You will want to refer back to NTI when working through these problems.
Definition 1 Two integers a and b are called relatively prime (or coprime) if $\operatorname{gcd}(a, b)=$ 1.

Proposition 2 Two integers a and b are relatively prime if and only if there exists integers m, n such that $a m+b n=1$.

Proposition 3 Let a, b be relatively prime integers.

- If $a \mid c$ and $b \mid c$, then $a b \mid c$.
- If $a \mid b c$, then $a \mid c$.

Definition $4 A n$ integer $p>1$ is prime if the only positive divisors of p are 1 and p.
Proposition 5 Let p be a prime, and let a be an integer. Then either $p \mid a$ or p and a are relatively prime.

Proposition 6 Let p be a prime, and let a, b be integers. If $p \mid a b$, then $p \mid a$ or $p \mid b$.
Corollary 7 If p is prime, and $p \mid a_{1} \cdot a_{2} \cdots a_{k-1} \cdot a_{k}$, then $p \mid a_{i}$ for some $i=1,2, \ldots, k$.
Theorem 8 (Fundamental Theorem of Arithmetic) Let n be an integer greater than 1. Then

$$
n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}
$$

where the primes $p_{1}<p_{2}<\cdots<p_{k}$ are distinct and the exponents e_{i} are positive integers. This prime-factorization is unique.

Theorem 9 (Euclid's Theorem) There are infinitely many primes.
Hint: There are MANY proofs that there are an infinite number of primes, but Euclid's proof is the most beautiful (it is short and sweet). It is perhaps the "prettiest" proof in all of mathematics. To arrive at a contradiction, assume that there are only finitely many primes. Call those primes $p_{1}, p_{2}, \ldots, p_{k}$, and consider the integer $n=p_{1} p_{2} \cdots p_{k}+1$.

