313 - HW6

Due in class 5 December 2014

Please give a full definition or statement of any italicized terms appearing below.

1. Prove that $\sqrt{18}$ is irrational both directly and using the rational zeros theorem.
2. Use the completeness axiom to show that there is a real solution to $x^{2}-18=0$.
3. Prove that if $r<s$ are rational numbers there exists an irrational number x such that $r<x<s$.
4. Let x_{n} be a sequence of real numbers that converges to x. Suppose that $x_{n} \in[a, b]$ for all n. Prove that $x \in[a, b]$.
5. Prove that $\lim _{n \rightarrow \infty} n^{1 / n}=1$.
6. Prove that $\lim _{n \rightarrow \infty} \sqrt{n} x^{n}=0$ for $|x|<1$.
7. Prove that any convergent sequence is Cauchy.
8. Prove that bounded monotonic sequences converge.
9. Prove that every sequence has a monotonic subsequence.
10. Prove the Bolzano-Weierstrass theorem.
11. Use the comparison test and geometric series to prove that the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $\lim \sup \left|a_{n}\right|^{1 / n}<1$.
12. Prove that \mathbb{R} is uncountable.
13. Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous.
14. Show that if $f_{n}:[a, b] \rightarrow \mathbb{R}$ is a sequence of continuous functions converging uniformly to f, then f is continuous.
15. Give a counterexample to the previous problem when the sequence only converges pointwise.
16. Prove that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Darboux integrable.
17. Use the mean value theorem to prove the first fundamental theorem of calculus.
