Proposition 1 Let a, b be integers and n a natural number. If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$ for every natural number k.

Notation 2 Let P(k) be a statement that depends on the integer k.

Example 3 Let a, b be integers and n a natural number. Consider the statement $a^k \equiv b^k \mod n$. We can denote this statement by P(k) where

 $P(k): a^k \equiv b^k \mod n.$

If we write P(5), then this means the statement

 $a^5 \equiv b^5 \mod n.$

Theorem 4 Let P(k) denote a statement for every integer k = 0, 1, 2, ... If the following are true:

- 1. P(0) is true; and
- 2. The truth of $P(\ell-1)$ implies the truth of $P(\ell)$ for every integer $\ell = 1, 2, 3, \ldots$

then P(k) is true for all integers $k = 0, 1, 2, 3 \dots$

Remark 5 Proving a statement P(k) is true for all integer k = 0, 1, 2, 3, ... using Theorem 4 is called a **proof by induction**. Verifying the step P(0) is true is called the **base case** and verifying the step that $P(\ell - 1)$ implies $P(\ell)$ is called the **inductive hypothesis**.

Theorem 6 Let n be a non-negative integer and let P(k) denote a statement for every integer k = n, n + 1, n + 2, ... If the following are true:

- 1. P(n) is true; and
- 2. The truth of $P(\ell 1)$ implies the truth of $P(\ell)$ for every integer $\ell = n + 1, n + 2, n + 3, \ldots$,

then P(k) is true for all integers $k = n, n + 1, n + 2, \dots$

Theorem 7 Let n be a non-negative integer and let P(k) denote a statement for every integer k = n, n + 1, n + 2, ... If the following are true:

- 1. P(n) is true; and
- 2. For all integers $\ell > n$, the truth of P(n), P(n+1), P(n+2), ..., and $P(\ell-1)$ imply the truth of $P(\ell)$,

then P(k) is true for all integers $k = n, n + 1, n + 2, \dots$

Remark 8 Using Theorem 7 to prove a result is a proof using strong induction. Using either Theorems 4 or 6 to prove a result is a proof using weak induction.

Proposition 9 Let a, b be integers and n a natural number. Using induction, prove that if $a \equiv b \mod n$, then

$$a^k \equiv b^k \mod n$$

for every natural number k.

Challenge 10 Let k be a natural number. Consider a $2^k \times 2^k$ checkerboard with any single 1×1 square removed. Prove that the checkerboard could be covered using only L-shaped blocks that are made of three 1×1 squares. [Make sure you understand what shaped tiles I mean before starting this problem.]

Problem 11 Find the following sums.

- 1 + 3 + 5 =
- 1 + 3 + 5 + 7 + 9 =
- 1+3+5+7+9+11+13+15 =

Using your sums above, develop (which means guess and prove) a formula for the sum of the first k odd integers:

$$1 + 3 + 5 + 7 + \dots + 2k - 1 =$$

Proposition 12 Prove that $2304|(7^{2n} - 48n - 1)$ for every natural number n.

Question 13 For what natural numbers n (if any) is $4n < 2^n$? Prove it.

Problem 14 Consider the sequence $\{x_n\}_{n=1}^{\infty}$ defined recursively by $x_1 = 1$ and $x_{n+1} = \frac{1}{2}x_n + 1$ for $n \ge 1$.

- 1. Show that $x_n \leq 2$ for all $n \geq 1$.
- 2. Show that $x_n \leq x_{n+1}$ for all $n \geq 1$.
- 3. What do the two steps above imply about the sequence?

Notation 15 Let n, k be non-negative integers. The binomial coefficient $\begin{pmatrix} n \\ k \end{pmatrix}$ is defined by

$$\left(\begin{array}{c}n\\k\end{array}\right) = \frac{n!}{k!(n-k)!}$$

Theorem 16 (Binomial Theorem) Let n be a non-negative integer. Then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Theorem 17 (De Moivre's Theorem) For any positive integer n

$$(\cos t + i\sin t)^n = \cos(nt) + i\sin(nt)$$