Rational Homotopy Theory - Lecture 10

BENJAMIN ANTIEAU

1. THE HOMOTOPY CATEGORY OF A MODEL CATEGORY CONTINUED

See the writeup [1] from Dwyer and Spalinski, where most of the lecture was taken.

2. Some computational remarks

Recipe 2.1. It is generally difficult to compute $[X, Y]=\operatorname{Hom}_{\operatorname{Ho}(M)}(X, Y)$ given two objects $X, Y \in M$. We give a recipe. Replace X by a weakly equivalent cofibrant object $Q X$, and Y by a weakly equivalent fibrant object $R Y$. Then, $[X, Y]=\operatorname{Hom}_{M}(Q X, R Y) / \sim$, where \sim is an equivalence relation on $\operatorname{Hom}_{M}(Q X, R Y)$ generalizing homotopy equivalence (see [2, Section II.1]). See [1, Proposition 5.11] for a proof that this construction does indeed computing the set of maps in the homotopy category.

Remark 2.2. In many cases, every object of M might be cofibrant, in which case one just needs to replace Y by $Q Y$ and compute the homotopy classes of maps. This is for example the case in sSets.

Remark 2.3. In Goerss-Jardine [2, Section II.1], the homotopy category $\operatorname{Ho}(M)$ is itself defined to be the category of objects of M that are both fibrant and cofibrant, with maps given by $\operatorname{Hom}_{\mathrm{Ho}(M)}(A, B)=\operatorname{Hom}(A, B) / \sim$. Given an arbitrary X in M it is possible to assign to X a fibrant-cofibrant object $R Q X$ as follows. First, take, via M4, a factorization $\emptyset \rightarrow Q X \rightarrow X$ where $Q X$ is cofibrant $Q X \rightarrow X$ is a weak equivalence. Now, take a factorization $Q X \rightarrow R Q X \rightarrow *$ of the canonical map $Q X \rightarrow *$ in which $Q X \rightarrow R Q X$ is an acyclic cofibration and $R Q X \rightarrow *$ is a fibration. In particular, $R Q X$ is fibrant. Since compositions of cofibrations are cofibrations, $R Q X$ is also cofibrant. Moreover, if $f: X \rightarrow Y$ is a morphism, then it is possible using M3 to (non-uniquely) assign to f a morphism $R Q f: R Q X \rightarrow R Q Y$ such that one gets a well-defined functor $M \rightarrow \operatorname{Ho}(M)$ (i.e., after enforcing \sim).

Remark 2.4. In practice, we will work with simplicial model category structures, for which there exist objects $Q X \times \Delta^{1}$, where Δ^{1} is the standard 1-simplex (so that $\left|\Delta^{1}\right|=I^{1}$). In this case, the equivalence relation \sim is precisely that of (left) homotopy classes of maps.

Exercise 2.5. For chain complexes, the equivalence relation \sim is precisely that of chain homotopy equivalence. (See [5, Section 1.4].) Using the recipe above, compute

$$
\operatorname{Hom}_{\mathrm{Ho}\left(\mathrm{Ch}_{\geq 0}(\mathbb{Z})\right)}(\mathbb{Z} / p[1], \mathbb{Z})
$$

where $\mathbb{Z} / p[1]$ denotes the chain complex with \mathbb{Z} / p placed in degree 1 and zeros elsewhere.

References

[1] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73-126.
[2] P. G. Goerss and J. F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999.
[3] P. Goerss and K. Schemmerhorn, Model categories and simplicial methods, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 3-49.
[4] D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967.

Date: 11 February 2016.
[5] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.

