Rational Homotopy Theory - Lecture 3

BENJAMIN ANTIEAU

1. SOME CLASSICAL RESULTS

Theorem 1.1 (Whitehead). Suppose that X and Y are based, connected CW complezxes. If
f: X =Y is a weak homotopy equivalence, then f is a homotopy equivalence.

The idea is to construct a homotopy inverse g to f inductively on the n-skeleta of Y.

Theorem 1.2 (Hurewicz). If X is (n — 1)-connected for some n > 2, then H;(X,Z) = 0 for
1<i<n-—1andm,(X) =2 H,(X,Z). Similarly, if (X,A) is (n — 1)-connected for n > 2
and A is simply connected and non-empty, then H;(X,A,Z) =0 for 1 <i<n-—1 and
(X, A) 2 H, (X, A, Z).

Corollary 1.3. If f : X — Y is a map between simply-connected CW complexes such that
H.(X,Z) 2 H.(Y,Z), then f is a homotopy equivalence.

Proof. One can assume that f includes X as a subcomplex of Y. Then, the hypotheses imply
that H, (Y, X,Z) = 0, and hence all the relative homotopy groups of the pair vanish. O

Remark 1.4. The corollary is false if X or Y is not simply connected. For example, let
Z be the homology 3-sphere constructed by Poincaré. It is an orientable 3-manifold with
H,(Z,Z) 2 Zifn=0,3 and H,(Z,Z) = 0 otherwise. Thus, it has the same homology as the
3-sphere. In fact, Z = SO(3)/As, where the alternating group embeds in SO(3) as the group
of orientation-preserving isometries that preserve the regular icosahedron. The fundamental
group of Z is an extension of A by Z/2, isomorphic to the binary icosahedral group. If we
let X be the complement of a point in Z, then it follows that the integral homology of X is
that of a point, while the fundamental group of X is the binary icosahedral group again,
and hence non-zero. In particular, X is not contractible, even weakly.

A map f: X — Y is a homology equivalence if the induced map H,(f) : H.(X,Z) —
H.(Y,Z) is an isomorphism.

There are a couple consequences of these facts. First is that every topological space is
weakly homotopy equivalent to a CW complex. The second is that on 1-connected CW
complexes, the three classes

(1) homotopy equivalences,
(2) weak homotopy equivalences, and
(3) homology equivalences

all agree.

2. LOCALIZATION OF CATEGORIES

In the definition below, we need the functor category between two categories. If M and
N are categories, then Fun(M, N) is the category whose objects are functors from M to N
and whose morphisms are natural transformations. This expresses the fact that there is a
2-categorical enhancement of the category of (small) categories.

Definition 2.1. Let M be a category and W a class of morphisms in M. The localization
of M by W, if it exists, is a category M[W ~1] with a functor L : M — M[W 1] such that

(1) L(w) is an isomorphism for every w € W,
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(2) every functor F' : M — N having the property that F(w) is an isomorphism
for all w € W factors uniquely through L in the sense that there is a functor
G : M[W~1] - N and a natural isomorphism of functors G o L ~ F, and

(3) for any category N, the functor Fun(M[W =], N) — Fun(M, N) induced by compo-
sition with L : M — M[W ~1] is fully faithful.

The localization of M by W, if it exists, is unique up to categorical equivalence.

Let Ho(Spaces) be the localization of the category of topological spaces at the weak local
equivalences, and let Ho(CW) be the localization of the category of CW complexes (spaces
which admit at least one CW structure) at the weak homotopy equivalences. The facts
from the previous section imply that the the natural map Ho(CW) — Ho(Spaces) is an
equivalence of categories. We will call Ho(CW) the homotopy category of spaces.

We can also consider Ho(m>2CW), the homotopy category obtained by localizing the
category of simply-connected CW complexes at the weak homotopy equivalences. The
Hurewicz theorem implies that Ho(7>2CW) is equivalent to the localization of 752CW at
the homology equivalences.

3. RATIONAL HOMOTOPY THEORY: THE OUTLINE

The fundamental category of study in rational homotopy theory is 7>2Spaces, the full
subcategory of Spaces consisting of the 1-connected spaces. A rational homotopy equiv-
alence is a map f: X — Y of 1-connected spaces such that

f* : 7T7L(X) Xz Q — 7T7L(Y) Xz Q

is an isomorphism for all n > 2. We will be interested in Hog(7>2Spaces) o~ Hog(7>2CW).
Rational homotopy theory is the study of spaces up to rational homotopy equivalences,
or in other words of the category Hogq(7>25paces). A rational space (or a Q-local space)
is a 1-connected space X such that m,(X) is a rational vector space for n > 2.
The goals of rational homotopy theory are

(1) to find a closest rational approximation X — LgX to a given 1-connected space X,
(2) to compute the rational homotopy type of a 1-connected space via algebraic invariants.

This is entirely similar to rationalization of chain complexes of abelian groups. In that case,
given a chain complex C, of abelian groups, there is a new chain complex LgC, together with
a map Co — LqC, such that LgC, is a rational space and the map H,(Co) ® Q — H..(LgCl)
is an isomorphism. Of course, in this case the functor Lq is simply obtained by tensoring
with Q. We search therefore for a non-abelian analogue of the localization process.

Motivated by the observation that there is an adjunction ®z : Modz = Modg : U and
the localization M — LgM of an abelian group is the unit map of the adjunction, we hope
to find an adjunction

Lq : Ho(7>2Spaces) = Hogq(7>2Spaces) : U

such that the right adjoint U is fully faithful and the unit X — ULgX of the adjunction is
precisely the localization morphism.

4. RATIONAL HOMOTOPY THEORY: THE MAIN RESULTS

The first structure results are due to Quillen. Let DGLgq be the category of rational dg
Lie algebras, and let 7>1DGLq be the category of dg Lie algebras L, such that H, (L) =0
for n < 0. Recall that a dg Lie algebra is a chain complex L, equipped with a map of chain
complexes [,] : Lo ®q Le — Lo satisfying

(1) [z,y] + (=1)P]y,z] =0 for x € L, and y € Ly,
(2) (=1, [y, 2l] + (=1)*[y, [z, 2]] + (=1)"[2, [, y]] for 2z € L;, and
(3) dlz,y] = [dz,y] + (=1)"[x, dy].
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Note that the last axiom follows from the fact that the bracket map is a map of chain
complexes. We let Ho(7>1DGLg) be the localization at the quasi-isomorphisms, i.e., mor-
phisms f : L, — M, of rational dg Lie algebras such that H,(f) : H.(L) — H.(M) is an
isomorphism.

Similarly, let CDGCq be the category of rational cocommutative dg coalgebras, and let
7>2CDGCq be the category of cocommutative dg coalgebras C such that H,(C) = 0 for
n < 1. Let Ho(1>2CDGCgq) be the localization at the quasi-isomorphisms. Recall that a
cocommutative coalgebra object in Chgq, the symmetric monoidal category of chain complexes
over @ is just a commutative algebra object in the opposite symmetric monoidal category
Chgy’. The reader can work out the axioms from this fact.

Theorem 4.1 (Quillen [8]). There are equivalences of categories
Hogq(7m>2Spaces) ~ Ho(7>1DGLg) ~ Ho(7>2CDGCly).

Lurie has proven moreover that these categories are equivalent to the homotopy category
of 1-connected formal moduli problems over Q.

Quillen’s theorem is nicely augmented by Sullivan’s, which gives computational strength
to rational homotopy theory. Let 722CDGAgq be the category of commutative cochain
dg algebras A® over Q such that H*(4) = 0 for n < 0 and n = 1, and H°(A) = Q. Let
Ho(722CDGAq) be the localization at the quasi-isomorphisms.

Theorem 4.2 (Sullivan, Bousfield-Gugenheim [3]). There is an equivalence
HO%(TZQSP&CQS) ~ Ho™(r22CDCAg),

where HO%(TZQSP&CGS) C Hogq(1>2Spaces) is the full subcategory of homotopy types of 1-
connected spaces X such that H, (X, Q) is finite dimensional for all n, and Ho™ (722CDGAq)
is the full subcategory of Ho(t22CDGAq) of commutative dgas A® over Q such that H*(A)
1s finite dimensional for all n.

The equivalence in Sullivan’s theory is a generalization of the functor that assigns to
a manifold M the de Rham complex Ay (M). The other equivalences are somewhat less
transparent at the moment.

Using the diagonal map X — X X X, one obtains a map C,(X, Q) — C.(X x X, Q). The
Eilenberg-Zilber theorem gives a canonical quasi-isomorphism C, (X x X, Q) — C.(X, Q) ®q
C.(X,Q), and hence we get a map C.(X,Q) — C.(X,Q) ®q C.(X,Q). It turns out that
this is a comultiplication on C, (X, Q), which makes it into a cocommutative differential
graded Q-coalgebra.

Given a l-connected space X, the loopspace 2X is a connected space which has a
homotopy-associative multiplication given by composition of loops. Thus, the homotopy
groups

T (QX) ®z Q
gain a product structure. In fact, this makes 7.(QX) ®z Q a graded Lie algebra. An
enrichment of this gives the equivalence in Quillen’s theorem.
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