MATH 215 - Sets(S)

Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.

Notation 2 A set can be described using set-builder notation. That is, a set can be described by writing $\{x : P(x)\}$ where P(x) is a statement concerning an object x. For example, $\mathbb{N} = \{x : x \text{ is a natural number}\}$ or $(2,7] = \{x : \text{ is a real number and } 2 < x \leq 7\}$.

Remark 3 Some authors use the notation $\{x|P(x)\}$ in place of $\{x : P(x)\}$.

Notation 4 The set that contains no elements is called the **empty set** and is denoted \emptyset . [Note: $\{\emptyset\}$ is NOT the empty set.]

Notation 5 If an object x is an element of a set A, then we write $x \in A$. If x is not an element of A, then we write $x \notin A$.

Definition 6 Two sets A and B are equal if and only if every element of A belongs to B and every element of B belongs to A.

Definition 7 If A and B are sets such that each element of A is also an element of B, then we say A is a subset of B, and notate this $A \subseteq B$.

Remark 8 Some authors use the notation $A \subset B$ if A is a subset of B. We reserve the notation \subset for something else later.

Proposition 9 Let A and B be sets. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 10 Let A be a set. The **power set** of A, denoted P(A) or 2^A , is the set of all subsets of A.

Conjecture 11 Let A be a set with n elements, where n is some natural number.

- 1. Make a conjecture as to how many elements P(A) has.
- 2. Prove your conjecture using induction on n.

Definition 12 If A and B are sets, we say that A is a proper subset of B, written $A \subset B$ if $A \subseteq B$ and $A \neq B$.

Problem 13 Let A be a set with n elements, where n is some natural number. How many proper subsets does A have?

Definition 14 Let A and B be sets. The union of A and B, denoted $A \cup B$, is defined as the set of all elements in either A or B (or both). In set-builder notation

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

Definition 15 Let A and B be sets. The intersection of A and B, denoted $A \cap B$, is defined as the set of all elements in both A and B. In set-builder notation

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

Definition 16 Two sets A and B are disjoint if $A \cap B = \emptyset$.

Problem 17 Find two sets A and B where $A \cup B = \{1, 2, 3\}$ and $A \cap B = \{3\}$.

Proposition 18 Let A, B, C be sets. Then

- $A \cup B = B \cup A$
- $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Definition 19 Let X and Y be sets. Define the difference X - Y of X and Y by

$$X - Y = \{ x : x \in X \text{ and } x \notin Y \}.$$

Remark 20 The union and intersection of sets can be defined for more than two sets. In fact, the union and intersection can be defined for an infinite number of sets.

Definition 21 Let I be an index set and let $\{X_i\}_{i \in I}$ be a collection of sets. Then the union of the collection $\{X_i\}_{i \in I}$ is defined

$$\bigcup_{i \in I} X_i = \{ x : x \in X_i \text{ for some } i \in I \}.$$

Definition 22 Let I be an index set and let $\{X_i\}_{i \in I}$ be a collection of sets. Then the intersection of the collection $\{X_i\}_{i \in I}$ is defined

$$\bigcap_{i \in I} X_i = \{ x : x \in X_i \text{ for all } i \in I \}.$$

Example 23 Let \mathbb{Z} be the index set and for $n \in \mathbb{Z}$, define $X_n = [n, n+1)$.

1. $\bigcup_{n \in \mathbb{Z}} X_n$ 2. $\bigcap_{n \in \mathbb{Z}} X_n$

- 3. $X_i \cap X_j$ for $i \neq j$
- 4. If Y_n is defined as $Y_n = [n, n+1]$, find $Y_i \cap Y_j$ for $i \neq j$.

Definition 24 Let X be a set. Let I be an index set and let $\{X_i\}_{i \in I}$ be a collection of subsets of X. We say that the subsets in the collection are **mutually disjoint** if for all $i, j \in I$ where $i \neq j$, we have $X_i \cap X_j = \emptyset$. A **disjoint union** is the union of subsets in a collection that are mutually disjoint, denoted by

$$\coprod_{i\in I} X_i.$$

Definition 25 Let X be a set, let I be an index set, and let $\{X_i\}_{i \in I}$ be a collection of mutually disjoint subsets of X. We say the collection is a **partition** of X if

$$\prod_{i \in I} X_i = X.$$

Example 26 Let \mathbb{R} the set of all real numbers. Then the collection of sets $X_n = [n, n+1)$ for $n \in \mathbb{Z}$ is a partition of \mathbb{R} . Note that the collection of sets $Y_n = [n, n+1]$ for $n \ge 1$ is NOT a partition of \mathbb{R} . Why?

Proposition 27 Every set S has a partition.

Problem 28 Find a partition of \mathbb{Z} , the set of integers.

Proposition 29 Let n be a natural number. Let $A_0, A_1, A_2, \ldots, A_{n-1}$ be defined by

$$A_i = \{x \in \mathbb{Z} : x \equiv i \mod n\}, \ i = 0, 1, 2, \dots, n-1.$$

Then $A_0, A_1, \ldots, A_{n-1}$ is a partition of \mathbb{Z} .

We will return to partitions after we introduce more terminology.

Definition 30 Let X and Y be sets. Let $x \in X$ and $y \in Y$. Define the ordered pair (x, y) of x and y by

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Proposition 31 Let X and Y be sets. Let $x, x' \in X$ and $y, y' \in Y$. Then (x, y) = (x', y') if and only if x = x' and y = y'.

Remark 32 This proposition seems obvious to us, however now we have a rigorous definition of what an ordered pair is (i.e. in terms of sets) that we must use to prove it.

Definition 33 Let X and Y be sets. The **Cartesian product** of X and Y, denoted $X \times Y$, is the set of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$. In set notation,

$$X \times Y = \{(x, y) : x \in X, y \in Y\}.$$

Example 34 Let $X = Y = \mathbb{R}$. Then

$$\mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\} = \mathbb{R}^2.$$

Problem 35 Let \mathbb{R}_+ denote the set of positive real numbers. What is the difference between $\mathbb{R} \times \mathbb{R}_+$ and $\mathbb{R}_+ \times \mathbb{R}$ in terms of \mathbb{R}^2 ?

Definition 36 Let X and Y be sets. A relation between X and Y is a subset of $X \times Y$. If we denote a relation between X and Y by R(X, Y), then we have

$$R(X,Y) \subseteq X \times Y.$$

Example 37 Here are some examples of relations.

- 1. Let $X = Y = \mathbb{R}$ and $R(X, Y) = \{(x, y) \in X \times Y : y = x^2\}.$
- 2. Let $X = \mathbb{Z} \{0\}$ and $Y = \mathbb{N}$. Let $R(X, Y) = \{(x, y) \in X \times Y : y = x^2\}$.
- 3. Let $X = Y = \mathbb{Z}$, and let n be a natural number. Define a relation $R(X,Y) = R(X,X) = \{(x,y) : x \equiv y \mod n\}$. A relation R(X,X) between X and itself is called a **relation on** X, and sometimes we denote the relation by $x \sim_R y$ (or simply $x \sim y$). In this example, we have that $x \sim_R y$ if and only if $x \equiv y \mod n$.
- Let P denote the set of points in the Euclidean plane. Let ∼ be the relation on P defined by p ∼ q if and only if p and q are a pair of points in the plane that are the same distance from the origin.
- 5. Let P be as in the previous example, and let $X = P \{(0,0)\}$. Let \sim be the relation on X defined by $p \sim q$ if and only if p and q lie on the same line through the origin.
- 6. Let $X = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define a relation \sim on X by $(a, b) \sim (c, d)$ if and only if ad bc = 0.
- 7. $X = Y = \mathbb{R}$. Define $x \sim y$ if and only if x < y.

There are two fundamental types of relations we will be interested in: **equivalence** relations and maps (or functions). Both types of relations satisfy extra properties beyond simply being a relation.

Definition 38 Let X be a set and \sim a relation on X.

- The relation \sim is called **reflexive** if $x \sim x$ for all $x \in X$.
- The relation \sim is called symmetric if $x \sim y$ implies $y \sim x$ for all $x, y \in X$.
- The relation \sim is called **transitive** if $x \sim y$ and $y \sim z$ implies $x \sim z$ for all $x, y, z \in X$.

If a relation is reflexive, symmetric, and transitive, it is called an equivalence relation.

Problem 39 Determine which of the relations in Example 37 are equivalence relations.

Definition 40 Let X be a set and let \sim be an equivalence relation on X. For each $x \in X$, the equivalence class of x, denoted [x], is the subset of X defined by

$$[x] = \{ y \in X : x \sim y \}.$$

If [x] is an equivalence class in X and $z \in [x]$, we say that z is a **representative** of [x]. Note that an equivalence class can have more than one representative.

Problem 41 Determine the equivalence classes of the equivalence relations in Example 37.

Theorem 42 Let X be a set.

- 1. If \sim is an equivalence relation on X, then the set of distinct equivalence classes defined by \sim form a partition of X.
- 2. Conversely, if $\{X_i\}_{i \in I}$ is a partition of X into non-empty, mutually disjoint subsets of X, then the relation on X defined by $x \sim y$ if and only if $x, y \in X_i$ for some i is an equivalence relation.

Definition 43 Let X and Y be sets. A map f from X to Y, denoted

 $f: X \to Y$

is a relation between X and Y with the property that for every $x \in X$, there exists a unique $y \in Y$ such that (x, y) is in the relation.

Notation 44 1. We will write f(x) for y when referring to a map f.

2. If (x, y) is an element of the relation defined by f then we write

 $x \mapsto f(x).$

3. What is wrong with writing the following? What should it be?

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt{x}$$

Problem 45 Determine which relations in Example 37 are maps.

Definition 46 Let X and Y be sets and let $f : X \to Y$ be a map.

- 1. The set X is called the **domain** of f.
- 2. The set Y is called the co-domain, or target, of f.
- 3. Given a subset $W \subseteq X$ of the domain, we call

 $f(W) = \{ y \in Y : there \ exists \ x \in W \ such \ that \ y = f(x) \}$

the image of W under f. Here are two important special cases.

- (a) When $W = \{x\}$ consist of a single element in X, we call $f(\{x\})$ the image of x under f. We then abuse notation and write f(x) in place of $f(\{x\})$.
- (b) When W = X, we call

$$f(X) = Im f$$

the image of f or the range of f.

4. Given a subset $Z \subseteq Y$ of the target, we call

$$f^{-1}(Z) = \{ x \in X : f(x) \in Z \}$$

the **preimage of** Z under f. Here are two important special cases.

(a) When $Z = \{y\}$ consist of a single element, we call

$$f^{-1}(\{y\}) = \{x \in X : f(x) = y\}$$

the preimage of y under f. We then abuse notation and write $f^{-1}(y)$ in place of $f^{-1}(\{y\})$.

(b) When Z = Y, then $f^{-1}(Y) = X$.

Example 47 Determine which of the following examples are maps and which are not. If it is not a map, explain why. Then, if it is a map, state the domain and range of the map (where possible).

1. Let n be a natural number and let $\mathbb{Z}/n\mathbb{Z}$ denote the n distinct equivalence classes of congruence modulo n. Define

$$f: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
$$a \mapsto [a],$$

where [a] is the equivalence class containing a.

2. Define

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$$
$$[a] \mapsto a.$$

3. Let $\mathbb{R}_+ = [0, \infty)$ denote the set of non-negative real numbers. Define

$$f: \mathbb{R}^2 \to \mathbb{R}_+$$
$$(x, y) \mapsto x^2 + y^2$$

4. Let X be any set and define the identity map on X, Id_X , by

$$Id_X: X \to X$$
$$x \mapsto x.$$

5. Let f, g be maps from a set X to X. Define the composition of f with g as

$$f \circ g : X \to X$$
$$x \mapsto f(g(x)).$$

Proposition 48 Let $f: X \to Y$ be a map. The following are equivalent:

- 1. For all $y \in Y$, the preimage $f^{-1}(y)$ consists at most one element.
- 2. For all $x, x' \in X$, if f(x) = f(x'), then x = x'.
- 3. For all $x, x' \in X$, if $x \neq x'$, then $f(x) \neq f(x')$.

Definition 49 If a map satisfies any of the equivalent statements in Proposition 48, then the maps is called **injective** or **one-to-one**.

Example 50 Which of the maps in Example 47 are injective?

Example 51 Which of the following are injections?

- f: Z → Z defined by f(x) = x².
 f: Z → Z defined by f(x) = x³.
 f: [0,∞) → ℝ defined by f(x) = x².
 f: ℝ → ℝ³ defined by f(t) = (cos t, sin t, t).
 sin: ℝ → ℝ.
- 6. $\sin: [0, \pi/2] \to [-1, 1].$
- 7. $\sin: [-\pi/2, \pi/2] \to [-1, 1].$

Definition 52 A function $f : \mathbb{R} \to \mathbb{R}$ is strictly increasing (strictly decreasing) if for all $x_1, x_2 \in \mathbb{R}$, $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$).

Problem 53 True or False: A strictly increasing or strictly decreasing function is injective.

Proposition 54 Let $f: X \to Y$ be a map. The following are equivalent:

- 1. For all $y \in Y$, the preimage $f^{-1}(y)$ consists at least one element.
- 2. For all $y \in Y$, there exists $x \in X$ such that y = f(x).
- 3. Im f = Y.

Definition 55 If a map satisfies any of the equivalent statements in Proposition 54, then the maps is called **surjective** or **onto**.

Problem 56 Determine which of the maps in Example 47 and Example 51.

Example 57 Let X and Y be sets. Define the projection onto X by

$$\pi_X : X \times Y \to X$$
$$(x, y) \mapsto x$$

and projection onto Y by

$$\pi_Y : X \times Y \to Y$$
$$(x, y) \mapsto y.$$

Show that both π_X and π_Y are surjective functions.

Definition 58 A map that is both an injection and a surjection is called a bijection.