Rational Homotopy Theory - Lecture 22

BENJAMIN ANTIEAU

1. SKETCH OF PROOF OF THE SULLIVAN-DE RHAM EQUIVALENCE

Suppose that F': C &2 D : G is a pair of adjoint functors, and suppose that F and G
restrict to adjoint functors F’ : C' 2 D’ : G'. We can ask when F’ and G’ are inverse
equivalences. Given an object ¢ € C there is a unit map

¢ — GFe,
and for d € D there is a counit map

FGd — d.

Exercise 1.1. Show that F' : C 2 D’ : G’ is a pair of inverse equivalences if and only if
the unit and counit maps are all isomorphisms.

Theorem 1.2 (The Sullivan-de Rham theorem). The derived functors
LF: Ho(cdgago) = Ho(sSetsP) : RA
restrict to inverse equivalences
Ho(cdgaugo)f = Ho(sSets?)NQ,
Similarly, the derived functors
LF: Ho(cdga/zqg) = Ho(sSetsy?) : RA
restrict to inverse equivalences
HO(Cdga/qu)f = Ho(sSetsoP)NQ,

Exercise 1.3. Show that the unpointed version of the theorem follows from the pointed
version.

Outline of proof. The exercises above reduce the problem to show that the unit and counit
maps are isomorphisms for augmented cdgas of finite Q-type and pointed rational nilpotent
spaces of finite Q-type and that LF and RA restrict to the specified subcategories. Thus,
we have to show the following

(1) the unit map X — RALF(X) is an isomorphism in the homotopy category when X
is an augmented cdga of finite Q-type and LF(X) is a connected rational nilpotent
space of finite Q-type;

(2) the counit map LFRA(Y) — Y is an isomorphism in the homotopy category (of
sSetsyP) when X is a connected rational nilpotent space of finite Q-type and RA(Y")
is an augmented cdga of finite Q-type.

We make a couple additional simplifying observations. Since every augmented connected
rational cdga is quasi-isomorphic to a minimal cdga, we can assume that X is minimal in
(1), in which case, LF(X)(X) = F(X). Moreover, since every object of sSets; is fibrant,
RA(Y) 2 Y forall Y. So, in (1) it suffices to prove that X — AF(X) is a quasi-isomorphism
for X minimal.

In (2), we find it more convenient to write the arrow ¥ — LFRA(Y) in the doubly-
opposite category, i.e., the category of rational nilpotent spaces of finite Q-type. Since as
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mentioned above Y is automatically cofibrant, we can write this arrow as ¥ — F(MA(Y)),
where MA(Y) — A(Y) is a minimal model. O

We define minimal algebras W(n) for n > 1 as follows. If n is odd, set W(n) = S(n),
the free graded-commutative cdga on a degree n class x with dox = 0. If n is even, let
W(n) = Q[zn,y2n—1] with d(z,) = 0 and d(y2n—1) = 2%. Hence, W(n) — A(S™) is a
minimal model for all n > 1.

Proposition 1.4. If X is a cofibrant cdga, then m,F(X) = Homg(n"X,Q), and if X is
coconnective, then F(X) is connected. Moreover, the maps m,F(X) — Homg(7"X, Q) are
group homomorphisms for n > 2. Finally, mF(X[1,1]) — F(X) is surjective.

Proof. We prove the first statement, leaving the rest as a difficult exercise. We consider the
following composition using the Quillen adjunctions at the level of homotopy categories:

mF(X) =[S, F(X)] = [X, A(S™)] = [X, W(n)] = [X, V(n)] = Homg(7" X, Q),

where the final isomorphism follows from Lemma 1.1 of Lecture 19. Here we use a fixed
quasi-isomorphism W (n) — V(n), which is itself a minimal model of V' (n). O

Lemma 1.5. Statement (2) holds for Y = K(Q,n), n > 1.

Proof. Note that Y is indeed a rational nilpotent space of finite Q-type. Since we know
the rational cohomology of K(Q,n), we can find a minimal model, which turns out to
be S(n). Hence, we have a quasi-isomorphism S(n) — A(Y). We get an isomorphism
F(S(n)) — LFA(Y), and we must show these spaces are K(Q,n)s. But, by the proposition,
we see that F(S(n)) is a K(Q,n)-space. It suffices to show that the counit map is an
equivalence. This follows because AFA(X) — A(X) has a right inverse. O

Lemma 1.6. Statement (1) holds for X = S(n), n > 1, the minimal cdga on a degree n
generator x with dr = 0.

Proof. Indeed, we saw in the previous lemma that F(S(n)) is a K(Q,n)-space, and hence a
minimal model of AF(S(n)) is given by S(n) itself. Once again, FAF(S(n)) — F(S(n)) has
a right inverse, so 7*S(n) — AF(S(n)) is injective and hence an isomorphism. O
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