For C1`β actions by lattices in all simple Lie groups that are exceptional split real

forms, Conjecture 3.3(1) is known to hold by Theorem 3.9.

(4) D. Damjanovich and Z. Zhang observed that the proof of Theorem 3.4 can be

adapted to the setting of actions byC1-diffeomorphisms. Together with the author,

the have announced the following theorem.

Theorem 3.6 (Brown-Damjanovich-Zhang, announced). Let Γ Ă G be a lattice in

a higher-rank simple Lie groupG with finite center. LetM be a compact manifold.

(a) If dimpMq ă rankpGq then any homomorphism Γ Ñ Diff1pMq has finite

image.

(b) In addition, if vol is a volume form on M and if dimpMq “ rankpGq then

any homomorphism Γ Ñ Diff1
volpMq has finite image.

For actions by lattices on other higher-rank groups there is a gap between what

is known for C1 versus C1`β-actions. Indeed, our number rpGq in Theorem 3.9

always satisfies rpGq ě rankpGq and is a strict inequality unless G has restricted

root system of type An.

Extension of Theorem 3.5 and rigidity conjecture in dimension n ´ 1. In the critical

dimension, dimpMq “ n ´ 1, the projective action on RPn´1 discussed in Example 2.7

gives an example of an action that does not preserve any Borel probability measure. If α

is an action of Γ on a space X , we say that a Borel probability measure µ is nonsingular

for α if the measure class of µ is preserved by the action. In particular, any smooth volume

on RPn´1 is nonsingular for the projective action. In [20, Theorem 1.7], it is shown that

all non-measure-preserving actions on manifolds of the critical dimension pn ´ 1q have

the projective action on RPn´1 equipped with a smooth volume as a measurable factor.

Precisely, for any action α : Γ Ñ Diff1`βpMq where dimpMq “ n ´ 1 it is shown that

either

(1) there exists an α-invariant Borel probability measure µ on M ; or

(2) there exists a Borel probability measure µ on M that is nonsingular for the action

α; moreover the action α on pM,µq is measurably isomorphic to a finite extension

of the projective action in Example 2.7 and the image of µ factors to a smooth

volume form on RPn´1.

This gives strong evidence for a positive answer to Question 3.1(5) which we pose as a

formal conjecture.

Conjecture 3.7. For n ě 3, let Γ Ă SLpn,Rq be a lattice, let M be a pn´1q-dimensional

manifold, and let α : Γ Ñ Diff8pMq be an action with infinite image. Then, either M “
Sn´1 or M “ RPn´1 and the action α is C8 conjugate to the projective action on either

Sn´1 or RPn´1 in Example 2.7.

˚3.5. Results on Zimmer’s conjecture for lattices in other Lie groups. Consider a

connected, simple Lie group G with finite center. Let Γ Ă G be a cocompact lattice. The

proof of Theorem 3.4 discussed above, particularly the use of Theorem 11.1 in Section

12.3 can be adapted almost verbatim to show the following. See also [25] where Theorem

3.8 is stated and given a mostly self-contained proof.
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Theorem 3.8. Let G be a connected, simple Lie group G with finite center and rank at

least 2. Let Γ Ă G be a cocompact lattice and let M be a compact manifold.

(1) If dimpMq ă rankpGq then any homomorphism Γ Ñ Diff2pMq has finite image.

(2) In addition, if vol is a volume form on M and if dimpMq ď rankpGq then any

homomorphism Γ Ñ Diff2
volpMq has finite image.

As mentioned in Section 3.4, Theorem 3.8 holds for C1 actions; see Theorem 3.6.

Theorem 3.8 fails to give the optimal dimension bounds for the analogue of Conjecture

3.2 given in Conjecture 3.3 for actions by lattices in Lie groups other than SLpn,Rq. See

Table 1 for various conjectured critical dimensions arising in Zimmer’s conjecture for other

Lie groups.

To state the most general (as of 2018) result towards solving Conjecture 3.3, to any

simple Lie group G, we associate a non-negative integer rpGq. See [16, Section 2.2] or

Footnote 2 for equivalent definitions of rpGq and Table 1 for values of rpGq in various

examples of G. For actions of lattices in a general Lie groupG, the main result of [16], as

well as the announced extension, gives finiteness of the action up to the critical dimension

rpGq.

Theorem 3.9 ([16] cocompact case; [18] nonuniform case). Let Γ Ă G be a lattice in a

higher-rank simple Lie group G with finite center. Let M be a compact manifold.

(1) If dimpMq ă rpGq then any homomorphism Γ Ñ Diff1`βpMq has finite image.

(2) In addition, if vol is a volume form on M and if dimpMq “ rpGq then any homo-

morphism Γ Ñ Diff
1`β
vol pMq has finite image.

When G is exceptional or not a split real form, our number rpGq is lower than the

conjectured critical dimension in Conjecture 3.3(1) and (2). However, for lattices in all Lie

groups that are non-exceptional, split real forms Theorem 3.9 confirms Conjecture 3.3(1)

and (2). For instance, for actions by lattices in symplectic groups we have the following.

Theorem 3.10 ([16, Theorem 1.3] cocompact case; [18] nonuniform case). For n ě 2, if

M is a compact manifold with dimpMq ă 2n ´ 1 and if Γ Ă Spp2n,Rq is a lattice then

any homomorphism α : Γ Ñ Diff2pMq has finite image. In addition, if dimpMq “ 2n´ 1

then any homomorphism α : Γ Ñ Diff2
volpMq has finite image.

Similarly, for actions by lattices in split orthogonal groups we have the following.

Theorem 3.11 ([16, Theorem 1.4] cocompact case; [18] nonuniform case). Let M be a

compact manifold.

(1) For n ě 4, if Γ Ă SOpn, nq is a lattice and if dimpMq ă 2n ´ 2 then any

homomorphism α : Γ Ñ Diff2pMq has finite image. If dimpMq “ 2n ´ 2 then

any homomorphism α : Γ Ñ Diff2
volpMq has finite image.

(2) For n ě 3, if Γ Ă SOpn, n ` 1q is a lattice and if dimpMq ă 2n ´ 1 then any

homomorphism α : Γ Ñ Diff2pMq has finite image. If dimpMq “ 2n ´ 1 then

any homomorphism α : Γ Ñ Diff2
volpMq has finite image.

For actions by lattices Γ in simple Lie groups that are not split real forms such as G “
SLpn,Cq, SOpn,mq for m ě n ` 2, or SUpn,mq, Theorem 3.9 above (the main result of

[16] for cocompact case, [18] in general) gives finiteness of all actions on manifolds whose

dimension is below a certain critical dimension. However, this critical dimension may be

below the dimension conjectured by the analogue of Conjecture 3.3 for these groups. See

Table 1.
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4. SUPERRIGIDITY AND HEURISTICS FOR CONJECTURE 3.2

The original conjecture (as formulated for actions by lattices in SLpn,Rq) posed by

Zimmer was Conjecture 3.2(2) (see for example [125, Conjecture II]). Conjecture 3.2(1)

was formulated later and first appears in print in [36, Conjecture I]. The reason Zimmer

posed his conjecture as Conjecture 3.2(2) is that the strongest evidence for the conjecture—

Zimmer’s cocycle superrigidity theorem—requires that the action preserve some Borel

probability measure. Zimmer’s cocycle superrigidity theorem also provides strong evi-

dence for local and global rigidity conjectures related to Questions 3.1(4) and (6) and is

typically used in proofs of results towards solving such conjectures.

In this section we state a version of Zimmer’s cocycle superrigidity theorem and some

consequences. We also state and give a number of consequences of a version of Margulis’s

superrigidity theorem (for linear representations). We finally end with some heuristics for

Conjecture 3.2 that follow from the superrigidity theorems. General references for this

section include [80, 119, 123].

4.1. Cocycles over group actions. Consider a standard probability space pX,µq. Let G

be a locally compact topological group and let α : G ˆ X Ñ X be a measurable action

of G by µ-preserving transformations. In particular, αpgq is a µ-preserving, measurable

transformation of X for each g P G. We will always assume that µ is ergodic; that is, we

assume the only G-invariant sets are null or conoll. A d-dimensional measurable linear

cocycle over α is a measurable map

A : GˆX Ñ GLpd,Rq
satisfying for a.e. x P X the cocycle condition: for all g1, g2 P G

Apg1g2, xq “ A pg1, αpg2qpxqq Apg2, xq. (4.1)

If e is the identity element of G, then (4.1) implies that

Ape, xq “ Ape, xqApe, xq
whence Ape, xq “ Id for a.e. x

We say two cocycles A,B : G ˆ X Ñ GLpd,Rq are (measurably) cohomologous if

there is a measurable map Φ: X Ñ GLpd,Rq such that for a.e. x and every g P G
Bpg, xq “ Φpαpgqpxqq´1

Apg, xqΦpxq. (4.2)

We say a cocycle A : G ˆ X Ñ GLpd,Rq is constant if Apg, xq is independent of x, that

is, if A : G ˆ X Ñ GLpd,Rq coincides with a representation π : G Ñ GLpd,Rq on a set

of full measures.

As a primary example, let α : G Ñ Diff1
µpMq be an action of G by C1 diffeomor-

phisms of a compact manifoldM preserving some Borel probability measure µ. Although

the tangent bundle TM may not be a trivial bundle, we may choose a Borel measurable

trivialization Ψ: TM Ñ M ˆRd of the vector-bundle TM where d “ dimpMq. We have

that Ψ factors over the identity map on M and, writing Ψx : Tx Ñ Rd for the identifica-

tion of the fiber over x with Rd, we moreover assume that }Ψx} and }Ψ´1
x } are uniformly

bounded in x.

Fix such an trivialization Ψ and define A to be the derivative cocycle relative to this

trivialization:

Apg, xq “ Dxαpgq
where, we view Dxαpgq as an element of GLpd,Rq transferring the fiber txu ˆ Rd to

tαpgqpxqu ˆRd via the measurable trivialization Ψ. To be precise, if Ψ: TM Ñ M ˆRd
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is the measurable vector-bundle trivialization then

Apg, xq :“ ΨpαpgqpxqqDxαpgqΨpxq´1.

In this case, the cocycle relation (4.1) is simply the chain rule. Note that if we choose an-

other Borel measurable trivialization Ψ1 : TM Ñ MˆRd then we obtain a cohomologous

cocycle A1. Indeed, we have

A
1pg, xq “ Ψ1pαpgqpxqqΨpαpgqpxqq´1

Apg, xqΨpxqΨ1pxq´1

so we may take Φpxq “ ΨpxqΨ1pxq´1 in (4.2).

We have the following elementary fact which we frequently use in the case of volume-

preserving actions.

Claim 4.1. Let α : G Ñ Diff1
volpMq be an action by volume-preserving diffeomorphisms.

Then, for any α-invariant measure µ, the derivative cocycle A is cohomologous to a

SL˘pd,Rq-valued cocycle.

Above, SL˘pd,Rq is the subgroup of GLpd,Rq defined by detpAq “ ˘1.

4.2. Cocycle superrigidity. We formulate the statement of Zimmer’s cocycle superrigid-

ity theorem when G is either SLpn,Rq or a lattice SLpn,Rq for n ě 3. Note that the

version formulated by Zimmer (see [123]) had a slightly weaker conclusion. We state the

stronger version formulated and proved in [42].

Theorem 4.2 (Cocycle superrigidity [42, 123]). For n ě 3, let G be either G “ SLpn,Rq
or let G be a lattice in SLpn,Rq. Let α : G Ñ AutpX,µq be an ergodic, measurable

action of G by µ-preserving transformations of a standard probability space pX,µq. Let

A : G ˆX Ñ GLpd,Rq be a bounded,3 measurable linear cocycle over α.

Then there exist

(1) a linear representation ρ : SLpn,Rq Ñ SLpd,Rq;

(2) a compact subgroup K Ă GLpd,Rq that commutes with the image of ρ;

(3) a K-valued cocycle C : GˆX Ñ K;

(4) and a measurable function Φ: X Ñ GLpd,Rq
such that for a.e. x P X and every g P G

Apg, xq “ Φpαpgqpxqq´1ρpgqCpg, xqΦpxq. (4.3)

In particular, Theorem 4.2 states that any bounded measurable linear cocycle A : G ˆ
X Ñ GLpd,Rq over the action α is cohomologous to the product of a constant cocycle

ρ : G Ñ SLpd,Rq and a compact-valued cocycle C : G ˆX Ñ K Ă GLpd,Rq.

When A is the derivative cocycle associated to a smooth volume-preserving action

α : Γ Ñ Diffr
volpMq, Theorem 4.2 says that the derivative pγ, xq ÞÑ Dxαpγq coincides—

up to a compact group and measurable trivialization of TM—with a representation ρ : G Ñ
SLpdimpMq,Rq. This, in particular, suggests that non-isometric, volume-preserving ac-

tions α : Γ Ñ Diffr
volpMq on low dimensional manifolds should be “derived from” affine

actions of Γ. An example of a “derived from” affine action is the example of Katok in

Lewis mentioned in Example 2.10. In [61], such a philosophy is carried out for volume-

preserving Anosov actions of SLpn,Zq on Tn.

3Here, bounded means that for every compact K Ă G, the map K ˆ X Ñ GLpd,Rq given by pg, xq ÞÑ
Apg, xq is bounded. More generally, we may replace the boundedness hypothesis with the hypothesis that the

function x ÞÑ supgPK log }Apg, xq} is L1pµq. See [42].
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4.3. Superrigidity for linear representations. Zimmer’s cocycle superrigidity theorem

is an extension of Margulis’s superrigidity theorem for linear representations. We formu-

late a version of this theorem for linear representations of lattices in SLpn,Rq.

Theorem 4.3 (Margulis superrigidity [80]). For n ě 3, let Γ be a lattice in SLpn,Rq.

Given a representation ρ : Γ Ñ GLpd,Rq there are

(1) a linear representation ρ̂ : SLpn,Rq Ñ SLpd,Rq;

(2) a compact subgroup K Ă GLpd,Rq that commutes with the image of ρ̂

such that

ρ̂pγqρpγq´1 P K
for all γ P Γ.

That is, ρ “ ρ̂ ¨ c is the product of the restriction of a representation

ρ̂ : SLpn,Rq Ñ SLpd,Rq
to Γ and a compact-valued representation c : Γ Ñ K . Moreover the image of ρ̂ and c

commute.

In the case that Γ is nonuniform, one can show that all compact-valued representations

c : Γ Ñ K have finite image. See for instance the discussion in [119, Section 16.4],

especially [119, Exercise 16.4.1].

For certain cocompact Γ Ă SLpn,Rq, there exists compact-valued representations

c : Γ Ñ SUpnq with infinite image. (See discussion Example 2.9.) The next theorem, char-

acterizing all homomorphisms from lattices in SLpn,Rq into compact Lie groups, shows

that representations into SUpnq are more-or-less the only such examples. The proof uses

the p-adic version of Margulis’s superrigidity theorem and some algebra. See [80, Theo-

rem VII.6.5] and [119, Corollary 16.4.2].

Theorem 4.4. For n ě 3, let Γ Ă SLpn,Rq be a lattice. Let K be a compact Lie group

and π : Γ Ñ K a homomorphism.

(1) If Γ is nonuniform then πpΓq is finite.

(2) If Γ is cocompact and πpΓq is infinite then there is a closed subgroup K 1 Ă K

with

πpΓq Ă K 1 Ă K

and the Lie algebra of K 1 is of the form LiepK 1q “ supnq ˆ ¨ ¨ ¨ ˆ supnq.

The appearance of supnq in (2) of Theorem 4.4 is due to the fact that supnq is the

compact real form of slpn,Rq, the Lie algebra of SLpn,Rq. For a cocompact lattice Γ in

SOpn, nq as in Example 2.9, the analogue of Theorem 4.4 states that

LiepK 1q “ sop2nq ˆ ¨ ¨ ¨ ˆ sop2nq.

4.4. Heuristic evidence for Conjecture 3.2. We present a number of heuristics that mo-

tivate the conclusions of Conjectures 3.2 and 3.3.

4.4.1. Analogy with linear representations. Note that if d ă n, there is no non-trivial

representation ρ̂ : SLpn,Rq Ñ SLpd,Rq; moreover, by a dimension count, there is no

embedding of supnq in slpd,Rq. We thus immediately obtain as corollaries of Theorems

4.3 and 4.4 the following.

Corollary 4.5. For n ě 3, let Γ be a lattice in G “ SLpn,Rq. Then, for d ă n, the image

of any representation ρ : Γ Ñ GLpd,Rq is finite.
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Conjecture 3.2 can be seen as a “nonlinear” analogue of this corollary. That is, we aim

to prove the same result when the linear group GLpd,Rq is replaced by certain diffeomor-

phism groups DiffpMq.

4.4.2. Invariant measurable metrics. For n ě 3, let Γ be a lattice in G “ SLpn,Rq and

consider a measure-preserving action α : Γ Ñ Diff1
µpMq where M is a compact manifold

of dimension at most d ď n ´ 1 and µ is an arbitrary Borel probability measure on M

preserved by α. The derivative cocycle of the action α is then GLpd,Rq-valued. Since

there are no representations ρ : SLpn,Rq Ñ SLpd,Rq for d ă n, Theorem 4.2 implies

that the derivative cocycle is cohomologous to a compact-valued cocycle. In particular, we

have the following:

Corollary 4.6. For Γ,M, µ and α : Γ Ñ Diff1
µpMq as above

(1) α preserves a ‘µ-measurable Riemannian metric,’ i.e. there is a µ-measurable,

α-invariant, positive-definite symmetric two-form on TM ;

(2) for any ǫ ą 0 and γ P Γ, the set of x P M such that

lim inf
nÑ8

1

n
log }Dxαpγnq} ě ǫ

has zero µ-measure.

For (1), suppose the derivative cocycle is cohomologous to aK-valued cocycle for some

compact groupK Ă GLpd,Rq. One may then pull-back any K-invariant inner product on

Rd to TxM via the map Φpxq in Theorem 4.2 to an αpΓq-invariant inner product. Conclu-

sion (2) follows from Poincaré recurrence to sets on which the functionΦ: M Ñ GLpd,Rq
in Theorem 4.2 has bounded norm and conorm. Note from (2) that all Lyapunov exponents

(see Section 6.1 below) for individual elements of the action must vanish.

From Corollary 4.6, given n ě 3 and a lattice Γ in G “ SLpn,Rq, we have that

every action α : Γ Ñ Diff1
volpMq preserves a Lebesgue-measurable Riemannian metric g

wheneverM is a compact manifold of dimension at most n´ 1. Suppose one could show

that g was continuous or Cℓ. As we discuss in Step 3 of Section 5 below, this combined

with Theorem 4.4 implies the image αpΓq is finite. Thus, Conjecture 3.2(2) follows if one

can promote the measurable invariant metric g guaranteed by Corollary 4.6 of Theorem

4.2 to a continuous Riemannian metric.

The discussion in the previous paragraphs suggests the following variant of Conjecture

3.2(2) might hold:

For n ě 3, if Γ Ă SLpn,Rq is a lattice and if µ is any fully supported

Borel probability measure on a compact manifoldM of dimension at most

pn ´ 1q then any homomorphism

Γ Ñ DiffµpMq
has finite image.

Our method of proof of Conjecture 3.2(2) does not establish this conjecture. However, the

conjecture would follow (even allowing for µ to have partial support) if the global rigidity

result in Conjecture 3.7 holds.

4.4.3. Actions with discrete spectrum. Upgrading the measurable invariant Riemannian

metric in Corollary 4.6 to a continuous Riemannian metric in the above heuristic seems

quite difficult and is not the approach we take in the proof of Theorem 3.4. In [124],
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Zimmer was able to upgrade the measurable metric to a continuous metric for volume-

preserving actions that are very close to isometries. This result now follows from the local

rigidity of isometric actions in [8, 43].

Zimmer later established a much stronger result in [127] which provides very strong ev-

idence for the volume-preserving cases in Conjecture 3.3. Using the invariant, measurable

metric discussed above and that higher-rank lattices have Property (T), Zimmer showed

that any volume-preserving action appearing in Conjecture 3.3 has discrete spectrum. In

particular, this result implies that (the ergodic components of) all volume-preserving ac-

tions appearing in Conjecture 3.3 are measurably isomorphic to isometric actions.

5. PROOF OUTLINE OF THEOREM 3.4

We outline the proof of Theorem 3.4 for the case of C8 actions of cocompact lattice in

SLpn,Rq. That is, for n ě 3, we consider a cocompact lattice Γ in SLpn,Rq and show that

every homomorphism α : Γ Ñ Diff8pMq has finite image when

(1) M is a compact manifold of dimension at most pn ´ 2q, or

(2) M is a compact manifold of dimension at most pn´ 1q and α preserves a volume

form vol.

The broad outline of the proof consists of 3 steps.

5.1. Step 1: Subexponential growth. In the case that Γ Ă SLpn,Rq is cocompact, using

its action on SLpn,Rq and that SLpn,Rq is a proper length space one may show that Γ is

finitely generated (see for example [35, Theorem 8.2]). More generally, it is a classical fact

that all lattices Γ in semisimple Lie groups are finitely generated.

Fix a finite symmetric generating set S for Γ. Given γ P Γ, let |γ| “ |γ|S denote the

word-length of γ relative to this generating set; that is,

|γ| “ mintk : γ “ sk ¨ ¨ ¨ s1, si P Su.
Note that if we replace the finite generating set S with a different finite generating set S1,

there is a uniform constant C such that the word-lengths are uniformly distorted:

|γ|S1 ď C|γ|S .
Thus all definitions below will be independent of the choice of S.

Equip TM with a Riemannian metric and corresponding norm.

Definition 5.1. We say that an action α : Γ Ñ Diff1pMq has uniform subexponential

growth of derivatives if for every ǫ ą 0 there is a C “ Cǫ such that for every γ P Γ,

sup
xPM

}Dxαpγq} ď Ceǫ|γ|.

Note that if α : Γ Ñ Diff1pMq has uniform subexponential growth of derivatives it

follows for every ǫ ą 0 that there is a C “ Cǫ such that

sup
xPM

}Dxαpγq} ě Ce´ǫ|γ|

for every γ P Γ.

The following is the main result of [16], formulated here only for the case of (cocom-

pact) lattices in SLpn,Rq.

Theorem 5.2 ([16, Theorem 2.8]). For n ě 3, let Γ Ă SLpn,Rq be a cocompact lattice.

Let α : Γ Ñ Diff2pMq be an action. Suppose that either

(1) dimpMq ď n ´ 2, or
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(2) dimpMq “ n ´ 1 and α preserves a smooth volume.

Then α has uniform subexponential growth of derivatives.

Remark 5.3. The proof of Theorem 5.2 is the only place in the proof of Theorem 3.4 where

cocompactness of Γ is used. It is not required for Steps 2 or 3 below. For Γ “ SLpm,Zq,

the analogue of Theorem 5.2 is established in [17] and has been announced for general

lattices [18].

5.2. Step 2: Strong property (T) and averaging Riemannian metrics. Assume α : Γ Ñ
Diff8pMq is an action by C8 diffeomorphisms.4 The action α of Γ on M induces an

action α# of Γ on tensor powers of the cotangent bundle of M by pull-back: Given ω P
pT ˚Mqbk write

α#pγqω “ αpγ´1q˚ω;

that is, if v1, . . . vk P TxM then

α#pγqωpxqpv1, . . . , vkq “ ωpxqpDxαpγ´1qv1, . . . , Dxαpγ´1qvkq.
In particular, we obtain an action of Γ on the set of Riemannian metrics which naturally sits

as a half-cone inside S2pT ˚Mq, the vector space of all symmetric 2-forms on M . Note

that α# preserves CℓpS2pT ˚pMqqq, the subspace of all Cℓ sections of S2pT ˚Mq for any

ℓ P N.

Fix a volume form vol on M . The norm on TM induced by the background Rie-

mannian metric induces a norm on each fiber of S2pT ˚Mq. We then obtain a natu-

ral notion of measurable and integrable sections of S2pT ˚Mq with respect to vol. Let

Hk “ W 2,kpS2pT ˚Mqq be the Sobolev space of symmetric 2-forms whose weak deriva-

tives of order ℓ are bounded with respect to the L2pvolq-norm for 0 ď ℓ ď k. Then Hk is

a Hilbert space. Let } ¨ }Hk denote the corresponding Sobolev norm on Hk as well as the

induced operator norm on the spaceBpHkq of bounded operators on Hk. Working in local

coordinates, the Sobolev embedding theorem implies that

H
k Ă CℓpS2pT ˚pMqqq

as long as

ℓ ă k ´ dimpMq{2.
In particular, for k sufficiently large, an element ω of Hk is a Cℓ section of S2pT ˚Mq
which will be a Cℓ Riemannian metric on M if it is positive definite.

The action α# is a representation of Γ by bounded operators on Hk. From Theorem

5.2, we obtain strong control on the norm growth of the induced representation α#. In

particular, we obtain that the representation α# : Γ Ñ BpHkq has subexponential norm

growth:

Lemma 5.4. Let α : Γ Ñ Diff8pMq have uniform subexponential growth of derivatives.

Then, for all ǫ1 ą 0 there is C ą 0 such that

}α#pγq}Hk ď Ceǫ
1|γ|

for all γ P Γ.

The proof of Lemma 5.4 follows from the chain rule, Leibniz rule, and computations

that bound the growth of higher-order derivatives by polynomial functions in the growth of

the first derivative. See [43, Lemma 6.4] and discussion in [16, Section 6.3].

4For C2 actions, one replaces the Hilbert Sobolev spaces W 2,kpS2pT˚Mqqq below with appropriate Banach

Sobolev spaces W p,1pS2pT˚Mqqq and verifies such spaces are of the type E10 considered in [31].
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We use the main result from [31, 67]: cocompact lattices Γ in higher-rank simple Lie

groups (such as SLpn,Rq for n ě 3) satisfy Lafforgue’s strong Banach property (T)

first introduced in [67]. The result for SLpn,Rq and its cocompact lattices (as well as

most other higher-rank simple Lie groups) is established by Lafforgue in Corollary 4.1

and Proposition 4.3 of [67]; for cocompact lattices in certain other higher-rank Lie groups,

the results of [31] are needed. See also [30] for the case of nonuniform lattices. Strong

Banach property (T) considers representations π of Γ by bounded operators on certain

Banach spaces E (of type E10). If such representations have sufficiently slow exponential

norm growth, then there exists a sequence of operators pn converging to a projection p8

such that for any vector v P E, the limit p8pvq is π-invariant. In the case thatE is a Hilbert

space (which we may assume when α is an action by C8 diffeomorphisms) we have the

following formulation. Note that Lemma 5.4 (which follows from Theorem 5.2) ensures

our representation α# satisfies the hypotheses of the theorem.

Theorem 5.5 ([30, 31, 67]). Let H be a Hilbert space and for n ě 3, let Γ be a lattice in

SLpn,Rq.

There exists ǫ ą 0 such that for any representation π : Γ Ñ BpHq, if there existsCǫ ą 0

such that

}πpγq} ď Cǫe
ǫ|γ|

for all γ P Γ then there exists a sequence of operators pn “ ř

wiπpγiq in BpHq—where

wi ě 0,
ř

wi “ 1, and wi “ 0 for every γi P Γ of word-length larger than n—such that

for any vector v P H, the sequence vn “ pnpvq P H converges to an invariant vector

v˚ “ p8pvq.

Moreover, the convergence is exponentially fast: there exist 0 ă λ ă 1 and C “ Cλ

such that }vn ´ v˚} ď Cλn}v}.

Though we only use convergence in the strong operator topology, the convergence in

Theorem 5.5 actually holds in the norm topology.

Theorem 5.5 as stated in [67] (and its extension in [31]) requires that Γ be cocompact.

The extension to nonuniform lattices is announced in [30]. The exponential convergence

in Theorem 5.5 is often not explicitly stated in the definition of strong property (T) or

in statements of theorems establishing that the property holds for lattices in higher-rank

simple Lie groups; however, the exponential convergence follows from the proofs.

We complete Step 2 with the following computation.

Proposition 5.6. For n ě 3, let Γ Ă SLpn,Rq be a lattice and let α : Γ Ñ Diff8pMq be

an action with uniform subexponential growth of derivatives. Then for any ℓ, there is a Cℓ

Riemannian metric g on M such that

αpΓq Ă IsomgpMq.

Proof. Consider an arbitrary C8 Riemannian metric g. For any k, we have g P Hk. We

apply Theorem 5.5 and its notation to the representationα# : Γ Ñ BpHkq with g the initial

vector v. As averages of finitely many Riemannian metrics are still Riemannian metrics we

have that gn :“ pnpgq is positive definite for every n. In particular, the limit g8 “ p8pgq
is in the closed cone of positive (possibly indefinite) symmetric 2-tensors in Hk. Having

taken k sufficiently large we have that g8 isCℓ; in particular, g8 is continuous, everywhere

defined, and positive everywhere. We need only confirm that g8 is non-degenerate, i.e. is

positive definite on TxM for every x P M .
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Given any x P M and unit vector ξ P TxM , for any ǫ ą 0 we have from Definition 5.1

that there is a Cǫ ą 0 such that

pnpgqpξ, ξq “
´

ÿ

wiα#pγiqg
¯

pξ, ξq

“
ÿ

wigpDxαpγ´1
i qξ,Dxαpγ´1

i qξq

ě 1

C2
ǫ

e´2ǫn

where we use that wi ą 0 only when γi has word-length at most n.

On the other hand, from the exponential convergence in Theorem 5.5 we have

|pnpgqpξ, ξq ´ p8pgqpξ, ξq| ď Cλλ
n.

Thus

p8pgqpξ, ξq ě 1

C2
ǫ

e´2ǫn ´ Cλλ
n

for all n ě 0. Taking ǫ ą 0 sufficiently small we can ensure that

C2
ǫ e

2ǫn ă 1

Cλ

λ´n

for all sufficiently large n. Then, for all sufficiently large n we have

1

C2
ǫ

e´2ǫn ą Cλλ
n

and thus p8pgqpξ, ξq ą 0. �

5.3. Step 3: Margulis superrigidity with compact codomain. From Steps 1 and 2 we

have that any action α : Γ Ñ Diff8pMq as in Theorem 3.4 preserves a Cℓ Riemannian

metric g. In the general case of C2-actions (or even C1`β-actions), we have that any

action α : Γ Ñ Diff2pMq preserves a continuous Riemannian metric g. See [16, Theorem

2.7]. We thus have

α : Γ Ñ Isom2
gpMq Ă Diff2pMq.

Let dimpMq “ m. The group IsomgpMq of isometries of a continuous Riemannian metric

is a compact Lie group with

dimpIsomgpMqq ď mpm` 1q
2

. (5.1)

Indeed, the orbit of any point p P M under IsomgpMq has dimension at most m and the

dimension of the stabilizer of a point is at most
mpm´1q

2
, the dimension of SOpmq; thus

dimpIsomgpMqq ď m` mpm´ 1q
2

.

With K “ Isom2
gpMq Ă Diff2pMq we thus obtain a compact-valued representation

α : Γ Ñ K . By equation (5.1), if m ă 1
2

?
8n2 ´ 7 ´ 1

2
then dimpsupnqq “ n2 ´ 1 ą

dimpKq; by conclusion (2) of Theorem 4.4, αpΓq is thus contained in a 0-dimensional

subgroup of K . This holds in particular if m ď n´ 1. We thus conclude that the image

αpΓq Ă K “ Isom2
gpMq Ă Diff2pMq

is finite.

Summarizing the arguments from Steps (2) and (3), we obtain the following.

Theorem 5.7. For n ě 3, let Γ Ă SLpn,Rq be a lattice. Let α : Γ Ñ Diff2pMq be an

action with uniform subexponential growth of derivatives.
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Then, if

dimpMq ă 1

2

a

8n2 ´ 7 ´ 1

2
,

the image αpΓq is finite.

Part 2. Primer: smooth ergodic theory for actions of Zd

We pause the proof of Theorem 3.4 to introduce a number of constructions and results

from smooth ergodic theory. Of particular interest will be Lyapunov exponents, metric

entropy, and the relationships between entropy, exponents, and conditional measures along

unstable manifolds for single diffeomorphisms and for actions of higher-rank, torsion-free

abelian groups. We state all our results for actions of Zd though all constructions and

results naturally extend to groups of the form Rd or Zk ˆ Rℓ.

6. LYAPUNOV EXPONENTS AND PESIN MANIFOLDS

6.1. Lyapunov exponents for diffeomorphisms. Let f : M Ñ M be a C1 diffeomor-

phism of a compact manifold M . Let µ be an ergodic, f -invariant Borel probability mea-

sure.

We recall Oseledec’s Theorem [89]; see also [100, 112].

Theorem 6.1 (Oseledec [89]). There are

(1) a measurable set Λ with µpΛq “ 1;

(2) numbers λ1 ą λ2 ą ¨ ¨ ¨ ą λp;

(3) a µ-measurable, Df -invariant splitting TxM “ Àp
i“1E

ipxq defined for x P Λ

such that for every x P Λ

(a) for every v P Eipxq r t0u

lim
nÑ˘8

1

n
log }Dxf

npvq} “ λi;

(b) if Jf denotes the Jacobian determinant of f then

lim
nÑ˘8

1

n
log |Jfn| “

p
ÿ

i“1

miλ
i

where mi “ dimEipxq;

(c) for every i ‰ j we have

lim
nÑ˘8

1

n
log

´

sin=

´

Eipfnpxqq, Ejpfnpxqq
¯¯

“ 0.

The numbers λi are called Lyapunov exponents of f with respect to µ and the sub-

spaces Eipxq are called the Oseledec’s subspaces. Above, mi denotes the almost-surely

constant value of dimEipxq, called the multiplicity of λi.

Given any f -invariant measure µ on M (which may be nonergodic) the average top

fiberwise Lyapunov exponent of f with respect to µ is

λtoppf, µq “ inf
nÑ8

1

n

ż

log }Dxf
n} dµpxq. (6.1)

Since µ is f -invariant, the subadditive ergodic theorem implies the infimum in (6.1) can be

replace by a limit (see [49, 64] and [111, Chapter 3]).

When f : M Ñ M preserves a possibly non-ergodic measure µ we recall the following

construction.
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Definition 6.2. Let f : M Ñ M be a Borel map of a metric space M preserving a Borel

probability measure µ. Then, there exists a measurable partition E of pM,µq such that—

writing tµE
xu for a family of conditional measures of µ relative to E (see Definition 7.1)—

for µ-a.e. x the measure µE
x is an ergodic, f -invariant Borel probability measure. The

partition E is called the ergodic decomposition or the partition into ergodic components

of µ with respect to f . The measures tµE
xu are called the ergodic components of µ.

Given any f -invariant measure µ on M if tµE
xu is the ergodic decomposition of µ and

if λ1x ą λ2x ą ¨ ¨ ¨ ą λ
ppxq
x denote the Lyapunov exponents of f with respect to the ergodic

invariant measure µE
x then we have

λtoppf, µq “
ż

λ1x dµpxq.

6.2. Lyapunov exponents and (sub)exponential growth of derivatives. To motivate our

interest in Lyapunov exponents, recall that in order to prove Theorem 3.4 it remains to show

Theorem 5.2. For actions of the group Z, the following proposition characterizes uniform

subexponential growth of derivatives in terms of the vanishing of Lyapunov exponents.

Let M be a compact manifold and equip TM with a background Riemannian metric

and associated norm. Let f : M Ñ M be a C1 diffeomorphism. We say f : M Ñ M has

uniform subexponential growth of derivatives if for all ǫ ą 0 there is a Cǫ ą 0 such that

}Dfn} :“ sup
xPM

}Dxf
n} ă Cǫe

ǫ|n| for all n P Z.

Note that we allow that Cǫ Ñ 8 as ǫ Ñ 0.

Proposition 6.3. A diffeomorphism f : M Ñ M has uniform subexponential growth of

derivatives if and only if for any f -invariant Borel probability measure µ, all Lyapunov

exponents of f with respect to µ are zero.

That is, f : M Ñ M has uniform subexponential growth of derivatives if and only if

λtoppf, µq “ λtoppf´1, µq “ 0 for every f -invariant Borel probability measure µ.

Proof. We show that vanishing of all Lyapunov exponents for all f -invariant probability

measures implies that f has uniform subexponential growth of derivatives; the converse is

clear.

Suppose that f : M Ñ M fails to have uniform subexponential growth of derivatives.

Then there is an ǫ ą 0 and sequences of iterates nj P Z with |nj | Ñ 8, base points

xj P M , and unit vectors vj P Txj
M such that

}Dxj
fnjvj} ě eǫ|nj|. (6.2)

Replacing f with f´1, we may assume without loss of generality that nj Ñ 8.

Let UM Ă TM denote the unit-sphere bundle. We represent an element of UM by

a pair px, vq where v P TxM with }v} “ 1. Note that UM is compact. Note also that

Df : TM Ñ TM induces a map Uf : U Ñ U given by the renormalized derivative:

Ufpx, vq :“
ˆ

fpxq, Dxfpvq
}Dxfpvq}

˙

.

Define Φ: UM Ñ R as follows: given px, vq P UM , let

Φpx, vq :“ log }Dxfpvq}.
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By the chain rule, we have

log }Dxf
npvq} “

n´1
ÿ

j“0

ΦpUf jpx, vqq.

For each j, let νj denote the empirical measure along the orbit segment

pxj , vjq, Ufpxj , vjq, . . . , Ufnj´1pxj , vjq
in UM given by

νj “ 1

nj

nj´1
ÿ

k“0

δUfkpxj ,vjq.

From (6.2) we have for every j that
ż

Φ dνj ě ǫ.

Claim 6.4. Let ν be any weak-˚ subsequential limit of tνju. Then

(a) ν is Uf -invariant;

(b)

ż

Φ dν ě ǫ.

Proof. Conclusion (a) follows as in the proof of the Krylov-Bogolyubov theorem: if φ : M Ñ
R is any (bounded) continuous function then

lim
jÑ8

ˇ

ˇ

ˇ

ˇ

ż

φ dνj ´
ż

φ ˝ f dνj
ˇ

ˇ

ˇ

ˇ

ď lim
jÑ8

2}φ}C0

nj

“ 0 (6.3)

showing that ν is f -invariant. Conclusion (b) follows from continuity of Φ and weak-˚
convergence. �

From Claim 6.4(b), we may replace ν with an ergodic component (see Definition 6.2)

ν1 of ν such that
ş

Φ dν1 ě ǫ.

Take µ to be the push-forward of ν1 under the natural projection UM Ñ M . Then µ is

an f -invariant, ergodic measure on M . Let tν1
xu denote a family of conditional measures

of ν1 for the partition of UM into fibers over M . By the pointwise ergodic theorem, for

µ-a.e. x P M and ν1
x-a.e. v P UMpxq we have

lim
nÑ8

1

n
log }Dxf

npvq} “ lim
nÑ8

1

n

n´1
ÿ

j“0

ΦpUf jpx, vqq “
ż

Φ dν1 ě ǫ.

On the other hand,

λtoppf, µq “ lim
nÑ8

1

n

ż

log }Dxf
n} dµpxq

“ lim
nÑ8

1

n

ż

sup
vPUMpxq

n´1
ÿ

j“0

ΦpUf jpx, vqq dµpxq

ě lim
nÑ8

ż ż

1

n

n´1
ÿ

j“0

ΦpUf jpx, vqq dνxpvq dµpxq

“
ż

Φ dν1 ě ǫ.
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Above, the inequality follows from comparing the maximal growth with the average growth

(averaged by ν1
x.) It follows that the largest Lyapunov exponent of f with respect to µ is at

least ǫ ą 0. �

6.3. Lyapunov exponents for nonuniformly hyperbolic Zd-actions. How does the the-

ory of Lyapunov exponents change for actions of more general abelian groups? We state a

version of Oseledec’s theorem for actions of Zd which can easily be extended to actions of

Rℓ ˆ Zk.

Let M be a compact manifold, let α : Zd Ñ Diff1pMq be a Zd-action, and let µ be an

ergodic, α-invariant measure.

Theorem 6.5 (Higher-rank Oseledec’s theorem (see [19])). There are

(1) a measurable set Λ with µpΛq “ 1;

(2) linear functionals λ1, λ2, . . . , λp : Rd Ñ R;

(3) a µ-measurable, Dα-invariant splitting TxM “ Àp
i“1E

ipxq defined for x P Λ

such that for every x P Λ

(a) for every v P Eipxq r t0u

lim
|n|Ñ8

log }Dxαpnqpvq} ´ λipnq
|n| “ 0;

(b) if Jf denotes the Jacobian determinant of f then

lim
|n|Ñ8

log |Jαpnq| ´ řp
i“1m

iλipnq
|n| ;

(c) for every i ‰ j

lim
nÑ8

1

|n| log
´

sin=

´

Eipαpnqpxqq, Ejpαpnqpxqq
¯¯

“ 0.

In (b), mi is the almost-surely constant value of dimEipxq, called the multiplicity of

λi. Note that (a) implies convergence along rays: for any n P Zd and v P Eipxq r t0u

lim
kÑ8

1

k
log }Dxαpknqpvq} “ λipnq. (6.4)

The convergence in (a) is taken along any sequence n Ñ 8; this is stronger than (6.4) and

is typically needed in applications.

6.4. Unstable manifolds and coarse Lyapunov manifolds.

6.4.1. Unstable subspaces and unstable manifolds for a single diffeomorphism. Let f : M Ñ
M be a C1 diffeomorphism of M and let µ be an ergodic, f -invariant measure. Let λi be

the Lyapunov exponents for f with respect to µ. For x P Λ Ă M where Λ is as in Theo-

rem 6.1, define

Eupxq :“
à

λią0

Eipxq

to be the unstable subspace through x. We have that

Eupxq :“ tv P TxM : lim sup
nÑ8

1

n
log }Dxf

´npvq} ă 0u.

We may similarly define stable and neutral (or center) subspaces through x, respectively,

by

Espxq :“
à

λiă0

Eipxq
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and

Ecpxq :“
à

λi“0

Eipxq.

We now assume that f : M Ñ M is C1`β for β ą 0. Through µ-almost every point x

the set

Wupxq :“
"

y : lim sup
nÑ8

1

n
logpdpf´npxq, f´npyqqq ă 0

*

is a connected C1`β injectively immersed manifold with TxW
upxq “ Eupxq (see [91])

called the (global) unstable Pesin manifold of f through x. The collection of all Wupxq
forms a partition of (a full measure subset of) M ; in general, this partition does not have

the structure of a nice foliation. However, restricted to sets of large measure the partition

into local unstable manifolds has the structure of a continuous lamination. That is, for

almost every x P M and any ǫ ą 0 there is a neighborhoodU of x such that, on a set Ω of

relative measure p1 ´ ǫq in U , the local leaves of Wu-manifolds form a partition of Ω by

embedded dimpEuq-dimensional balls that vary continuously in the C1`β-topology.

Given the Lyapunov exponents λ1 ą λ2 ą ¨ ¨ ¨ ą λp of µ fix j P t1, ¨ ¨ ¨ , pu such that

λj ą 0. Then for almost every x the set

W jpxq :“
"

y : lim sup
nÑ8

1

n
logpdpf´npxq, f´npyqqq ď ´λj

*

is again a connected C1`β injectively immersed manifold with

TxW
jpxq “

à

λiěλj

Eipxq

called the (global) jth unstable manifold through x.

6.4.2. Coarse Lyapunov exponents and subspaces. Let α : Zd Ñ Diff1pMq be an action

and let µ be an ergodic, α-invariant probability measure. We introduce objects that play

the role of unstable subspaces and unstable manifolds for the Zd-action α.

Given Lyapunov exponents λ1, λ2, . . . , λp : Rd Ñ R we say λi and λj are positively

proportional if there is a c ą 0 with

λi “ cλj .

Note that this defines an equivalence relation on the linear functionals

λ1, λ2, . . . , λp : Rd Ñ R.

The positive proportionality classes are called coarse Lyapunov exponents. For a Z-

action generated by a single diffeomorphism f , the coarse Lyapunov exponents are simply

the collections of positive, zero, and negative Lyapunov exponents.

Let χ “ tλiu be a coarse Lyapunov exponent. While the size of χpnq is not well

defined, the sign of χ is well defined. Write

Eχpxq “ ‘λiPχE
ipxq

called the corresponding coarse Lyapunov subspace.

6.4.3. Coarse Lyapunov manifolds for Zd-actions. Analogous to the existence and prop-

erties of unstable Pesin manifolds for nonuniformly hyperbolic diffeomorphisms we have

the following for actions of higher-rank abelian groups.

Let α : Zd Ñ Diff1`βpMq be an action and let µ be an ergodic, α-invariant probability

measure. Let Λ be as in Theorem 6.5.
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Proposition 6.6. For almost every x P Λ and for every coarse Lyapunov exponent χ there

is a connected, C1`β , injectively immersed manifold Wχpxq satisfying the following:

(1) TxW
χpxq “ Eχpxq;

(2) αpnqWχpxq “ Wχpαpnqpxqq for all n P Zd;

(3) Wχpxq is the set of all y P M satisfying

lim sup
kÑ8

1

k
log dpαp´knqpyq, αp´knqpxqq ă 0 for all n P Zd with χpnq ą 0.

To construct Wχ-manifolds, given n P Zd with χpnq ą 0 let Wu
αpnqpxq denote the

unstable manifold for the diffeomorphism αpnq : M Ñ M through x. Then, for almost

every x P M the manifold Wχpxq is the path component of the intersection
č

nPZd,χpnqą0

Wu
αpnqpxq

containing x.

7. METRIC ENTROPY

7.1. Metric entropy. Let pX,µq be a standard probability space. That is, pX,µq equipped

with the σ-algebra of µ-measurable sets is measurably isomorphic to an interval equipped

with the Lebesgue measure and a countable number of point masses.

7.1.1. Measurable partitions and conditional measures. Recall that a partition ξ of pX,µq
is measurable if the quotient pY, µ̂q :“ pX,µq{ξ is a standard probability space. This

is a technical but crucial condition. For more discussion and other characterizations of

measurability see [28] and [104].

A key property of measurable partitions is the existence and uniqueness of a family of

conditional measures (or a disintegration) of µ relative to this partition. Given a partition

ξ of X , for x P X we write ξpxq for the element of ξ containing x.

Definition 7.1. Let ξ be a measurable partition of pX,µq. Then there is a family of Borel

probability measure tµξ
xuxPX , called a family of conditional measures of µ relative to ξ,

with the following properties: For almost every x

(1) µξ
x is a Borel probability measure on X with µξ

xpξpxqq “ 1;

(2) if y P ξpxq then µξ
y “ µξ

x.

Moreover, if D Ă X is a Borel subset then

(3) x ÞÑ µξ
xpDq is measurable and

(4) µpDq “
ş

µξ
xpDq dµpxq.

Such a family is unique modulo µ-null sets.

For construction and properties of tµξ
xu see for instance [104].

7.1.2. Conditional information and conditional entropy. Given a measurable partition η

of a standard probability space pX,µq, write tµξ
xu for a family of conditional measures of

µ with respect to the partition ξ. Given two measurable partitions η, ξ of pX,µq the mean

conditional information of η relative to ξ is

Iµpη | ξqpxq “ ´ logpµξ
xpηpxqqq

and the mean conditional entropy of η relative to ξ is

Hµpη | ξq “
ż

Iµpη | ξqpxq dµpxq.
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The join η _ ξ of two partitions η and ξ is

η _ ξ “ tAXB | A P η,B P ξu.
The entropy of η is Hµpηq “ Hµpη | tH, Xuq. Note that if Hµpηq ă 8 then η is

necessarily countable.

7.1.3. Metric entropy of a transformation. Let f : pX,µq Ñ pX,µq be an invertible, mea-

surable, measure-preserving transformation. Let η be an arbitrary measurable partition of

pX,µq. We define

η` :“
8
ł

i“0

f iη, ηf :“
8
ł

iPZ

f iη.

We define the entropy of f given the partition η to be

hµpf, ηq :“ Hµpη | fη`q “ Hµpη` | fη`q “ Hµpf´1η` | η`q.
We define the µ-metric entropy of f to be hµpfq “ supthµpf, ηqu where the supremum

is taken over all measurable partitions of pX,µq. If

µ “ αµ1 ` βµ2

where α, β P r0, 1s satisfy α ` β “ 1 and µ1 and µ2 are f -invariant Borel probability

measures then

hµpfq “ αhµ1
pfq ` βhµ2

pfq. (7.1)

7.2. Entropy under factor maps. Let pX,µq and pY, νq be standard probability spaces.

Let f : X Ñ X and g : Y Ñ Y be measure-preserving transformations. Suppose there is

a measurable map ψ : X Ñ Y with

ψ˚µ “ ν

and

ψ ˝ f “ g ˝ ψ.
In this case, we say that g : pY, νq Ñ pY, νq is a measurable factor of f : pX,µq Ñ
pX,µq.

We note that entropy only decreases under measurable factors: if g : pY, νq Ñ pY, νq is

a measurable factor of f : pX,µq Ñ pX,µq then

hνpgq ď hµpfq.
The difference between the entropies hνpgq and hµpfq is captured by the Abramov–

Rohlin theorem. Let ζ be the measurable partition of pX,µq into level sets of ψ : X Ñ Y .

Note that ζ is an f -invariant partition: ζ “ ζf . Define the conditional entropy hµpf | ζq
of f relative to ζ to be

hµpf | ζq “ sup
ξ

hµpf, ξ _ ζq

where, as usual, the supremum is over all measurable partitions ξ of pX,µq. We call

hµpf | ζq the fiberwise entropy of f . The Abramov–Rohlin theorem (see [1, 10, 71])

states the following:

hµpfq “ hνpgq ` hµpf | ζq. (7.2)

7.3. Unstable entropy of a diffeomorphism. Let f : M Ñ M be a C1`β diffeomor-

phism and let µ be an ergodic, f -invariant measure.

7.3.1. Partitions subordinate to a foliation. For the following discussion and in most ap-

plications considered in this text, we may take F to be an f -invariant foliation of M with
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C1`β leaves. More generally, we may take F to be, in the terminology introduced in

[19], an f -invariant, tame measurable foliation; that is, F a partition of a full measure

set by C1`β manifolds with the property that locally, restricting to sets of large measure,

F has the structure of a continuous family of C1`β discs. The primary examples of such

measurable foliations include the partition into global jth unstable Pesin manifolds and

the partition into global coarse Lyapunov manifolds in the setting of Zd-actions. Note that

the partition into leaves of measurable foliation is not necessarily a measurable partition;

rather the transverse structure of the foliation is measurable.

Write Fpxq for the leave of F through x. We say F is expanding (for f ) if Fpxq Ă
Wupxq, i.e. if Fpxq is a subset of the global unstable manifold through x for f discussed

in Section 6.4. As a key example, one should consider Fu, the partition of M into full

global unstable manifolds.

Definition 7.2. We say a measurable partition ξ is subordinate to F if

(1) ξpxq Ă Fpxq for µ-a.e. x;

(2) ξpxq contains an open (in the immersed topology) neighborhood of x in Fpxq for

µ-a.e. x;

(3) ξpxq is precompact in (the immersed topology of) Fpxq for µ-a.e. x;

7.3.2. Partial ordering on the set of partitions. We recall the partial order on partitions of

pM,µq. Let ξ and η be partitions of the probability space pM,µq. We write

η ă ξ

and say that ξ is finer than η (or that η is coarser than ξ) if there is a subset X Ă M with

µpXq “ 1 such that for almost every x,

ξpxq XX Ă ηpxq XX.

We say η “ ξ if η ă ξ and ξ ă η.

7.3.3. Entropy conditioned on a foliation. We say that a partition ξ is increasing if fξ ă ξ

where fξ denotes the partition fξ “ tfpCq | C P ξu.

Definition 7.3. Given an expanding, f -invariant foliation F we define the entropy of f

conditioned on F to be

hµpf | Fq “ hµpf, ξq
where ξ is any increasing, measurable partition subordinate to F .

There are two small claims in Definition 7.3: First we have that hµpf, ξ1q “ hµpf, ξ2q
for any two increasing partitions ξ1 and ξ2 subordinate to F ; see for example [72, Lemma

3.1.2]. Second, such a partition ξ always exists. This was shown when F “ Fu is the

partition into global unstable Pesin manifolds for a C1`β diffeomorphism in [70] (see also

discussion in [72, (3.1)]) extending a construction due to Sinai for uniformly hyperbolic

dynamics [108, 109]; the proof in [70] can be adapted for general invariant expanding F .

When F “ Fu is the partition into full unstable manifolds, define the unstable metric

entropy of f to be

huµpfq :“ hµpf | Fuq.
The principal result (Corollary 5.3) of [72] shows that for C2 diffeomorphisms we have

equality of the metric entropy of f and the unstable metric entropy of f :

hµpfq “ huµpfq. (7.3)

For C1`β-diffeomorphism without zero Lyapunov exponents equality (7.3) was shown by

Ledrappier in [68]; for the general case of C1`β -diffeomorphisms, (7.3) holds from [14].
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7.4. Entropy, exponents, and geometry of conditional measures. In this section, we

consider the relationships between metric entropy hµpfq, Lyapunov exponents, and the

geometry of conditional measures along unstable manifolds.

Let f : M Ñ M be a C1`β diffeomorphism and let µ be an ergodic, f -invariant mea-

sure. At one extreme, we have the following Lemma characterizing invariant measures

with zero entropy.

Lemma 7.4. Let µ be an ergodic, f -invariant measure on M and let ξ be a measurable

partition of pM,µq subordinate to the partition into unstable manifolds. The following are

equivalent:

(1) hµpfq “ 0;

(2) for µ-a.e. x, the conditional measure µξ
x has at least one atom;

(3) for µ-a.e. x, the conditional measure µξ
x is a single atom supported at x;

(4) the partition of pM,µq into full Wu-manifolds is a measurable partition.

Proof sketch. The implications (1) ùñ (4) and (1) ùñ (3) are a consequence of

[72, Theorem B] (see also [14] for C1`β setting.) Indeed, if hµpfq “ 0, then the Pinsker

partition is the point partition. From [72, Theorem B] we have that the Pinsker partition

is the measurable hull of (and in particular is coarser than) the partition into full unstable

manifolds. As the point partition is the finest partition, it follows that the partition into full

unstable manifolds is measurably equivalent to the point partition and (3) and (4) follow.

The implications (4) ùñ (3) and (2) ùñ (3) follow from the dynamics on unstable

manifolds and ergodicity of the measure. For instance, to see (4) ùñ (3), assume the

partition of pM,µq into full Wu-manifolds is measurable and let tµu
xu denote a family of

conditional probability measures for this partition. As µ is f -invariant and as the partition

into full unstable leaves is f -invariant, we have f˚µ
u
x “ µu

fpxq for almost every x.

Given x P M , let Wupx,Rq denote the metric ball of radius R centered at x in the

internal metric of Wupxq. Given δ ą 0 and R ą 0, define the set Gδ,R of pδ, Rq-good

points to be

Gδ,R :“ tx P M | µu
xpWupx,Rqq ě 1 ´ δu.

Fix R ą 0 such that µpGδ,Rq ą 0. Take a subset G1 Ă Gδ,R with µpG1q ą 0 such that the

function

x1 ÞÑ diamu
f´npx1qpf´npWupx1, Rqq

converges to 0 uniformly on G1 as n Ñ 8 where diamu
xpBq denotes the diameter of

B Ă Wupxq with respect to the internal metric on Wupxq. For almost every x, we have

fnpxq P G1 for infinitely many n P N. For such x and any ǫ ą 0, there is n0 P N such that

for all n ě n0 with fnpxq P G1 we have

f´npWupfnpxq, Rqq Ă Wupx, ǫq
whence

µu
xpWupx, ǫqq ě µu

fpxqpWupfpxq, Rqq ě 1 ´ δ.

Taking ǫ Ñ 0 we have µu
xptxuq ě 1 ´ δ and, as δ was arbitrary, (3) follows.

Finally, the implication (3) ùñ (1) follows from Corollary 5.3 of [72] (see (7.3)

below) and the computation of unstable entropy in Definition 7.3. �

At the other extreme, we have the following definition.

Definition 7.5. We say µ is an SRB measure (or satisfies the SRB property) if, for

any measurable partition ξ of pM,µq subordinate to the partition into unstable manifolds,
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for almost every x the conditional measure µξ
x is absolutely continuous with respect to

Riemannian volume on Wupxq.

We have the following summary of a number of important results.

Theorem 7.6. Let f : M Ñ M be a C1`β diffeomorphism and let µ be an ergodic, f -

invariant measure. Then

(1) hµpfq ď ř

λią0m
iλi;

(2) if µ is absolutely continuous with respect to volume then

hµpfq “
ÿ

λią0

miλi;

(3) if µ is SRB then hµpfq “
ř

λią0m
iλi.

Theorem 7.6(1), known as the Margulis–Ruelle inequality, is proven in [105]. Theo-

rem 7.6(2), known as the Pesin entropy formula, is shown in [92]. Theorem 7.6(3) was

established by Ledrappier and Strelcyn in [70]. In the next section, we will complete The-

orem 7.6 with Ledrappier’s Theorem, Theorem 8.3, which provides a converse to Theorem

7.6(3).

For general measures invariant under a C2-diffeomorphism (for the case of C1`β-

diffeomorphisms, see [14]), Ledrappier and Young explain explicitly the defect from equal-

ity in Theorem 7.6(1). This captures the intermediate geometry of measures with positive

entropy (and hence non-atomic unstable conditional measures) but entropy strictly smaller

than the sum of positive exponents.

Let δi denote the (almost-surely constant value of the) pointwise dimension of µ along

the ith unstable manifolds. With δ0 “ 0, let

γi “ δi ´ δi´1.

The coefficients γi reflect the transverse geometry (in particular the transverse dimension)

of the measure µ inside of the ith unstable manifold transverse to the collection of pi´1qth

unstable manifolds. In particular, we have γi ď mi (see [73, Proposition 7.3.2].)

Theorem 7.7 ([73]). Let f : M Ñ M be a C1`β diffeomorphism and let µ be an ergodic,

f -invariant measure. Then

hµpfq “
ÿ

λią0

γiλi.

(Note that the proof in [73] required f to be C2; following [14] and [4, Appendix], the

theorem holds when f P C1`β .q

˚7.5. Coarse-Lyapunov entropy and entropy product structure. Consider now

α : Zd Ñ Diff1`βpMq a smooth Zd-action on a compact manifold M . Let µ be an

ergodic, α-invariant measure. Recall that a coarse Lyapunov exponent χ is a positive-

proportionality class of Lyapunov exponents of α. For almost every x P M there is a

coarse Lyapunov subspace Eχpxq Ă TxM and a coarse Lyapunov manifold Wχpxq tan-

gent to Eχpxq at x.

Let Fχ denote the partition ofM into fullWχ-manifolds. Given n P Zd with χpnq ą 0,

following the construction from [70] we can find a measurable partition ξ of pM,µq that is

subordinate to Fχ and increasing for αpnq. We then define the χ-entropy of αpnq to be

hχµpαpnqq “ hµpαpnq | χq :“ hµpαpnq | Fχq “ hµpαpnq, ξq.
The main result of [21] is the following “product structure of entropy” for Zd-actions.
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Theorem 7.8 ([21, Corollary 13.2]). Let α : Zd Ñ Diff1`βpMq be a smooth Zd-action on

a compact manifoldM and let µ be an ergodic, α-invariant measure. Then for any n P Zd

hµpαpnqq “
ÿ

χpnqą0

hµpαpnq | χq.

Fix n P Zd and let f “ αpnq. The formulas in Theorem 7.7 and Theorem 7.8 then

look quite similar. However, the contribution of each Lyapunov exponent λi to the total

entropy in Theorem 7.7 is a “transverse entropy” (the coefficient γi is a measure of “trans-

verse dimension”). In Theorem 7.8, the entropy of each coarse Lyapunov exponent χ is a

“tangential entropy” hµpαpnq | χq obtained by conditioning along Wχ-manifolds. Thus,

Theorem 7.7 does not immediately imply Theorem 7.8. To show Theorem 7.8, one first

shows that the total “transverse entropy” Theorem 7.7 contributed by all λi P χ is equal

to the total conditional entropy hµpαpnq | χq. This is done in [21]. The idea is to first

establish and analogue of Theorem 7.7 for the conditional entropy hµpf | χq; this is done

in [15] where a formula of the form

hµpf | χq “ hµpαpnq | χq “
ÿ

λiPχ

γχ,in λipnq

is shown. Then, (following [53]) one uses that n ÞÑ hµpαpnq | χq is linear on any half-

cone where no coarse Lyapunov exponent χ1 changes sign to show that the transverse

dimensions γχ,in of each λi P χ are independent of n and coincide with the transverse

dimensions γi appearing in Theorem 7.7 for f “ αpnq.

8. ENTROPY, INVARIANCE, AND THE SRB PROPERTY

In dissipative dynamical systems, ergodic SRB measures µ without zero Lyapunov ex-

ponents provide examples of physical measures: there is a set B of positive Lebesgue

measure such that for any continuous function φ, the forwards time average of φ along the

orbit of points in B converges to
ş

φ dµ. In applications and specific examples, a recurring

problem is to establish the existence of physical and SRB measures. We pose a related

question that arises naturally in the settings considered in this text:

Question 8.1. Given a diffeomorphism f : M Ñ M and an f -invariant measure µ, how

do you verify that µ is an SRB measure?

Seemingly unrelated, consider a group G acting smoothly on a manifold M . We pose

the following:

Question 8.2. Given a Borel probability measure µ on M and a subgroupH Ă G, is it is

possible to verify that µ is H-invariant?

One method to answer both of these questions is given in Theorem 8.3 and Theorem 8.5

below.

8.1. Ledrappier’s theorem. We outline one approach that solves both Question 8.1 and

8.2 in a number of settings. We discuss other approaches towards verifying the existence

of SRB measures below.

We recall Section 7.3 where the notion of unstable entropy was introduced. The main

result (Corollary 5.3) of [72] shows for a C2 (see [14] for the C1`β case) diffeomorphism

f : M Ñ M preserving an ergodic probability measure µ that the metric entropy of f and

the unstable metric entropy of f coincide:

hµpfq “ huµpfq.
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Using this fact, Ledrappier gave a geometric characterization of all measures satisfying

equality hµpfq “
ř

λią0m
iλi in the Margulis-Ruelle inequality, giving a converse of

Theorem 7.6(3).

Theorem 8.3 (Ledrappier’s Theorem [68]). Let f be a C1`β diffeomorphism and let µ be

an ergodic, f -invariant, Borel probability measure. Then µ is SRB if and only if

huµpfq “
ÿ

λią0

miλi. (8.1)

In the proof of Theorem 8.3, Ledrappier actually proves something much stronger than

the SRB property: if huµpfq “ ř

λią0m
iλi then the leaf-wise measures µu

x of µ along

unstable manifolds are equivalent to the Riemannian volume with a Hölder continuous

density. That is, if mu
x the Riemannian volume along Wupxq then for a.e. x there is a

Hölder continuous, nowhere vanishing function ρ : Wupxq Ñ p0,8q with

µu
x “ ρ mu

x. (8.2)

In particular, the leaf-wise measure µu
x has full support in Wupxq. Moreover, Ledrappier

explicitly computes the density function ρ; see [72, Corollary 6.1.4].

We make use of the explicit formula for the density ρ in the following setup. Consider

a Lie group G and a smooth, locally free, action of G on a manifold M . We denote the

action by g ¨ x for g P G and x P M . Consider a Lie subgroup H Ă G and s P G that

normalizesH . Let f : M Ñ M be the diffeomorphism given by s; that is fpxq “ s ¨x. Let

µ be an f -invariant Borel probability measure and suppose that the orbitH ¨x is contained

in the unstable manifoldWupxq for µ-almost every x.

Since s normalizes H , the partition of M into H-orbits is preserved by f ; in particular,

the partition intoH-orbits is a subfoliation of the partition into unstable manifolds. Given a

Borel probability measure µ onM and a measurable partition ξ subordinate to the partition

into H-orbits we can define conditional measures µξ
x of µ. Given x P M (using that the

action is locally free) we can push forward the left-Haar measure onH onto the orbitH ¨x
via the parametrizationH ¨ x “ th ¨ x : h P Hu.

Lemma 8.4. µ is H-invariant if and only if for any measurable partition ξ subordinate

to the partition into H-orbits and µ-a.e. x the conditional measure µξ
x coincides—up to

normalization—with the restriction of the left-Haar measure on H ¨ x to ξpxq.

Similar to the definition of metric entropy of f conditioned on unstable manifolds, we

can define the metric entropy of f conditioned on H-orbits, written hµpf | Hq, by

hµpf | Hq :“ hµpf, ξq
where ξ is any increasing, measurable partition ξ subordinate to H-orbits. Let λi, Eipxq,

and mi be as in 6.1 for the dynamics of f and the measure µ. We define the multiplicity

of λi relative to H to be (the almost surely constant value of)

mi,H “ dimpEipxq X TxpH ¨ xqq.
Generalizing Theorem 7.6(1) we have (see for instance [15])

hµpf | Hq ď
ÿ

λią0

λimi,H . (8.3)

From the proof of Theorem 8.3, (in particular, the explicit formula for the density function

ρ in (8.2)) we obtain the following.

Theorem 8.5. With the above setup, the following are equivalent:
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(1) hµpf | Hq “ ř

λią0 λ
imi,H ;

(2) for any measurable partition ξ subordinate to the partition into H-orbits and al-

most every x, µξ
x is absolutely continuous with respect to the Riemannian volume

on the H-orbit H ¨ x;

(3) for any measurable partition ξ subordinate to the partition into H-orbits and al-

most every x, µξ
x is equivalent to with the Riemannian volume on the H-orbit

H ¨ x;

(4) for any measurable partition ξ subordinate to the partition into H-orbits and al-

most every x, µξ
x is equal, up to normalization, to the left-Haar measure on the

H-orbit H ¨ x;

(5) µ is H-invariant.

We give a proof of the implication (1) ùñ (4) in the next subsection.

Note that as Theorem 8.5 only concerns the entropy and dynamics inside H-orbits, the

result holds forC1 or evenC0 actions since the dynamics permutingH-orbits is affine and

hence C8. See for instance [33] where related entropy results are shown for C0 actions of

Lie groups.

A possible critique of Theorem 8.3 is that in examples it seems nearly impossible to

verify equality in (8.1) without first knowing that the measure is SRB. However, in a num-

ber of settings of group actions on manifolds, it turns out one can, in fact, verify equality

in (8.1) (or typically, equality in Theorem 8.5(1)) and thus derive the SRB property or gain

additional invariance of the measure only from entropy considerations. This is one key

idea in this text, the papers [16, 20], and also appears as a main tool in [34, 82].

Remark 8.6. The statement and proof of Theorem 8.3, especially the reformulation in

Theorem 8.5, is very similar to the invariance principle for fiberwise disintegrations of

measures invariant under skew products. The earliest version of this invariance principle

is due to Ledrappier [69] for projectivized linear cocycles. Avila–Viana extended this to

cocycles taking values in the group of C1 diffeomorphisms in [3]. See Proposition 11.5

for a related invariance principle in the setting of actions of lattices on manifolds.

8.2. Proof of Theorem 8.5. We only prove the implication (1) ùñ (4) in the proposition.

Given (1) ùñ (4), the only other non-trivial implication is (2) ùñ (1). This implication

follows, for instance, from [70] (see for instance Theorem 7.6(3)) and can be shown using

calculations similar to those in the following proof. That (4) ùñ (5) is a standard fact

that was stated in Lemma 8.4.

Our proof essentially follows [68,72] though we make certain simplifications using that

the dynamics along H-orbits is affine.

Proof that (1) ùñ (4). We introduce some notation.

We may assume µ is ergodic for f . Indeed, from (8.3) we have that

hµpf | Hq ď
ÿ

λią0

λimi,H

for any f -ergodic component µ1 of µ (see Definition 6.2). As entropy is convex (see (7.1),

page 32), it follows that hµpf | Hq “ ř

λią0 λ
imi,H for almost every ergodic component

µ1 of µ.

Given a measurable partition ξ of M , write f´1ξ for the partition

f´1ξ :“ tf´1pCq | C P ξu.
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Then the atom of the partition f´1ξ containing x is

f´1ξpxq “ f´1pξpfpxqqq.
Recall that the H-orbits are assumed to be contained in the unstable manifolds for f .

It follows µ-almost every x that the H-orbit of x is free. Given x P M , let mH
x denote

the left-Haar measure on H-orbit through x: if mH is the left-Haar measure on H and if

C Ă H ¨ x is a measurable subset then

mH
x pCq “ mHth P H | h ¨ x P Cu.

Since mH is left-invariant, if x1 P H ¨ x then mH
x “ mH

x1 .

For x P M le

JHpxq “ |detpDxfæH¨xq|
be the Jacobian determinant of the restriction of f : H ¨x Ñ H ¨fpxq to theH-orbit through

x; that is, Ju is the function such that for any precompact measurable subset C Ă H ¨ x
we have

mH
fpxqpfpCqq “

ż

C

Jupxq dmH
x .

As the dynamics of f is affine along W i-leaves, we have that Jupxq is constant in x.

Explicitly, we have

Jupxq “ e
ř

λi
ą0

λimi,H

and

mH
fpxqpfpCqq “ e

ř

λi
ą0

λimi,H

mH
x pCq.

For the remainder of the proof, fix ξ to be a measurable partition of pM,µq such that

(1) ξ is subordinate to the partition into H-orbits (see Definition 7.2 above), and

(2) ξ is increasing under f : for a.e. x we have f´1ξpxq Ă ξpxq.

A partition with the above properties can be constructed by adapting the construction in

[70] where such partitions are built along unstable manifolds for C1`β diffeomorphisms

preserving a probability measure.

Let tµξ
xu denote a family of conditional measures for this partition. Also let

mξ
x “ 1

mH
x pξpxqqm

H
x æξpxq

denote the normalized restriction of the Haar measuremH
x to the atom ξpxq Ă H ¨x of the

partition ξ containing x. Note that we have mH
x pξpxqq ą 0 for µ-a.e. x since each atom

ξpxq contains a neighborhood of x in the H-orbit of x; in particular, the measure mξ
x is

well-defined for µ-a.e. x.

We have

log

˜

ż

mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

dµpxq
¸

ď 0. (8.4)

Indeed,

log

˜

ż

mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

dµpxq
¸

“ log

˜

ż ż

ξpxq

mξ
xpf´1ξpyqq

µ
ξ
xpf´1ξpyqq

dµξ
xpyqdµpxq

¸

ď log 1 “ 0
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where the inequality follows as
ż

ξpxq

mξ
xpf´1ξpyqq

µ
ξ
xpf´1ξpyqq

dµξ
xpyq “

ÿ

CPf´1ξ

µξ
xpCqą0

mξ
xpCq ď mξ

xpξpxqq “ 1.

We claim that
ż

log

˜

mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

¸

dµpxq “ 0. (8.5)

Indeed, write
ż

log

˜

mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

¸

dµpxq

“
ż

log
`

mξ
xpf´1ξpxqq

˘

dµpxq ´
ż

log
`

µξ
xpf´1ξpxqq

˘

dµpxq.

From the properties of ξ (see Section 7.3), we have

´
ż

logpµξ
xpf´1ξpxqqq dµpxq “ hµpf´1ξ | ξq “ hµpf | Hq.

On the other hand, we claim that
ż

log
`

mξ
xpf´1ξpxqq

˘

dµpxq “ ´
ż

log Jupxq dµpxq “ ´
ÿ

λią0

λimi,H (8.6)

To establish (8.6), let

qpxq :“ mi
xpξpxqq.

As f´1ξpxq Ă ξpxq Ă fξpxq we have

qpfpxqq
qpxq “

mi
fpxqpξpfpxqqq
mi

xpξpxqq ď
mi

fpxqpfpξpxqqq
mi

xpξpxqq “
ş

ξpxq J
upxq dmi

x

mi
xpξpxqq “

ÿ

λią0

λimi,H

and

qpfpxqq
qpxq “

mi
fpxqpξpfpxqqq
mi

xpξpxqq ě
mi

fpxqpξpfpxqqq
mi

xpf´1pξpfpxqqqq “ 1
ř

λią0 λ
imi,H

.

It follows that the function

log
q ˝ f
q

is L8pµq (in particular L1pµq); from [70, Proposition 2.2] we have that
ż

log
q ˝ f
q

dµ “ 0.
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We then have that
ż

log
`

mξ
xpf´1ξpxqq

˘

dµpxq “
ż

log

ˆ

mi
xpf´1ξpxqq
mi

xpξpxqq

˙

dµpxq

“
ż

log

˜

e´
ř

λi
ą0

λimi,H

mi
fpxqpξpfpxqqq

mi
xpξpxqq

¸

dµpxq

“
ż

˜

´
ÿ

λią0

λimi,H

¸

` log
q ˝ f
q

dµ

“ ´
ÿ

λią0

λimi,H

and (8.6) follows.

As we assumed hµpf | Hq “
ř

λią0 λ
imi,H , equation (8.5) follows. From the strict

concavity of log we have
ż

log

˜

mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

¸

dµpxq ď log

˜

ż

mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

dµpxq
¸

with equality if and only if the function

x ÞÑ mξ
xpf´1ξpxqq

µ
ξ
xpf´1ξpxqq

is constant off a µ-null set. From (8.4) and (8.5), it thus follows that

µξ
xpf´1ξpxqq “ mξ

xpf´1ξpxqq
for µ-almost every x. In particular, if C Ă ξpxq is a union of elements of f´1ξ, then

µξ
xpCq “ mξ

xpCq.
We may repeat the above calculations with f replaced by fn for n ě 1 and obtain that

µξ
xpf´nξpxqq “ mξ

xpf´nξpxqq
for µ-a.e. x. As the partitions tf´nξpx1q | x1 P ξpxqu generate the point partition on each

ξpxq, it follows for µ-a.e. x that

µξ
x “ mξ

x

and (4) follows. �

Remark 8.7. When f : M Ñ M is an Anosov diffeomorphism or, more generally, a

non-uniformly hyperbolic C1`β diffeomorphism we still have equivalence of (1), (2), and

(3) in Theorem 8.5 when the right-hand side of (1) is replaced by the sum of all positive

Lyapunov exponents counted with multiplicity and the measures are conditional measures

along unstable manifolds. See Theorem 8.3. The proof is nearly identical to the above ex-

cept for the analogue of computation (8.6). Multiplying the measuresmξ
x by an appropriate

dynamically defined density, a computation analogous to (8.6) still holds. See [72, Lemma

6.1.2].

The extra conclusion (4) in Theorem 8.5 follows in our setting from the fact that the

dynamics of f acts homogeneously along H-orbits are orbits. The density function guar-

anteed by (2) is then constant and equality up to normalization in (4) follows.



42 A. BROWN

Part 3. Proofs of Theorem 5.2 and Theorem 3.5

We return to the proof of Theorem 3.4. Specifically, it remains to prove Theorem 5.2.

We introduce some notation and tools in this and the next section. In Section 11 we de-

rive an invariance principle and establish Theorem 3.5. We then prove Theorem 5.2 in

Section 12 and Section 13.

9. STRUCTURE THEORY OF SLpn,Rq AND CARTAN FLOWS ON SLpn,Rq{Γ
Let G “ SLpn,Rq and let Γ Ă G be a lattice. Recall we write G “ KAN for the

Iwasawa decomposition where

K “ SOpn,Rq, A “ tdiagpet1 , et2 , . . . , etnq : t1 ` ¨ ¨ ¨ ` tn “ 0u,
and N is the group of upper triangular matrices with 1s on the diagonal.

We will be interested in certain subgroups of G and how they capture dynamical infor-

mation of the action of the Cartan subgroupA on the homogeneous space G{Γ.

9.1. Roots and root subgroups. We consider the following linear functionals

βi,j : A Ñ R

given as follows: for i ‰ j,

βi,j
`

diagpet1 , et2 , . . . , etnq
˘

“ ti ´ tj .

The linear functionals βi,j are the roots of G.

Associated to each root βi,j is a 1-parameter unipotent subgroup U i,j Ă G. For in-

stance, in G “ SLp3,Rq we have the following 1-parameter flows

u1,2ptq “

¨

˝

1 t 0

0 1 0

0 0 1

˛

‚, u1,3ptq “

¨

˝

1 0 t

0 1 0

0 0 1

˛

‚, u2,3ptq “

¨

˝

1 0 0

0 1 t

0 0 1

˛

‚,

u2,1ptq “

¨

˝

1 0 0

t 1 0

0 0 1

˛

‚, u3,1ptq “

¨

˝

1 0 0

0 1 0

t 0 1

˛

‚, u3,2ptq “

¨

˝

1 0 0

0 1 0

0 t 1

˛

‚.

We let U i,j denote the associated 1-parameter unipotent subgroups of G:

U i,j :“ tui,jptq : t P Ru. (9.1)

The groups U i,j have the property that conjugation by s P A dilates their parametrization

by eβ
i,jpsq:

sui,jptqs´1 “ ui,jpeβi,jpsqtq. (9.2)

In particular, if g1 “ ui,jptq ¨ g is in the U i,j-orbit of g and s P A then

s ¨ g1 “ ui,jpeβi,jpsqtq ¨ s ¨ g.

9.2. Cartan flows. For concreteness, consider G “ SLp3,Rq and let Γ be a lattice in

SLp3,Rq such as SLp3,Zq. Let X denote the coset space X “ G{Γ. This is an 8 dimen-

sional manifold (which is noncompact when Γ is a nonuniform lattice such as SLp3,Zq.)

G acts on X on the left: given g P G and x “ g1Γ P X we have

g ¨ x “ gg1Γ P X.
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The Cartan subgroupA Ă G is the subgroup of diagonal matrices with positive entries

A :“

$

&

%

¨

˝

et1 0 0

0 et2 0

0 0 et3

˛

‚: t1 ` t2 ` t3 “ 0

,

.

-

.

The group A is isomorphic to R2, for instance, via the embedding

ps, tq ÞÑ diagpes, et, e´s´tq.
We consider the action α : A ˆX Ñ X of A on X given by

αpsqpxq “ sx.

For x P X let W i,jpxq be the orbit of x under the 1-parameter group U i,j :

W i,jpxq “ tui,jptqx : t P Ruu.
For s P A, we claim that the s-action on X dilates the natural parametrization of each

W i,jpxq by exactly βi,jpsq. Indeed, if x P X and if x1 “ ui,jpvq ¨ x P W i,jpxq then for

s P A we have

αpsqpx1q “ sui,jpvqx
“ sui,jpvqs´1sx

“ ui,jpv1qαpsqpxq
where, using (9.2), we have that have

v1 “ eβ
i,jpsqv.

In particular, we interpret the functionals βi,j as the (non-zero) Lyapunov exponents for

theA-action onX (with respect to anyA-invariant measure). Note that the zero functional

is a Lyapunov exponent of multiplicity two corresponding to the A-orbits. The tangent

spaces to each W i,jpxq as well as the tangent space to the orbit A ¨ x gives the A-invariant

splitting guaranteed by Theorem 6.5. Note that no two roots βi,j are positively proportional

and hence are their own coarse Lyapunov exponents for the action (see Section 6.4.2).

10. SUSPENSION SPACE AND FIBERWISE EXPONENTS

We now begin the proofs of Theorem 3.5 and Theorem 3.4 with a technical but crucial

construction. Here, we induce from an action α of a lattice Γ Ă SLpn,Rq on a manifold

M to an action ofG “ SLpn,Rq on an auxiliary manifold denoted by Mα. The properties

of theG-action onMα mimic the properties of the Γ-action onM . However, for a number

of reasons it is much more convenient to study the G-action on Mα.

10.1. Suspension space and induced G-action. Fix G “ SLpn,Rq and let Γ Ă G be a

lattice. Let M be a compact manifold and let α : Γ Ñ DiffpMq be an action.

On the productG ˆM consider the right Γ-action

pg, xq ¨ γ “ pgγ, αpγ´1qpxqq
and the left G-action

a ¨ pg, xq “ pag, xq.
Define the quotient manifold Mα :“ pG ˆ Mq{Γ. As the G-action on G ˆM commutes

with the Γ-action, we have an induced left G-action on Mα. For g P G and x P Mα we

denote this action by g ¨ x and denote the derivative of the diffeomorphism x ÞÑ g ¨ x by a

x P Mα by Dxg : TxM
α Ñ Tg¨xM

α.
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We write

π : Mα Ñ SLpn,Rq{Γ
for the natural projection map. Note that Mα has the structure of a fiber-bundle over

SLpn,Rq{Γ induced by the map π with fibers diffeomorphic toM . TheG-action permutes

the M -fibers of Mα. We let F “ kerpDπq be the fiberwise tangent bundle: for x P Mα,

F pxq Ă TxM
α is the dimpMq-dimensional subspace tangent to the fiber through x.

Equip Mα with a continuous Riemannian metric. For convenience, we moreover as-

sume the restriction of the metric to G-orbits coincides under push-forward by the projec-

tion π : Mα Ñ SLpn,Rq{Γ with the metric on SLpn,Rq{Γ induced by a right-invariant

(and leftK-invariant) metric onG. (We note that if Γ is cocompact,Mα is compact and all

metrics are equivalent. In the case that Γ is not cocompact, some additional care is needed

to ensure the metric is well behaved in the fibers. We will not discuss the technicalities of

this case here.)

To construct such a metric, first fix a C8 Riemannian metric x¨, ¨y on TM . Let tψ̂i, i “
1, . . . ,mu be a finite C8 partition of unity on the symmetric space KzG{Γ subordinate to

finitely many coordinate charts. Lift each ψ̂i to aK-invariant function defined onG{Γ and

then select a lift ψi : G Ñ r0, 1s of each ψ̂i whose support intersects some fixed compact

fundamental domain containing the identity. Write ψi,γ : G Ñ r0, 1s for the function

ψi,γpgq “ ψipgγ´1q.
The supports satisfy supppψi,γq X supppψi,γ1 q “ H whenever γ ‰ γ1 and the collection

tψi,γ | i P t1, . . . ,mu, γ P Γu is a partition of 1 on G. Given v, w P tgu ˆ TxM set

xv, wyg,x :“
m
ÿ

i“1

ÿ

γPΓ

φi,γpgqxDxαpγqpvq, Dxαpγqpwqyx.

Equip Tpg,xqpG ˆ Mq “ TgG ˆ TxM with the product of the left K-invariant, right Γ-

invariant metric on G and xv, wyg,x. Note that this metric is β-Hölder continuous if α is

an action by C1`β diffeomorphisms. We then verify that Γ acts by isometries and thus

the metric descends to a metric on Mα. Indeed, writing } ¨ }g,x for the norm associated to

x¨, ¨yg,x, for v P tgγ̂u ˆ TxM we have

}v}2gγ̂,x “
m
ÿ

i“1

ÿ

γPΓ

φi,γpgγ̂q}Dxαpγqpvq}20

“
m
ÿ

i“1

ÿ

γPΓ

φi,γγ̂´1pgq}Dxαpγqpvq}20

“
m
ÿ

i“1

ÿ

γPΓ

φi,γγ̂´1pgq}Dxαpγγ̂´1γ̂qpvq}20

“
m
ÿ

i“1

ÿ

γPΓ

φi,γγ̂´1pgq}Dαpγ̂qpxqαpγγ̂´1, αpγ̂qpxqqDxαpγ̂, xqpvq}20

“ }Dxαpγ̂qv}2g,αpγ̂qpxq.

10.2. Fiberwise Lyapunov exponents. Recall that A Ă G is the subgroup

A “ tdiagpet1 , et2 , . . . , etnqu » Rn´1.

The G-action on Mα restricts to an A-action on Mα. Let µ be any ergodic, A-invariant

Borel probability measure on Mα. The G-action (and hence the A-action) permutes the
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fibers of Mα and hence the derivatives of the G- and A-actions preserve the fiberwise

tangent subbundle F Ă TMα.

We equip A » Rn´1 with a norm | ¨ |. We may restrict Theorem 6.5 to the A-invariant

subbundle F Ă TMα and obtain Lyapunov exponent functionals for the fiberwise deriva-

tive cocycle. We thus obtain

(1) an A-invariant set Λ Ă Mα with µpΛq “ 1;

(2) linear functionals λF1,µ, λ
F
2,µ, . . . , λ

F
p,µ : A Ñ R; and

(3) a µ-measurable,A-invariant splitting F pxq “ Àp
i“1 E

F
i pxq defined for x P Λ

such that for every x P Λ and v P EF
i pxq r t0u

lim
|a|Ñ8

log }Dxapvq} ´ λFi,µpaq
|a| “ 0.

In particular, for any a P A and v P F pxq r t0u we have

lim
kÑ8

1

k
log }Dxa

kpvq} “ λFi,µpaq.

A coarse fiberwise Lyapunov exponent χF
µ is a positive proportionality class of fiber-

wise Lyapunov exponents.

11. INVARIANCE PRINCIPLE AND PROOF OF THEOREM 3.5

11.1. Proof of Theorem 3.5. Given the constructions in Section 10 and Ledrappier’s the-

orem as formulated in Theorem 8.5, we are now in a position to prove Theorem 3.5. In

fact, we prove the following invariance principle:

Theorem 11.1. Let Γ Ă SLpn,Rq be a lattice. Let α : Γ Ñ Diff1`βpMq be an action

and let Mα denote the suspension space with induced G-action. Let µ be an ergodic, A-

invariant Borel probability measure on Mα whose projection to SLpn,Rq{Γ is the Haar

measure.

Then, if dimpMq ď n ´ 2 the measure µ is G-invariant. Moreover, if α preserves a

volume form vol and if dimpMq ď n´ 1 then the measure µ is G-invariant.

Note that Theorem 11.1 does not require that Γ be cocompact.5 Theorem 3.5 fol-

lows immediately from Theorem 11.1: since A is abelian (in particular amenable) and

the space of probability measures on Mα projecting to the Haar measure on SLpn,Rq{Γ
is nonempty, A-invariant, and weak-˚ compact, the Krylov-Bogolyubov theorem implies

there is an A-invariant Borel probability measure µ onMα projecting to the Haar measure

on SLpn,Rq{Γ. Theorem 11.1 implies µ isG-invariant and Theorem 3.5 then follows from

the following elementary claim.

Claim 11.2. The Γ-action α on M preserves a Borel probability measure if and only if

the induced G-action on Mα preserves a Borel probability measure (which necessarily

projects to the Haar measure on G{Γ).

Indeed, if µ is a G-invariant measure on Mα then conditioning on the fiber of Mα over

eΓ P G{Γ gives an α-invariant measure on M viewed as the fiber of Mα over eΓ. On the

other hand, if µ̂ is an α-invariant measure onM then, writing mG for the Haar measure on

G, we have mG ˆ µ̂ is a (right) Γ-invariant and (left) G-invariant measure on G ˆM and

hence descends to a (finite) G-invariant measure on Mα.

5However, in the case that Γ is nonuniform, the space Mα is not compact and some care is needed to define

Lyapunov exponents; in particular, we must specify a Riemannian metric on Mα. A Riemannian metric on Mα

adapted to this setting is constructed in [20].
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Remark 11.3. For more general semisimple Lie groups G we have the following theo-

rem which follows from the proof of Theorem 11.1. In this setting, we take A to be a

maximal split Cartan subgroup; that is, A is a maximal, connected, abelian subgroup of

R-diagonalizable elements.

Theorem 11.11. Let G be a simple Lie group and let Γ Ă G be any lattice. Let α : Γ Ñ
Diff1`βpMq be an action and let Mα denote the suspension space with inducedG-action.

Let µ be an ergodic, A-invariant Borel probability measure on Mα whose projection to

G{Γ is the Haar measure.

Then, if dimpMq ă rankpGq then the measure µ is G-invariant. Moreover, if α pre-

serves a volume form vol and if dimpMq ď rankpGq then the measure µ is G-invariant.

Remark 11.4. In fact, Theorem 11.1 and 11.11 hold for actions by C1-diffeomorphisms.

This can be shown by the invariance principle of Avila and Viana [3] (generalizing a result

of Ledrappier [69].) We present below a proof that uses (mildly) the C1`β hypotheses as

this motivates the proof of Proposition 11.5 (which allows us to establish Theorem 11.11

for manifolds of higher critical dimension) in the next section which requires the higher-

regularity of the action.

We proceed with the proof of Theorem 11.1, adapted from [25], which is somewhat

simpler than the arguments in [16, 20].

Proof of Theorem 11.1. Let µ be an ergodic,A-invariant Borel probability measure onMα

whose projection to SLpn,Rq{Γ is the Haar measure.

Recall that A » Rn´1. In the non-volume-preserving case, since dimpMq ď n ´ 2

there are at most n ´ 2 fiberwise Lyapunov exponents. In particular, the intersection of

the kernels of the fiberwise Lyapunov exponents is a subspace of A whose dimension is

at least 1. In the volume-preserving case, there are at most pn ´ 1q fiberwise Lyapunov

exponents; however, these satisfy the linear relation they necessarily sum to zero since the

cocycle is cohomologous to an SL˘pn ´ 1,Rq-valued cocycle (recall Claim 4.1) whence

for every g P G,

0 “
ż

log | detpDgæF q| dµ “
ÿ

λFi,µ.

Thus, if dimpMq ď n ´ 1 and if α is a volume-preserving action, then the intersection

of the kernels of all fiberwise Lyapunov exponents again has dimension at least 1. In

particular, in either case we may find a nonzero s0 P A such that

λFi,µps0q “ 0 for every fiberwise Lyapunov exponent λFi,µ. (11.1)

Recall that entropy can only decrease under a factor. Thus

hµps0q ě hHaarps0q
where hHaarps0q denotes the entropy of translating by s0 on SLpn,Rq{Γ with respect to

the Haar measure.

Recall we interpret the roots β of SLpn,Rq as the (non-zero) Lyapunov exponents for

the A-action on SLpn,Rq{Γ with respect to any A-invariant measures and hence also as

Lyapunov exponents for the A-action on the fiber bundle Mα transverse to the fibers and

tangential to the local G-orbits. See discussion in Section 9.2. Let N` Ă G be the sub-

group generated by all root subgroups Uβ with βps0q ą 0. Similarly, let N´ Ă G be the

subgroup generate by all root subgroups Uβ with βps0q ă 0. The orbits of N` and N´ in

SLpn,Rq{Γ correspond, respectively, to the unstable and stable manifolds for the action of

translation by s0 on G{Γ. Since s0 is in the kernel of all Fiberwise Lyapunov exponents,
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each tangent space F pxq to the fibers ofMα is contained in the neutral Lyapunov subspace

Ec
s0

pxq for the action of s0 on pMα, µq for almost every x. Thus, the orbits orN` and N´

in Mα also correspond, respectively, to the unstable and stable manifolds for the action of

s0 on Mα.

We have that

hHaarps0q “
ÿ

βps0qą0

βps0q “ hHaarps´1
0 q “

ÿ

βps0qă0

p´βps0qq.

In particular, from the choice of s0, the Margulis-Ruelle inequality (Theorem 7.6(1)), and

the Ledrappier–Young Theorem (7.3) (page 33)
ÿ

βps0qą0

βps0q “ hHaarps0q ď hµps0q “ hµps0 | N`q ď
ÿ

βps0qą0

βps0q.

It follows that

hµps0 | N`q “
ÿ

βps0qą0

βps0q.

By Theorem 8.5, it follows that µ is N`-invariant. Similarly, we have that µ is N´-

invariant.

In particular, µ is invariant by the subgroups N´, N`, and A of G. To end the proof,

we claim the following standard fact: the subgroupsN´ and N` generate all of SLpn,Rq.

It follows from the claim that the measure µ is G-invariant.

To prove the claim, it is best to work with Lie algebras. Let n`, n´, and a be the Lie

algebras ofN´ andN`, andA, respectively. Let h be the Lie algebra generated by n` and

n´. For any X P a we have

rX, hs “ h

since a normalizes each root space gβ . For roots β, β̂ with βps0q ‰ 0 and β̂ps0q ‰ 0 we

have

rgβ̂ , gβs Ă h

by definition. For roots β, β̂ with βps0q ą 0 and β̂ps0q “ 0 we have

rgβ̂, gβs “ gβ`β̂ Ă h

since either gβ`β̂ “ 0 (if β ` β̂ is not a root) or pβ̂ ` βqps0q “ βps0q ą 0 (if β ` β̂ is a

root). Similarly, for roots β, β̂ with βps0q ă 0 and β̂ps0q “ 0 we have

rgβ̂, gβs Ă h.

It follows that h is an ideal of the Lie algebra g “ slpn,Rq of SLpn,Rq. But slpn,Rq is

simple (i.e. has no nontrivial ideals). Since h ‰ t0u, it follows that h “ slpn,Rq and the

claim follows. �

˚11.2. Advanced invariance principle: nonresonance implies invariance. Theo-

rem 11.1 gives the optimal dimension count in Theorem 3.5 for actions by lattices Γ in

SLpn,Rq. However, for lattices in other simple Lie groups, the critical dimension in The-

orem 11.11 falls below the critical dimension expected for the analogous versions of Theo-

rem 3.5 and Theorem 3.4. For instance, the groupG “ Spp2n,Rq, the group of p2nqˆp2nq
symplectic matrices over R, has rank n. Theorem 11.11 implies that for any lattice Γ Ă G

and any compact manifold M with dimpMq ď n ´ 1, any action α : Γ Ñ Diff1`βpMq
preserves a Borel probability measure. However, the main result of [20] shows for a lattice

Γ in Spp2n,Rq that any action α : Γ Ñ Diff2pMq preserves a Borel probability measure
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when dimpMq ď 2n ´ 2. To obtain the optimal critical dimensions, it is necessary to use

a more advanced invariance principle developed in [20] and based on key ideas from [21].

Recall that we interpret roots βi,j : A Ñ R as the nonzero Lyapunov exponents for the

action of A » Rn´1 on SLpn,Rq{Γ (for any A-invariant measure on G{Γ.) Each root

βi,j has a corresponding root subgroup U i,j Ă SLpn,Rq. Given an ergodic, A-invariant

measure µ on Mα we also have fiberwise Lyapunov exponents λF1,µ, λ
F
2,µ, . . . , λ

F
p,µ : A Ñ

R for the restriction of the derivative of the A-action on pMα, µq to the fiberwise tangent

bundle F Ă TMα in Mα. Then, the roots βi,j and fiberwise Lyapunov exponents λFi,µ
are linear functions on the common vector space A » Rn´1. We say that a root βi,j is

resonant with a fiberwise Lyapunov exponent λFi,µ of µ if they are positively proportional;

that is βi,j is resonant with λFi,µ if there is a c ą 0 with

βi,j “ cλFi,µ.

Otherwise we say that βi,j is not resonant with λFi,µ. We say that a root βi,j of G is non-

resonant if it is not resonant with any fiberwise Lyapunov exponent λFi,µ for the ergodic,

A-invariant measure µ.

The following is the key proposition from [20].

Proposition 11.5 ([20, Proposition 5.1]). Suppose µ is an ergodic, A-invariant measure

on Mα projecting to the Haar measure on SLpn,Rq{Γ under the projection π : Mα Ñ
SLpn,Rq{Γ.

Then, for every nonresonant root βi,j , the measure µ is U i,j-invariant.

Remark 11.6. Since each root βi,j is a nonzero functional on A, if a fiberwise exponent

λFi,µ is zero, then every root βi,j is not resonant with λFi,µ. Since no roots of SLpn,Rq are

positively proportional, if there are p fiberwise Lyapunov exponents tλFi,µ, 1 ď i ď pu
or, more generally, p1 ď p coarse fiberwise Lyapunov exponents tχF

i,µ, 1 ď i ď p1u then

Proposition 11.5 implies that µ is invariant under all-but-p1 root subgroupsU i,j . Moreover,

if every fiberwise Lyapunov exponent λFi,µ is in general position with respect to every root

βi,j then from Proposition 11.5, µ is automatically G-invariant.

˚11.3. Coarse-Lyapunov Abramov–Rohlin and Proof of Proposition 11.5. The proof

of Proposition 11.5 follows from a version of the Abramov–Rohlin Theorem (see equation

(7.2), page 32) for entropies subordinated to coarse-Lyapunov foliations. We outline these

ideas and the proof of Proposition 11.5 in this section.

Each root βi,j of SLpn,Rq is a Lyapunov exponent for the A-action on pMα, µq (cor-

responding to vectors tangent to U i,j orbits in Mα.) Let χi,j denote the coarse Lyapunov

exponent for theA-action on pMα, µq containing βi,j ; that is, χi,j is the equivalence class

of all Lyapunov exponents for the A-action on pMα, µq that are positively proportional to

βi,j . Let tλFi,µ, 1 ď i ď pu denote the collection of fiberwise Lyapunov exponents. We

have that

χi,j “ tβi,ju if βi,j is not resonant with any λFi,µ.

Otherwise, χi,j contains βi,j and all fiberwise Lyapunov exponents λFi,µ : A Ñ R that are

positively proportional to βi,j .

For µ-a.e. x P Mα there is a coarse Lyapunov manifold Wχi,j pxq through x (see Sec-

tion 6.4.3). If χi,j “ tβi,ju then for x P Mα, Wχi,j pxq is simply the U i,j-orbit of x.

Otherwise, Wχi,j pxq is a higher-dimensional manifold which intersects the fibers of Mα
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nontrivially. The partition of pMα, µq intoWχi,j

-manifolds forms anA-invariant partition

Fχi,j

with C1`β -leaves.

If βi,j is resonant with some fiberwise Lyapunov exponent, let χi,j,F denote the cor-

responding coarse fiberwise Lyapunov exponent; that is, χi,j,F is the equivalence class of

fiberwise Lyapunov exponents that are positively proportional to βi,j . If βi,j is not reso-

nant with any fiberwise Lyapunov exponent, let χi,j,F denote the zero functional. If χi,j,F

is nonzero, for µ-a.e. x P Mα there is a coarse fiberwise Lyapunov manifoldWχi,j,F pxq
through x. (To construct fiberwise coarse Lyapunov manifolds Wχi,j,F pxq, recall that the

fibers ofMα are permuted by the dynamics ofA; all constructions in Section 6 may be car-

ried out fiberwise in the setting of a skew-product of diffeomorphisms over a measurable

base if the C1`β norms of the fibers are uniformly bounded.) If χi,j,F is zero, we simply

define Wχi,j,F pxq “ txu. We have that Wχi,j,F pxq is contained in the fiber through x and

that Wχi,j pxq is the U i,j-orbit of Wχi,j,F pxq.

For each χi,j and a P A with βi,jpaq ą 0 we define a conditional entropy of a con-

ditioned on χi,j-manifolds, denoted by hµpa | χi,jq as in Section 7.5. Similarly, we can

define a conditional entropy of a conditioned on the fiberwise coarse Lyapunov manifolds

associated to χi,j,F , denoted by hµpa | χi,j,F q. In this setting, we have the following

“coarse-Lyapunov Abramov–Rohlin formula.”

Theorem 11.7. Let µ be an ergodic,A-invariant measure onMα that projects to the Haar

measure on SLpn,Rq{Γ. For any a P A with βi,jpaq ą 0.

hµpa | χi,jq “ hHaarpa | βi,jq ` hµpa | χi,j,F q. (11.2)

Above,

hHaarpa | βi,jq
denotes the conditional entropy of translation by a in SLpn,Rq{Γ conditioned along U i,j-

orbits in SLpn,Rq{Γ.

Proof of Theorem 11.7. We first show the upper bound

hµpa | χi,jq ď hHaarpa | βi,jq ` hµpa | χi,j,F q. (11.3)

This is a standard estimate in abstract ergodic theory whose proof we include for complete-

ness.

Fix a P A with βi,jpaq ą 0. Let η̂ be an increasing measurable partition of G{Γ
subordinate to the partition into U i,j-orbits. Let π : Mα Ñ G{Γ be the natural projection

and let η “ π´1η̂. Let ξ ą η be an increasing measurable partition of pMα, µq subordinate

to the partition intoWχi,j

-manifolds. Let ζ be the partition of pMα, µq into the level sets of

π : Mα Ñ G{Γ; that is, ζ is the partition ofMα into fibers of the fibration π : Mα Ñ G{Γ.

Let ξF :“ ξ _ ζ be the join of ξ and ζ. The partitions η̂, ξ, and ξF satisfy

(1) hµpa, ηq “ hHaarpa, η̂q “ hHaarpa | βi,jq,

(2) hµpa, ξq “ hµpa | χi,jq, and

(3) hµpa, ξF q “ hµpa | χi,j,F q.
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We have the following computation (see for example [63, Lemma 6.1]):

hµpa | χi,jq :“ hµpa, ξq
“ hµpa, η _ ξq

ď hµpa, ηq ` hµ

˜

a, ξ _
ł

nPZ

anpηq
¸

“ hHaarpa, η̂q ` hµpa, ξ _ ζq
“ hHaarpa | βi,jq ` hµpa | χi,j,F q

and (11.3) follows.

On the other hand, summing over all roots β with βpaq ą 0 we have from the classical

Abramov–Rohlin theorem (7.2), the product structure of entropy in Theorem 7.8, and an

analogous version of Theorem 7.8 for the fiberwise entropy hµpa | ζq appearing in (7.2)

that

hµpaq “
ÿ

χpaqą0

hµpa | χq

“
ÿ

βi,jpaqą0

hµpa | χi,jq `
ÿ

χF nonres.

χF paqą0

hµpa | χF q

ď
ÿ

βi,jpaqą0

`

hHaarpa | βi,jq ` hµpa | χi,j,F q
˘

`
ÿ

χF nonres.

χF paqą0

hµpa | χF q

“
ÿ

βi,jpaqą0

hHaarpa | βi,jq `
ÿ

χF paqą0

hµpa | χF q

“ hHaarpaq ` hµpa | ζq
“ hµpaq.

In the second and third lines, the second sum is over all fiberwise coarse Lyapunov ex-

ponents that are not resonant with any root β of G. Since entropies are non-negative

quantities, it follows that

hµpa | χi,jq “ hHaarpa | βi,jq ` hµpa | χi,j,F q
for all βi,j with βi,jpaq ą 0. �

Remark 11.8. A more general version of Theorem 11.7 appears in [21, Theorem 13.6]

where the factor map π is allowed to be measurable and the measure π˚pµq on the factor

system is an arbitrary ergodic,A-invariant measure.

The proof of Proposition 11.5 is a straightforward consequence of Theorem 11.7.

Proof of Proposition 11.5. Given a root βi,j and a P A such that βi,jpaq ą 0 we have de-

fined the a conditional entropy hµpa | βi,jq for the entropy of translation by a conditioned

on U i,j-orbits in Mα. From an appropriate version of the Margulis-Ruelle inequality (see

Theorem 7.6(1) and (8.3)), for a P A with βi,jpaq ą 0 we have that

hµpa | βi,jq ď βi,jpaq. (11.4)

On the other hand, if βi,j is nonresonant then χi,j,F is the zero functional whence the

coarse Lyapunov manifold Wχi,j pxq associated to χi,j is simply the U i,j-orbit of x for

every x P Mα and the term hµpa | χi,j,F q in (11.2) of Theorem 11.7 vanishes. Hence, by
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Theorem 11.7,

hµpa | βi,jq “ hµpa | χi,jq “ hHaarpa | βi,jq ` 0 “ βi,jpaq. (11.5)

From (11.4) and (11.5), we have that the conditional entropy hµpa | βi,jq attains is max-

imal possible value. In particular, from the invariance principle in Theorem 8.5(5), it fol-

lows that µ is U i,j-invariant. �

˚11.4. Proof of Theorem 3.5 using the advanced invariance principle. We outline

another proof of Theorem 3.5 based on Proposition 11.5.

Proof of Theorem 3.5 using Proposition 11.5. From Claim 11.2, it is sufficient to construct

a G-invariant probability measure on Mα. Note that A » Rn´1 is abelian (and in par-

ticular amenable, see Remark 13.2) and that the space of probability measures on Mα

projecting to the Haar measure on SLpn,Rq{Γ is nonempty,A-invariant, and weak-˚ com-

pact. The Krylov-Bogolyubov theorem thus gives an A-invariant probability measure µ on

Mα projecting to the Haar measure on SLpn,Rq{Γ. Moreover, since the Haar measure on

SLpn,Rq{Γ is A-ergodic, we may assume µ is A-ergodic.

Let dimpMq “ d ď n ´ 2. The fiberwise tangent bundle F of Mα is d-dimensional

and therefore there are at most d Fiberwise Lyapunov exponents

λF1,µ, ¨ ¨ ¨ , λFk,µ, k ď d.

As no pair of roots of SLpn,Rq is positively proportional, there are at most d roots that are

resonant with the fiberwise Lyapunov exponent λFj,µ. All other roots βi,j are nonresonant.

By Proposition 11.5, if βi,j is not resonant with any λFj,µ, then µ is U i,j-invariant.

Let H Ă SLpn,Rq be the subgroup that preserves µ. We claim H “ G completing the

proof. As d ď n ´ 2, µ is invariant under A and all-but-at-most-pn´ 2q root subgroups

U i,j . Then H has codimension at most pn ´ 2q. From [16, Lemma 2.5], we have that

H is parabolic; that is, H is conjugate to a group of block-upper-triangular matrices (see

Remark 2.8). However, the proper closed parabolic subgroups of SLpn,Rq of maximal

codimension are conjugate to the codimension pn´ 1q subgroup
$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

˚ ˚ ¨ ¨ ¨ ˚
0 ˚ ¨ ¨ ¨ ˚
...

...
. . .

...

0 ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

. (11.6)

(See Section VII.7, especially Proposition 7.76 of [65] for discussion on the structure of

parabolic subgroups.) As H has codimension at most n´ 2, it thus follows that H “ G as

there are no proper parabolic subgroups of G with codimension less than pn´ 1q. �

Remark 11.9. The above proof has the advantage that it generalizes to give invariance

of measures in the optimal critical dimension for actions by lattices in other Lie groups

including Spp2n,Rq, SOpn, nq, or SOpn, n ` 1q on manifolds of the optimal dimension.

As discussed in Section 11.2 for a lattice Γ in a group such as G “ Spp2n,Rq, the proof

in Section 11.1 yields that any C1`β action of Γ on a manifold of dimension at most

rankpGq ´1, anyA-invariant measure onMα that projects to Haar onG{Γ is G-invariant.

However, the above proof establishes this result for manifoldsM where the critical dimen-

sion is rpGq, the number in the last column of Table 1 (page 14) defined in [16, 20] (see

also Footnote 2.) For R-split groups G we have rpGq “ d0pGq. In particular, the above

proof can be adapted to show the following:
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Theorem 11.10. Let G be a higher-rank simple Lie group G with finite center, let Γ be a

lattice in G, let M be a closed manifold, and let α : Γ Ñ Diff1`βpMq be an action. Then

(1) if dimpMq ď rpGq ´ 1, every A-invariant probability measure on Mα that

projects to the Haar measure on G{Γ is G-invariant;

(2) if dimpMq ď rpGq and α is volume-preserving, every A-invariant probability

measure on Mα that projects to the Haar measure on G{Γ is G-invariant.

In particular, if dimpMq ď rpGq´1, every action α : Γ Ñ Diff1`βpMq preserves a Borel

probability measure.

12. PROOF OUTLINE OF THEOREM 5.2

To establish Theorem 3.4, from the discussion in Section 5 it is enough to establish

Theorem 5.2: the action α has uniform subexponential growth of derivatives. We outline

the proof of Theorem 5.2.

12.1. Setup for proof. For n ě 3, let Γ Ă SLpn,Rq be a cocompact lattice. Let M be a

compact manifold and let α : Γ Ñ Diff2pMq an action. As assume either that dimpMq ď
n´2 or that dimpMq ď n´1 and that α preserves a volume form. We recall the following

constructions from the proof of Theorem 3.5:

(1) The manifold Mα “ pSLpn,Rq ˆ Mq{Γ is the suspension space introduced in

Section 10.1. Mα is fiber bundle over SLpn,Rq{Γ with fibers diffeomorphic to

M . Moreover, Mα and SLpn,Rq{Γ have natural (left) SLpn,Rq-actions and the

projection π : Mα Ñ SLpn,Rq{Γ intertwines these G-actions.

(2) A Ă SLpn,Rq denotes the subgroup of diagonal matrices with positive entries.

We have A » Rn´1 which is a higher-rank, free abelian group if n ě 3.

(3) Given an ergodic,A-invariant Borel probability measure µ on Mα we have fiber-

wise Lyapunov exponents

λF1,µ, . . . , λ
F
p,µ : A Ñ R

for the restriction of the derivative of the A-action on Mα to the fibers of Mα

introduced in Section 10.2.

(4) βi,j : A Ñ R are the roots of SLpn,Rq and U i,j are the corresponding root sub-

groups introduced in Section 9.1.

12.2. Two key propositions. The proof of Theorem 5.2 is by contradiction and follows

from the following two propositions. Our first key proposition is an analogue of Proposi-

tion 6.3.

Proposition 12.1. Suppose that α : Γ Ñ Diff1pMq fails to have uniform subexponential

growth of derivatives. Then there exists a Borel probability measure µ1 on Mα such that

(1) µ1 is A-invariant and ergodic;

(2) there exists a nonzero fiberwise Lyapunov exponent λFj,µ1 : A Ñ R.

The proof of Proposition 12.1 is very similar to the proof of Proposition 6.3 with some

minor modifications and notational differences. We include an outline of the proof in

Section 13.3; see also [16, Section 4] for complete details.

The measure µ1 in Proposition 12.1 projects to an ergodic, A-invariant measure on

SLpn,Rq{Γ. If µ1 projected to the Haar measure on SLpn,Rq{Γ then, from Theorem

11.1 and the bounds on the dimension M , the measure µ1 would be G-invariant and, as
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explained below, the proof of Theorem 5.2 would be complete. However, there may exist

ergodicA-invariant measures on SLpn,Rq{Γ that are not the Haar measure.6

By carefully averaging the measure µ1 along root subgroupsU i,j and applying Ratner’s

measure classification theorem [103] to the projected measure on SLpn,Rq{Γ we obtain

the following.

Proposition 12.2. Let α : Γ Ñ Diff1pMq be an action. Suppose there exists an ergodic,

A-invariant measure µ1 on the suspension space Mα with a nonzero fiberwise Lyapunov

exponent λFj1,µ1 : A Ñ R. Then there exists a Borel probability measure µ onMα such that

(1) µ is A-invariant and ergodic;

(2) there exists a nonzero fiberwise Lyapunov exponent λFj,µ : A Ñ R;

(3) µ projects to the Haar measure on SLpn,Rq{Γ.

Remark 12.3.

(1) Propositions 12.1 and 12.2 hold in full generality; they do not depend on the com-

parison between the dimension of M and the rank of SLpn,Rq. The constraint

on the dimension of M is used to obtain a contradiction in the proof of Theorem

5.2 by applying Theorem 11.1 and Zimmer’s cocycle superrigidity to the fiberwise

derivative cocycle.

(2) Propositions 12.1 and 12.2 heavily use the fact that Γ is cocompact in SLpn,Rq
so that the manifold Mα is compact. For instance, if Mα is not compact then the

proof of Proposition 12.1 (compare with proof of Proposition 6.3) fails as there

may be escape of mass into the cusp of G{Γ. Thus, more subtle arguments are

required to establish the analogue of Theorem 5.2 in the case that Γ is nonuniform.

In the case that Γ “ SLpn,Zq, such arguments appear in [17].

(3) Both Proposition 12.1 and Proposition 12.2 holds for C1 actions. The C1`β hy-

potheses is later used (along with the dimension bounds) to conclude that the A-

invariant measure µ obtained in Proposition 12.2 is, in fact, G-invariant by apply-

ing Theorem 11.1.

12.3. Proof of Theorem 5.2. We deduce Theorem 5.2 from Proposition 12.1, Proposition

12.2, Theorem 11.1, and Theorem 4.2.

Proof of Theorem 5.2 . Let α : Γ Ñ Diff2pMq be as in Theorem 5.2. For the sake of

contradiction, assume that

α : Γ Ñ Diff2pMq
fails to have uniform subexponential growth of derivatives. Let µ1 be the measure guaran-

teed by Proposition 12.1. We then apply Proposition 12.2 to obtain an ergodic,A-invariant

Borel probability measure µ on Mα that projects to the Haar measure on G{Γ and has

a non-zero fiberwise Lyapunov exponent. In either case considered in Theorem 5.2, it

follows from Theorem 11.1 that µ is G-invariant.

Recall that we write π : Mα Ñ SLpn,Rq{Γ for the natural projection and let F be the

fiberwise tangent bundle; that is, F is sub-vector-bundle of TMα given by F “ kerDπ.

As F is G-invariant, we may apply Zimmer’s cocycle superrigidity theorem, Theorem 4.2,

to the fiberwise derivative cocycle Apg, xq “ DxgæF pxq of the µ-preserving SLpn,Rq-

action on Mα. Since the fibers have dimension at most n ´ 1 and since there are no non-

trivial representations ρ : SLpn,Rq Ñ SLpd,Rq for d ă n, it follows from Theorem 4.2

6In fact, for certain lattices Γ there exist ergodic A-invariant measures on SLpn,Rq{Γ that have positive entropy

for some element of A as shown by M. Rees; see [32, Section 8].
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that the fiberwise derivative cocycle Apg, xq “ DxgæF pxq is cohomologous to a compact-

valued cocycle: there is a compact group K Ă SLpd,Rq and measurable Φ: Mα Ñ
GLpd,Rq such that

Φpg ¨ xqDxgæF pxqΦpxq´1 P K.
By Poincaré recurrence to sets on which the norm and conorm of Φ are bounded, it follow

for any g P G and ǫ ą 0 that the set of x P Mα such that

lim inf
nÑ8

1

n
log }Dxg

næF pxq} ě ǫ

has µ-measure zero. This contradicts the existence of nonzero fiberwise Lyapunov expo-

nent for µ. This contradiction completes the proof of Theorem 5.2. �

13. DISCUSSION OF THE PROOF OF PROPOSITIONS 12.1 AND 12.2

We outline the main steps in the proof of Propositions 12.1 and 12.2.

13.1. Averaging measures onMα. LetH “ tht : t P Ru be a 1-parameter root subgroup

of SLpn,Rq. Given a measure µ on Mα and T ě 0 we define

HT ˚ µ :“ 1

T

ż T

0

phtq˚µ dt

to be the measure obtained by averaging the translates of µ over the interval r0, T s.
Let s P A. Given any s-invariant measure µ on Mα, the average top fiberwise Lya-

punov exponent of s with respect to µ is

λFtopps, µq “ inf
nÑ8

1

n

ż

log }DxpsnqæF } dµpxq. (13.1)

Note that if µ is moreover A-invariant and A-ergodic with fiberwise Lyapunov exponents

λF1,µ, . . . , λ
F
p,µ : A Ñ R then

λFtopps, µq “ max
1ďiďp

λFi,µpsq.

We have the following facts which we invoke throughout our averaging procedures.

Claim 13.1. Let s P A and let µ be an s-invariant measure on Mα. Let H “ tht, t P Ru
be a one-parameter group contained in the centralizer of s in SLpn,Rq.

(1) The measure HT ˚ µ is s-invariant for every T ě 0.

(2) Any weak-˚ limit point of tHT ˚ µu as T Ñ 8 is s-invariant.

(3) Any weak-˚ limit point of tHT ˚ µu as T Ñ 8 is H-invariant.

(4) λFtopps,HT ˚ µq “ λFtopps, µq for every T ě 0.

(5) If µ1 is a weak-˚ limit point of tHT ˚ µu as T Ñ 8 then

λFtopps, µ1q ě λFtopps, µq.

(1) is clear from definition and (2) follows since the set of s-invariant measures is closed.

(3) follows from (the proof of) the Krylov-Bogolyubov theorem (see Claim 6.4). (4) is a

standard computation which follows from the compactness ofMα and hence boundedness
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of the cocycle. Indeed we have

λFtopps,HT ˚ µq “ inf
nÑ8

1

n

ż

log }DxpsnqæF } dpHT ˚ µqpxq

“ inf
nÑ8

1

n

1

T

ż ż T

t“0

log }Dht¨xpsnqæF } dt dµpxq

“ inf
nÑ8

1

n

1

T

ż ż T

t“0

log }Dht¨xphtsnh´tqæF } dt dµpxq

ď inf
nÑ8

1

n

1

T

ż ż T

t“0

log }Dht¨xph´tqæF }

` log }DxpsnqæF } ` log }Ds¨xphtqæF } dt dµpxq

ď inf
nÑ8

1

n

ˆ
ż

log }DxpsnqæF } dµpxq ` 2K

˙

where

K “ sup
 

log }DxphtqæF } : x P M, t P r´T, T s
(

.

(5) follows from the well-known fact that the average top Lyapunov exponent is upper-

semicontinuous on the set of s-invariant measures (see for example [111] or [16, Lemma

3.2(b)]). Indeed, in the weak-˚ topology, for each n the function

µ ÞÑ 1

n

ż

log }DxpsnqæF } dµpxq

is continuous. The pointwise infimum of a family of continuous functions is upper-semicontinuous.

Remark 13.2. Recall that a Følner sequence in a Lie groupH equipped with a left-Haar

measure mH is a sequence tFnu of Borel subsets Fn Ă H , with 0 ă mHpFnq ă 8, such

that for every compact subset Q Ă H one has

lim
nÑ8

sup
hPQ

mH

`

ph ¨ Fnq△Fn

˘

mHpFnq “ 0.

If H admits a Følner sequence then H is said to be amenable. When H “ R, a Følner

sequence is given by Fn “ r0, ns. Examples of amenable groups include abelian groups,

nilpotent groups, solvable groups, and compact groups. See [5] for more details.

Consider H to be an amenable Lie subgroup of G “ SLpn,Rq. Given a Borel proba-

bility measure µ on Mα and a Følner sequence tFnu in H we define

Fn ˚ µ :“ 1

mHpFnq

ż

Fn

h˚µ dmHphq.

By a computation analogous to (6.3) in the proof of Claim 6.4, any weak-˚ limit point µ̂ of

the sequence tFn ˚ µu as n Ñ 8 is an H-invariant measure on Mα. Moreover, properties

analogous to those in Claim 13.1 hold when averaging an s-invariant measure µ against a

Følner sequence tFnu in an amenable subgroup H contained in the centralizer CGpsq of

s. See [16, Lemma 3.2] for precise formulations.

13.2. Averaging measures on SLpn,Rq{Γ. When averaging probability measures on SLpn,Rq{Γ
along 1-parameter unipotent subgroups we obtain additional properties of the limiting mea-

sures. The results stated in the following proposition are consequences of Ratner’s measure

classification and equidistribution theorems for unipotent flows [101–103]. See also [118].
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We do not formulate Ratner’s theorems here but only the consequences we use in the re-

mainder.

Proposition 13.3. Let µ̂ be a Borel probability measure on SLpn,Rq{Γ. For each 1-

parameter root subgroup U i,j

(1) the weak-˚ limit

U i,j ˚ µ̂ :“ lim
TÑ8

tpU i,jqT ˚ µ̂ : T ě 0u

exists;

(2) if µ̂ is A-invariant, so is U i,j ˚ µ̂;

(3) if µ̂ is A-invariant and A-ergodic, the measure U i,j ˚ µ̂ is A-ergodic;

(4) if µ̂ is A-invariant and U i,j-invariant then µ̂ is U j,i-invariant.

Proposition 13.3(1) follows from Ratner’s measure classification and equidistribution

theorems for unipotent flows. When U is higher-dimensional, we use an analogue of

Proposition 13.3(1) due to Shah [107, Corollary 1.3]. Proposition 13.3(2) follows from

the fact that A normalizes U i,j and that the limit in Proposition 13.3(1) exists and is hence

unique. Proposition 13.3(4) is a consequence of Theorem 9 in [103] or Proposition 2.1 in

[101].

Proposition 13.3(3) is a short argument that uses theA-invariance of µ̂ and the pointwise

ergodic theorem: Since there is s P A such that U i,j-orbits are contracted by s, by the

pointwise ergodic theorem, the measurable hull of the partition into U i,j-orbits refines the

ergodic decomposition for A. Let η be the measurable hull of the partition into U i,j-orbits

and let tµ̂η
xu be a family of conditional measures of µ̂ for this partition. (Note that from

Ratner’s equidistribution theorem, we have that µ̂η
x is a homogeneous measure on a closed

homogeneous submanifold.) If φ is a bounded, A-invariant measurable function then for

µ̂-a.e. x, φ is constant µ̂η
x-almost surely; in particular,

φpxq “
ż

φ dµ̂η
x

for µ̂-a.e. x. But x ÞÑ
ş

φ dµ̂η
x is a µ-almost everywhere defined, A-invariant function. In

particular, x ÞÑ
ş

φ dµ̂η
x is constant µ a.s. by ergodicity of µ. It follows that φ is constant

µ̂-a.s. and ergodicity follows.

13.3. Proof of Proposition 12.1. We outline the proof of Proposition 12.1. Recall the

notation introduced in Section 10.1. In particular, π : Mα Ñ G{Γ is the canonical the pro-

jection and F “ kerpDπq is the fiberwise tangent bundle of Mα. We write the derivative

of translation by g in Mα as Dg and the restriction to the fiber of F through x P Mα by

DxgæF pxq. Equip Mα with any Riemannian metric and write

}DgæF } “ sup
xPMα

}DxgæF pxq}.

Let K “ SOpnq. We equip with G with a right-invariant, left-K-invariant metric and

induced distance function dp¨, ¨q. We have the following elementary claim which allows us

to transfer exponential growth properties between the Γ-action on M and the G-action on

the fibers of Mα.

Claim 13.4. If Γ Ă SLpn,Rq is cocompact and if M is compact, then any action

α : Γ Ñ Diff1pMq
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has uniform subexponential growth of derivatives if and only if for every ǫ ą 0 there is a

C such that for all g P SLpn,Rq,

}DgæF } ď Ceǫdpe,gq.

With the above claim, we outline to main steps in the proof of Proposition 12.1.

Proof of Proposition 12.1. We assume α : Γ Ñ Diff1pMq fails to have uniform subexpo-

nential growth of derivatives. Then, by Claim 13.4, there exist ǫ ą 0, integers mn P N

with mn Ñ 8, elements gmn
P G with dpgmn

, eq “ mn, points xmn
P Mα, and unit

vectors vmn
P Txmn

Mα such that

}Dxmn
gmn

pvmn
q} ě eǫmn .

Let UF denote the unit sphere bundle in F and, given g P G, let UDg denote the

induced action on UF : given x P Mα and v P UF pxq write

UDxgpvq “ Dxgpvq
}Dxgpvq}

and

UDgpx, vq “ pg ¨ x, UDxgpvqq .
By the singular value decomposition of matrices, the group G “ SLpn,Rq can be

written as G “ KAK where K “ SOpnq. (For general simple Lie groups G we use the

Cartan decomposition). We can thus write each gmn
P G as

gmn
“ knank

1
n

where kn, k
1
n P K and an P A. Write

x1
n “ k1

n ¨ xmn
, x2

n “ ank
1
n ¨ xmn

,

v1
n “ UDxmn

k1
npvmn

q, v2
n “ UDxmn

pank1
nqpvmn

q.
Then

}Dxmn
gmn

pvmn
q} “ }Dx2

n
knpv2

nq} ¨ }Dx1

n
anpv1

nq} ¨ }Dxmn
k1
npvmn

q}
and so

ǫ ď lim
nÑ8

1

mn

log }Dxmn
gmn

pvmn
q} “ lim

nÑ8

1

mn

log }Dx1

n
anpv1

nq}

as }DxkæF } is uniformly bounded over all k P K and x P Mα.

Note that

|mn ´ dpan, eq| “ |dpgmn
, eq ´ dpan, eq| ď dpkn, eq ` dpk1

n, eq
is uniformly bounded in n. Thus mn

´1dpan, eq Ñ 1. As A » Rn´1, for each n there is

a unique ãn with an “ pãnqmn ; moreover, as A is geodesically embedded in G, we have

dpãn, eq Ñ 1.

For each n, let νn be the empirical measure on UF given by

νn “ 1

mn

mn´1
ÿ

j“0

pãnqj˚δpx1

n,v
1

nq.

Taking a subsequence tnju, we may assume that νnj
converges to some ν8 and that ãnj

converges to some s P A. Note that dps, eq “ 1. Let µ denote the image of ν under the

natural projection UF Ñ Mα. Adapting the proofs of Claim 6.4 and Proposition 6.3 one

can show that

(1) ν8 is UDs-invariant whence µ is s-invariant;
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(2) λFtopps, µq ě ǫ ą 0.

Take a Følner sequence tFnu in A and let µ̃ be any weak-˚ limit point of tFn ˚ µu as

n Ñ 8. Then, from analogues of the properties in Claim 13.1 for averaging over Følner

sequences, we have that

(1) µ̃ is A-invariant;

(2) λFtopps, µ̃q ě ǫ ą 0.

We take µ1 to be an A-ergodic component of µ̃ with λFtopps, µ1q ě ǫ ą 0. �

13.4. Proof of Proposition 12.2 for SLp3,Rq. To simplify ideas, we outline the proof of

Proposition 12.2 assuming Γ is a cocompact lattice in SLp3,Rq. We perform two averag-

ing procedures on the measure µ1 from the hypotheses of Proposition 12.2 to obtain the

measure µ in the conclusion of Proposition 12.2.

Proof of Proposition 12.2 for Γ Ă SLp3,Rq. Take µ0 “ µ1 to be the ergodic, A-invariant

probability measure in the hypotheses of Proposition 12.2 with nonzero fiberwise exponent

λFj,µ0
: A Ñ R, λFj,µ0

‰ 0.

First averaging. Consider the elements

s “ diagp1
4
, 2, 2q and s “ diagp2, 2, 1

4
q

of A Ă SLp3,Rq. Note that s and s are linearly independent and hence form a basis for

A » R2. As the linear functional λFj,µ0
is nonzero, either

λFj,µ0
psq ‰ 0 or λFj,µ0

psq ‰ 0.

Without loss of generality we may assume that

λFj,µ0
psq ‰ 0.

Take s0 to be either s or s´1 so that λFj,µ0
ps0q ą 0.

Consider the 1-parameter subgroup

U2,3 “

$

&

%

¨

˝

1 0 0

0 1 t

0 0 1

˛

‚: t P R

,

.

-

.

Note that U2,3 commutes with s0. Let µ1 be any weak-˚ limit point of tpU2,3qT ˚ µu as

T Ñ 8. From Claim 13.1, µ1 is s0-invariant and λFtopps0, µ1q ě λFtopps0, µ0q.
We now average µ1 over a Følner sequence in A: identifying A with R2 let AT “

r0, T s ˆ r0, T s define a Følner sequence tAT u in A. Then

AT ˚ µ1 :“ 1

T 2

ż T

0

ż T

0

pt1, t2q˚µ1 dpt1, t2q.

Let µ2 be any weak-˚ limit point of tAT ˚ µ1u as T Ñ 8. Then, from facts analogous to

those in Claim 13.1, µ2 is A-invariant and

λFtopps0, µ2q ě λFtopps0, µ1q ą 0.

Note that µ2 might no longer be U2,3-invariant.

We investigate properties of the projection of each measure µ0, µ1, and µ2 to SLp3,Rq{Γ.

For each j, we denote by µ̂j “ π˚pµjq the image of µj under the projection π : Mα Ñ
SLp3,Rq{Γ.
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Observe that µ̂1 “ U2,3 ˚ µ̂0 is U2,3-invariant. Since µ̂0 was A-invariant, from Propo-

sition 13.3(2) we have that µ̂1 is A-invariant and it follows that µ̂1 “ µ̂2 so µ̂2 is U2,3-

invariant and A-invariant. From Proposition 13.3(4), µ̂2 is invariant under the subgroup
$

&

%

¨

˝

˚ 0 0

0 ˚ ˚
0 ˚ ˚

˛

‚

,

.

-

Ă SLp3,Rq

generated by A, U2,3 and U3,2 in SLp3,Rq. Moreover, since µ̂0 was A-ergodic, from

Proposition 13.3(3) the measure µ̂1 “ µ̂2 is A-ergodic.

Returning to Mα, as λFtopps0, µ2q ą 0 and as µ̂2 is A-ergodic, we may replace µ2 with

an A-ergodic component µ1
2 of µ2 such that

(1) λFtopps0, µ1
2q ą 0, and

(2) the projection of µ1
2 to SLp3,Rq{Γ is µ̂2.

Let λF
1,µ1

2

, . . . , λF
p1,µ1

2

: A Ñ R denote the fiberwise Lyapunov exponents for theA-invariant,

A-ergodic measure µ1
2. Then 0 ă λFj1,µ1

2

ps0q “ λFtopps0, µ1
2q for some 1 ď j1 ď p1 whence

some fiberwise Lyapunov exponent λF
j1 ,µ1

2

: A Ñ R is a nonzero linear functional.

Second averaging. Consider now the elements s “ p2, 2, 1
4

q and s “ p2, 1
4
, 2q in A.

Again, either

λFj1,µ1

2

psq ‰ 0 or λFj1,µ1

2

psq ‰ 0.

Case 1: λFj1 ,µ1

2

psq ‰ 0. Take s1 “ s or s1 “ s´1 so that λFj1,µ1

2

ps1q ą 0. Consider the

one-parameter group U1,2 which commutes with s1. As above, any weak-˚ limit point µ3

of tpU1,2qT ˚ µ1
2u as T Ñ 8 is s1-invariant, with

λFtopps1, µ3q “ λFtopps1, µ3q ě λFtopps1, µ1
2q ą 0.

Let µ4 be any weak-˚ limit point of tAT ˚ µ3u as T Ñ 8 (where AT ˚ µ3 is as in the first

averaging). Then µ4 is A-invariant and

λFtopps1, µ4q ě λFtopps1, µ3q ą 0.

We claim that the projection µ̂4 of µ4 to SLp3,Rq{Γ is the Haar measure. Since the

groups U1,2 and U3,2 commute and since µ̂2 was U3,2-invariant, it follows that µ̂3 “
U1,2 ˚ µ̂2 is U3,2-invariant. Also, since µ̂2 was A-invariant, Proposition 13.3(2) shows that

µ̂3 is A-invariant. Thus µ̂3 “ µ̂4 and µ̂4 is also invariant under the actions of A, U1,2,

and U3,2. By Proposition 13.3(4) it follows that µ̂4 is invariant under the groups U2,1 and

U2,3; in particular µ̂4 is invariant under the following subgroups of SLp3,Rq:
$

&

%

¨

˝

˚ 0 0

0 ˚ ˚
0 ˚ ˚

˛

‚

,

.

-

,

$

&

%

¨

˝

˚ ˚ 0

˚ ˚ 0

0 0 ˚

˛

‚

,

.

-

.

These two groups generate all of SLp3,Rq, and hence µ̂4 is the Haar measures.

Case 2: λFj1 ,µ1

2

psq ‰ 0. Take s1 “ s or s1 “ s´1 so that λFj1,µ1

2

ps1q ą 0. Consider the

one-parameter group U1,3 which commutes with s1. As above, any weak-˚ limit point µ3

of tpU1,3qT ˚ µ1
2u as T Ñ 8 is s1-invariant, with

λFtopps1, µ3q ě λFtopps1, µ1
2q ą 0.

Let µ4 be any weak-˚ limit point of tAT ˚ µ3u as T Ñ 8. Then µ4 is A-invariant and

λFtopps1, µ4q ě λFtopps1, µ3q ą 0.
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Again, we claim that µ̂4 “ U1,3 ˚ µ̂2 is the Haar measure. Since the groups U1,3

and U2,3 commute, it follows that µ̂3 is U2,3-invariant. Also, since µ̂2 was A-invariant,

Proposition 13.3(2) shows that µ̂3 is A-invariant. Thus µ̂3 “ µ̂4 and µ̂4 is also invariant

under the actions ofA, U1,3 andU2,3. By Proposition 13.3(4) it follows that µ̂4 is invariant

under the following subgroups of SLp3,Rq:
$

&

%

¨

˝

˚ 0 0

0 ˚ ˚
0 ˚ ˚

˛

‚

,

.

-

,

$

&

%

¨

˝

˚ 0 ˚
0 ˚ 0

˚ 0 ˚

˛

‚

,

.

-

.

Again, these two groups generate all of SLp3,Rq, and hence µ̂4 is the Haar measure.

Completion of proof. In either Case 1 or Case 2, since the Haar measure µ̂4 is A-ergodic,

we may take an A-ergodic component µ1
4 of µ4 projecting to the Haar measure with

λFtopps1, µ1
4q ą 0.

If λF
1,µ1

4

, . . . , λF
p2,µ1

4

: A Ñ R denote the fiberwise Lyapunov exponents for theA-invariant,

A-ergodic measure µ1
4 then 0 ă λFj2 ,µ1

4

ps1q “ λFtopps1, µ1
4q for some 1 ď j2 ď p2 whence

some fiberwise Lyapunov exponent λF
j2,µ1

4

: A Ñ R is a nonzero linear functional.

This completes the proof of Proposition 12.2. �

13.5. Modifications to proof of Proposition 12.2 in SLpn,Rq. When Γ is a cocompact

lattice in SLpn,Rq we replace the first averaging step with a more complicated averaging.

First averaging. We again take µ0 “ µ1 to be the A-invariant measure in Proposition 12.2

with nonzero fiberwise exponent

λFj,µ0
: A Ñ R, λFj,µ0

‰ 0.

Without loss of generality (by conjugating by a permutation matrix) we may assume that

for the element

s “ diagp 1
2n´1 , 2, . . . , 2q

of A Ă SLpn,Rq, we have

λFj,µ0
psq ‰ 0.

Take s0 to be either s, or s´1 so that λFj,µ0
ps0q ą 0.

Consider the unipotent subgroup U Ă SLpn,Rq of matrices of the form

U “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˝

1 0 0 ¨ ¨ ¨ 0

0 1 ˚ ¨ ¨ ¨ ˚
...

. . .
...

0 0 ¨ ¨ ¨ 1 ˚
0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‚

,

/

/

/

/

/

.

/

/

/

/

/

-

.

Note that U commutes with s0.

Let tFnu be a Følner sequence in U and let µ1 be any weak-˚ limit point of tFn ˚ µ0u
as n Ñ 8 where

Fn ˚ µ0 “ 1

mU pFnq

ż

Fn

u˚µ0 du.

From facts analogous to those in Claim 13.1, we have thatµ1 is s0-invariant andλFtopps0, µ1q ě
λFtopps0, µ0q ą 0.Moreover, asU is higher-dimensional, we use [107, Corollary 1.3] rather

than Proposition 13.3(1) to conclude (as least for certain Følner sequences tFnu in U with
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nice geometry) that the projection µ̂1 of µ1 to G{Γ is the limit

µ̂1 “ limFn ˚ µ̂0

and is A-invariant, ergodic, and U -invariant.

We again average µ1 over a Følner sequence for the form

AT “ r0, T s ˆ ¨ ¨ ¨ ˆ r0, T s
in A (identified with Rn´1) and let µ2 be any weak-˚ limit point of tAT ˚ µ1u as T Ñ 8.

Then µ2 is A-invariant and

λFtopps0, µ2q ě λFtopps0, µ1q ą 0.

Again, we have equality of the projected measures µ̂1 “ µ̂2 so µ̂2 is U -invariant and

A-invariant. From Proposition 13.3(4), µ̂2 is also invariant under the subgroup

H “

$

’

’

’

’

’

&

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˝

1 0 0 ¨ ¨ ¨ 0

0 ˚ ˚ ˚
0 ˚ ˚ ˚
...

. . .
...

0 ˚ ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‹

‹

‚

,

/

/

/

/

/

.

/

/

/

/

/

-

.

As µ̂2 is A-ergodic, we may replace µ2 with an A-ergodic component µ1
2 of µ2 such that

(1) λFtopps0, µ1
2q ą 0, and

(2) the projection of µ1
2 to SLpn,Rq{Γ is µ̂2.

Then, if λF
1,µ1

2

, . . . , λFp1,µ1

2

: A Ñ R denote the fiberwise Lyapunov exponents for µ1
2, we

have 0 ă λFj1 ,µ1

2

ps0q “ λFtopps0, µ1
2q for some 1 ď j1 ď p1.

Second averaging. Consider now the roots β1,2 and β1,n of G. Since β1,2 and β1,n are

not proportional, at most one of β1,2 and β1,n is proportional to λF
j1 ,µ1

2

. In particular, we

may find either s or s in A such that

(1) β1,2psq “ 0 but λF
j1 ,µ1

2

psq ‰ 0; or

(2) β1,npsq “ 0 but λF
j1,µ1

2

psq ‰ 0.

The two cases in the second averaging step of in Section 13.4 are then identical to the

above, where we either average over the 1-parameter group U1,2 in the case λFj1 ,µ1

2

psq ‰ 0

or U1,n in the case λFj,µ1

2

psq ‰ 0. The structure theory of SLpn,Rq will then imply that the

measure obtained after the second averaging projects to the Haar measure.
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(2004), 759–768.
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