Chapter 9 4 Trees 9.1 # Introduction 447

12. Give an examptle similar to Example 9.1.5 of a tree that is used 28. Construct an optimaj Huffman code for the set of letters in the
to specify hierarchical relationships. : table.

13. Give anexample different from Example 9.1.7 of a hierarchical
definition tree. Letter Frequency Letter Frequerncy

Decode each bit string using the Huffinan code given.

a 2 d 8
3 e 13
¢ 5 f 21

29. Professor Ter A. Byte needs to store text made up of the charac-

e 9.9 '@ %475 The final : ERT: ters A, B, C, D, E, which occur with the following frequencies:
The tree that replaces tree of Figure 9.1.13 with Another optimal
the vertex labeled 20 each frequency replaced Huffman tree for
in Figure 9.1.13. by a character having that Example 9.1.10. Character Frequency | Character Frequency
frequency. . A 6 D 2
B 2 E 8
C 3
Notice that the Huffman tree for Table 9.1.2 is not unique. When 12 is replaced 4, 011000010 15. 01110100110
by ‘.‘5’ 7,‘because there are two V‘cmces labeled 12, there is a choice. In Figure 9.1.13, we 16. 0111100100£110 i7. 1110011101001111 Professor Byte suggests using the variabie-length codes
arbitrarily chose one of the vertices labeled 12. If we choose the other vertex labeled 12, . .
we will obtain the tree of Figure 9.1.16. Bither of the Huffman trees gives an optimal Encode each word using the preceding Huffman code.
code; that is, either will encode text having the frequencies of Table 9.1.2 in exactly the i%, DEN 19. NEED Character Code
same (optimal) space. A 20. LEADEN 41, PENNED A 1
22. What factors in addition to the amount of memeory used should B 00
be considered when choosing a code, such as ASCII or a C 01
Huffman code, to represent characters in a computer? D 10
. . . . : 23. What techniques in addition to the use of Huffman codes might B 0
i. Define free tree. 4, E.xplciu.n how files and folders in a computer system are orga- be used to save memory when storing text?
7. Define rooted tree. nized info a rooted tree structure. 24, Construct an optimal Huffman code for the set of Tetters in the which, he argues, store the text in less space than that used by
What is 2 Huffman code? table.) an optimal Huffman cede. Is the professor correct? Explain.

|l % What is the level of a vertex in a rooted tree? . .
: 30, Show that any tree with two or more vertices has a vertex of

#. Explain how to construct an optimal Huffman code.

4. What is the height of a rooted tree? Letter Frequency Letter Frequency degree 1.

31. Show that a tree is a planar graph.

% Give an example of a hierarchical definition tree. o 5 & 11
8 6 20 %2, Show that a tree is a bipartite graph.
¥ 6 33. Show that the vertices of a tree can be colored with two colors

so that each edge is incident on vertices of different colors.

25. Construct an optimial Huffman code for the set of letters in the The eccentricity of @ vertex v in a tree T is the maximum length of

#. For which values of # is the #-cube a tree? table. a simple path that begins af v.
2, - Findthe level of each vertex in the iree shown. Letter Frequency Letter Frequency 34. Tind the ecceniricity of each vertex in the tree of Figure 9.1.5.
I 7.5 cC 5.0 A vertex v in a rree T is a center for T if the eccentricity of v is
U 20.0 H 10.0 minimal,
B 23 M 5 3%, Find the center(s) of the tree of Figure 9.1.5.
S 275 P 25.0 .
#36. Show that a tree has either one or two centers.

26, Use the code developed in Exercise 25 to encode the follow- *37. Show that if a tree has two centers they are adjacent.

ing words (which have frequencies consistent with the table of 3%, Define the radius r of a tree using the concepts of eccentricity
i) Exercise 25): and center. The diameter d of any graph was defined before
9. Find the height of the tree of Exercise 8. * Exercise 70, Section 8.2. Is it always true, according to your

BUS, Cups, MUSH, PUSS, SiP, PUSH,
CUSS, HIP, PUP, PUPS, HIPS.

5. For which values of m and n is the complete bipartite graph 10, Draw the tree T of Figure 9.1.5 as a rooted tree with a as root. definition of radius, that 2r = d? Explain.

on m and n vertices a tree? What is the height of the resulting tree? 39, Givean example of a tree T that does not satisfy the following
Construct two optimal Huffman coding trees for the table of property: If v and w are vertices in T, there is a unique path

Exercise 24 of different heights. from v to w.

6. For which values of n is the complete graph on » vertices a ¥3. Draw the tree T" of Figure 9.1.5 as a rooted tree with & as root.
tree? ‘What is the height of the resulting tree?

Problem-Solving Corner: Trees 453

452 cChapter2 ¢ Trees

a?f it % b

i. Define parent in a rooted tree. %, Define internal vertex in a rooted tree.

i. Define descendant in a rooted tree. &. Define acyclic graph.

%. Define sibling in a rooted tree. . Give alternative characterizations of trees.

4. Define terminal vertex in a rooted tree.

AR

Answer the questions in Exercises 1-6 for the tree in Figure 9.2.1. 21. What can you say about a vertex in a rooted (ree that has no

i. Find the parent of Poseidon. descendants?

2. Find the ancestors of Eros. In Exercises 22-26, draw a graph having the given praperties or
3. Find the children of Uranus. explain why no such graph exists.
4. Find the descendants of Zeus. Six edges; eight vertices
5. Tind the siblings of Ares. 23. Acyclic; four edges, six vertices
6. Draw the subtree rooted at Aphrodite. 24. Tree; all vertices of degree 2
Answer the questions in Exercises 7-15 for the following tree. &5 Tree; six vertices having degrees 1,1,1,1,3,3

a 26. Tree; four internal vertices; six terminal vertices
Z7. Explain why if we allow cycles of length 0, a graph consisting
of a single vertex and no edges is not acyclic.

28. Explain why if we allow cycles to repeat edges, a graph con-
sisting of a single edge and two vertices is not acyclic.

29. The connected graph shown has a unique simple path from any

vertex to any other vertex, but it is not a tree, Explain.

7. Find the parents of ¢ and of A. 2

8. Find the ancestors of ¢ and of ;. Nd
Find the children of and of e.
t. Find the descendants of ¢ and of e.
11. Find the siblings of f and of A.

12. Find the terminal vertices. 13. Find the internal vertices.

A forest is a simple graph with no cycles.

¥ Bxplain why a forest is a union of trees.

31. If aforest F consists of m (rees and has n vertices, how many
edges does F have?
16. Answer the questions in Exercises 7—15 for the following tree. 2.1 P = (w

14. Draw the subtree rooted at j, 15, Draw the subtree rooted at e.

ytp) and Py = (wg, ..., wy,) are distinet
simple paths from & to b in a simple graph G, is

(UO, sees Up = wmaWM7la"'!W1aw0)

necessarily 4 cycle? Explain. (This exercise is relevant to the
last paragraph of the proof of Theorem 9.2.3.)

o« » . L] L]
m n o p _ ! 3% Show that a graph G with n vertices and fewer than n — | edges
r is not connected.
¢7. What can you say about two vertices in arooted tree thathave %34. Prove that T is a tree if and only if 7 is connected and when
the same parent? an edge is added between any two vertices, exactly one cycle
18. What can you say about two vertices in a rooted tree that have is created.
the same ancestors? 35. Show that if is a tree, every vertex of degree 2 or more is
19. What can you say about a vertex in a rooted tree ihat has no an articulation point. (“Articulation point” is defined before
ancestors? Exercise 55, Section 8.2.)
20. What can you say about two vertices in a rooted tree that have 6. Give an example to show that the converse df Exercise 35 is

a descendant in common? fakse, even if G is assumed to be connected.

458

Chapter 9 4 Trees

B)

SREL = The tree generated b - 4
(Algorithm 9.3.10) 1 - aec bY the backiracking algorithm
problern,) in the search for 4 solution (o the foyr

queens

459

9.3 % Spanning Trees

Algorithm 9.3.10 generates a solution o the four-queens problem. Many constructions
have been given to generate solutions fo the n-queens problem for all n > 4 (see, e.g.,
[Johnsonbaugh]).

Backtracking or depth-first search is especially attractive in a problem such as that
in Example 9.3.9, where all that is desired is one selution. Since a solution, if one exists,
is found at a terminal vertex, by moving to the terminal vertices as rapidly as possible,
in general we can avoid generating some unnecessary vertices.

example, either can be used to determine whether a graph is conrnected: If we can visit
every vertex in a graph from an initial vertex, the graph is connected; otherwise, it is
not connected (see Exercises 30 and 31). Depth-first search can be used as a searching
algorithm, in which case it is called backtracking. In Algorithm 9.3.10, backtracking
is used to search for solutions to the 4-queens problem. Backiracking can also be used
to search for Hamiltonian cycles in a graph, to generate permutations, to solve Sudoku
puzzles, and to determine whether two graphs are isomorphic,

4, Explain how depth-first search works.

1. What is a spanning tree?

%, What is backtracking?

%. State a necessary and sufficient condition for a graph to have a
spanning tree.

%, Explain how breadth-first search works.

}w
1

i, Use breadth-first search (Algorithm 9.3.6) with the vertex 8. a
ordering fgfedcha to find a spanning tree for graph G of
Figure 9.3.1. o
2. Use breadth-first search (Algorithm 9.2.6) with the vertex i S
ordering Afdbgeca to find a spanning tree for graph G of j ’
Figure 9.3.1. ; 4
3. Use breadth-first search (Algorithm 9.3.6) with the vertex
ordering chbgadfe to find a spanning tree for graph G of ' N~
Figure 9.3.1, o
4. Use depth-first search {Algorithm 9.3.7) with the vertex order-
ing hgfedchato find aspanning tree for graph G of Figure 9.3.1. 9,

5. Use depth-first search (Algorithm 9.3.7) with the vertex order-
ing kfdbgecato find a spanning tree for graph G of Figure 9.3.1.

6. Use depth-first search (Algorithm 9.3.7) with the vertex order-
ing dhchefag to find a spanning tree for graph & of Figure 9.3.1.

%

In Exercises 7-9, find a spanning tree for each graph.

i a b C d
< AT i3, Show that there is no solution to the two-queens or the three-
NN Qucens problem.
A // 11. Show all solutions to the four-queens problem.
i j k ! 12. Find 4 solution to the five-queens and six-queens problems.

460

1A

14.
15.

Chapter 9 < Trees

Show all solutions to the five-queens problem in which one
queen is in the first column, second row.

How many solutions are there to the five-queens problem?

Show all solutions to the six-queens problem in which one
queen is in row 2, column 1, and a second queen is in row 4,

its columns indexed by the edges of G. The i jth entry is I if edge §
is in the ith fundamental cycle and O otherwise. For example, the
Jundamenial cycle matrix of the graph G of Figure 9.3.1 relative
to the spanning tree shown in Figure 9.3.1 is

€6 €11 €10 €2 €] €3 €4

36. Write an algorithm that uses the output of your algorithm in

Exercise 35 to print each vertex and its parent.

7. Write a backtracking algorithm that outputs all permutations

of 1,2,...,n.

. Write a backtracking algorithm that outputs all subsets of

41.

9.4 < Minimal Spanning Trees 461
As shown, in each puzzle some numbers are given. Solve the

preceding Sudoku puzzle.

5. Write a backtracking algorithm that solves an arbitrary Sudoku

puzzle.

The minimum-queens problem asks for the minimum number

column 2.

True or false? If G is a connected graph and T is a spanning
tree for G, there is an ordering of the vertices of G such that
Algorithm 9.3.6 produces T as a spanning iree. If true, prove
it; otherwise, give a counterexample.

i'7. Tme or false? If & is a connected graph and T is a spanning
tree for G, there is an ordering of the vertices of G such that
Algorithm 9.3.7 produces T as a spanning tree. If true, prove
it; otherwise, give a counterexample.

. Show, by an example, that Algorithm 9.3.6 can produce iden-
tical spanning trees for a connected graph G from two distinct
vertex orderings of G.

. Show, by an example, that Algorithm 9.3.7 can produce iden-
tical spanning trees for a connected graph G from two distinet
vertex orderings of G.

3. Prove that Algorithm 9.3.6 is correct.
. Prove that Algorithm 9.3.7 is correct.
Under what conditions is an edge in a connected graph G con-
tained in every spanning tree of G?

3% Let T and T' be two spamming trees of a connected graph G.
Suppose that an edge x is in T but not in 7’. Show that there
is an edge y in 77 but not in T such that (7 — {x}) U {v} and
(T" — {yH U {x} are spanning trees of G.

Write an algorithm based on breadth-first search that finds the
minimum length of each path in an unweighted graph from a
fixed vertex v to all other vertices.

Let G be a weighted graph in which the weight of each edge
is a positive integer. Let G be the graph obtained from G by
replacing each edge

Show that Dijkstra’s algorithm for finding the minirmum length
of each path in the weighted graph G from a fixed vertex v to
all other vertices (Algorithm 8.4.1} and performing a breadth-
first search in the unweighted graph (' starting with vertex v
are, in effect, the same process.

25, Let T be a spanning tree for a graph G. Show that if an edge
in 7, but not in T, is added te T, a unique cycle is produced.

A cycle as described in Exercise 26 is called a fundamental cycle.
The fundamental cycle matrix of a graph G has its rows indexed by
the fundamental cycles of G relative to a spanning tree T for G and

(abdca)} 0 0 0 011
(efdbace) 1 0 0 1 1
(ageca) O 1 ¢ 000
(aga} 0 0 1 0 0
(abga) 0O 0 0 1 0 0

Find the fundamental cycle matrix of each.gmph. The spanning
tree {o be used is drawn in black.

€1

eg

f

33, Write a breadth-first search algorithm to test whether a graph

is connected.

. Write a depth-first search algorithm to test whether a graph is

connected.

. Write a depth-first search algorithm that finds all solutions to

the four-queens problem.

3. Modify Algorithm 9.3.6 so that it tracks the parent p of a vertex

¢ (p is the parent of ¢ if ¢ was visited from p).

34, Write an algorithm that uses the output of your algorithm in

Exercise 33 to print each vertex and its parent.

. Modify Algorithm 9.3.7 so that it tracks the parent p of a vertex

¢ (p s the parent of ¢ if ¢ was visited from p).

{1,2,...,n}.

. Sudoku is a puzzle in which the goalis to fill in a 9 x 9 grid so
that each of the numbers 1 through 9 appears in each column,
each row, and each 3 x 3 box delineated by the heavy lines:

of queens that can attack all of the squares of ann » 5 board (i.e.,
the minimum number of queens such that each row, column,
and diagonal contains at least one queen). Write a backtrack-
ing algorithm that determines whether & queens can attack all
squares of an # x » board.

42, The subset-sum problemis: Givenaset {¢1, ..., ¢,} of positive

integers and a positive integer M, find all subsets {c,, ..., e, } |
of {c1, ..., ¢y} satisfying '

2 | ic;ﬂ =M.
i=1

Write a backtracking algorithm to sclve the subsef-sum
problem.

The weighted graph G of Figure 9.4.1 shows six cities and the costs of building roads
between certain pairs of cities. We want to build the lowest-cost road system that will
connect the six cities. The solution can be represented by a subgraph. This subgraph
must be a spanning tree since it must contain all the vertices (so that each city is in the
road system), it must be connected (so that any city can be reached from any other), and
it must have a unique simple path between each pair of vertices (since a graph containing
multiple simple paths between a vertex pair could not represent a minimum-cost system).
Thus what is needed is a spanning tree the sum of whose weights is a minimurn, Such a
tree is called a minimal spanning tree.

= 1 Six cities 1-6
and the costs of building roads
« between certain pairs of them.

Let G be a weighted graph. A minimal spanning tree of G is a spanning tree of G wit
minimum weight.

Chapter 9 2 Trees

‘ 4 A graph that shows
that selectmg an edge having
minimum weight incident on the
most recently added vertex does
not necessarily yield a shortest
path. Starting at @, we obtain

(a, ¢, 2), but the shortest path from
atozis(a,b, 7).

Theorem 9.4.5

15 and 16, vertex 5 is added to the minimal spanning tree and edge (1, 5) is added
to E.

The next time we execute the for loop in lines 7-14, the edges with one vertex in
the tree and one vertex not in the tree are

The edge (5, 6) with minimum weight is selected. At lines 15 and 16, vertex 6 is added
to the minimal spanning tree and edge (5, 6) is added to E.

‘The last time we execute the for foop in lines 7-14, the edges with one vertex in
the tree and one vertex not in the tree are

4
5

The edge (1, 2) with minimum weight is selected. At lines 15 and 16, vertex 2 is added
to the minimal spanning tree and edge (1, 2) is added to E. The minimal spanning iree
constructed is shown in Figure 9.4.3. &

Prim’s Algorithm furnishes an example of a greedy algorithm. A greedy algo-
rithm is an algorithm that optimizes the choice at each iteration. The principle can
be summarized as “doing the best locally.” In Prim’s Algorithm, since we want a
minimal spanning tree, at each iteration we simply add an available edge with mini-
mum weight.

Optimizing at each iteration does not necessarily give an optimal solution to
the original problem. We will show shortly (Theorem 9.4. 5) that Prim’s Algorithm is
correct—we do obtain a minimal spanning tree. As an example of a greedy algonthm
that does not lead to an optimal solution, consider a “shortest- -path algorithm” in which
at each step we select an available edge having minimum weight incident on the most
recently added vertex. If we apply this algorithm to the weighted graph of Figure 9.4.4
to find a shortest path from a to z, we would select the edge (a, c) and then the edge
(¢, z}. Unfortunately, this is not the shortest path from a to z.

We next show that Prim’s Algorithm is correct.

an s Aigortthm (Algonthm 9 4 3) is correct that is at Ihe termmcttwn of Algg__"_.'
.-'_'rtthm 9.4. 3, T isq mtmmal spanmng tree i : _-

5-__Praof We let T denote the graph constmcted by Algorlthm 9 4 3 after'the lth:§

-iteration of the for loop, lines: 547 More prec1sely, the edge set of Tiis the. set E.
; _construeted after the zth 1teratlon of the fot: 1oop, hnes 5—1 7 and the vertex set; of T- '
:j_'1s the set of vertices: oni-which: the ‘edges in E dre mc1dent We let Ty be the graph
"~ constructed by Algorlthm 9.4.3 _]HSt before the for Ioop at Ime 5is entered for the ﬁrst: "
._trme Ty consrsts of the' smgle Vertex s and 1no edges Subsequently in thls proof we
o suppress the vertex set and: refer to a'graph. by specifying its edge'set.

By constructlon ‘at the términation. of AIgor1thm_9 4.3, the resultmg graph

' Tn {yisa connected aeyohc sub graph of the grven 'raph 7 con

' :of G hence T,, iisa spannmg tree of G

9.4 4 Minimal Spanning Trees 465

We use induction to show that foralli =0, ..., n—1,T; is contained in a mini-
- rnal spanmng tree It then foltows that at tenmnatron Tn | is aminimal spanning tree.
' CIEY = O b consists of a single vertex. In thlS case Tg is contamed in every

j. mlmmal spanmng tree. We have venﬁed the Basis Step

Next assumé that 7; is contained in' a nummal Spannmg tree T’ Let V be the :

Csete of vertlces in'7;. Algorzthm 9:4.3 selects anedge (f Js k) of minirurn werght where;
t'] eV and k ¢ V,and adds 1t to T; to produce Tz+1 If(], kY is i T ‘théen Feis
i contamed in the minimal spanmng tree T/ 16 (G kyis notin T7; T'U {(_], k)} contains
.-:a cycle C: Choose an edge (x y) 1n C drfferent from (], k) w1th x € v and y ¢ V :_

 Then-. .

w(x y) >w(1,k) (941)_3

-.'Because of (9 4 1) the graph T”.; [T’ U {(], k)}] = {(x y)} has werght less than-_'-
Cor equal to the welght of T Since T is'a spanning. tree,. T" is a minimal ; spanning

~tree. Sitice T,+1 rs contamed m T” the Inductwe Step has been venﬁed The proof 1s.:
.'-'complete : SR : i

Our version of Prim’s Algorithm examines &(n*) edges in the worst case (see
Exercise 6) to find a minimal spanning tree for a graph having n vertices. It is possible
(see Exercise 8) to implement Prim’s Algorithm so that only ®(n”) edges are examined
in the worst case. Since K, has ®(n?) edges, the latter version is optimal.

1. What is a minimal spanning tree?

3. What is a greedy algorithm?

%. Explain how Prim’s Algorithm finds a minimal spanning iree.

In Exercises 1-5, find the minimal spanning tree given by Algo- 3

rithm 9.4.3 for each graph.

12

3 \3
-1 ? 2\ 4
47 : 3
5 5
T 4 2 1 3 6
! ; 6
s .
15 9
. 6 4
14
s 01 2 12
7 2 8 10 9 10

Chapter 2 % Trees

12

-~ o k= th

15 5 16

6. Show that Algorithm 9.4.3 examines © () edges in the worst
case.

Exercises 7-9 refer to an alternate version of Prim’s Algorithm
(Algorithin 9.4.6).

Algorithm 9.4.6

Alternate Version of Prim’s Algorithm

This algorithm finds a minimal spanning tree in a connected,
weighted graph G. At each step, some vertices have temporary
Iabels and some have permanent labels. The label of vertex i is
denoted L;.

Input: A connected, weighted graph with vertices 1, ..., n
and start vertex s. If (i,) is an edge, w(i, j} is equal
to the weight of (4, j); if (7, /) is not an edge, w(i, j)
is equal to oo (a value greater than any actual weight}.
Output: A minimal spanning tree T

prim_alternate(w, n, 5} {
let T be the graph with vertex s and no edges
for j=T1ton{
L; =w(s, j) {/ these labels are temporary
back(jy=s
}
Ly=0
make L; permanent
while (temporary labels remain) {
choose the smallest temporary label L;
make L; permanent
add edge (i, back(i}) to T
add vertex i to T
for each temporary label Ly
Tow(, ky < L {
Ly =w(i k)
back(ky =i

)

return T

7. Show how Algorithm 9.4.6 finds a minimal spanning tree for
the graphs of Bxercises 1-5.

8. Show that Algorithm 9.4.6 examines ©(n?) edges in the worst
case.

i,

11.

12,

. Prove that Algorithm 9.4.6 is correct; that is, af the termination”

of Algorithm 9.4.6, T is a minimal spanning tree.

Let & be a connected, weighted graph, let v be a vertex in G,
and let e be an edge of minimwm weight incident on v. Show
that e is contained in some minimal spanning tree.

Let G be a connected, weighted graph and let v be a vertex
in G. Suppose that the weights of the edges incident on v are
distinct. Let e be the edge of minimum weight incident on v.
Must e be contained in every minimal spanning tree?

Show that any algorithm that finds a minimal spanning tree in
K, when all the weights are the same, must examine every
edge in K.

. Show that if all weights in a connected graph G are distinct,

(has a unigue minimal spanning tree.

In Exercises 1416, decide if the statement is true or fulse. If the
statement is trie, prove it; otherwise, give a counterexample. In
each exercise, G is a connected, weighted graph.

15.

i,

17.

+18.

19.

. If all the weights in G are distinct, distinct spanning trees of

G have distinct weights.

If e is an edge in G whose weight is less than the weight of
every other edge, ¢ is in every minimal spanning tree of G.

If T is & minimal spanning tree of G, there is a labeling of the
vertices of G so that Algorithm 9.4.3 produces T.

Let (; be a connected, weighted graph. Show that if, as long as
possible, we remove an edge from G having maximum weight
whose removal does not disconnect G, the result is a minimal
spanning tree for G.

Write an ajgorithm that finds a maximal spanning tree in a
connected, weighted graph.

Prove that your algorithm in Exercise 18 is correct.

Kruskal's Algorithm finds a minimal spanning tree in a connected,
weighted graph G having n vertices as follows. The graph T ini-
tially consists of the vertices of G and no edges. At each ireration,
we add an edge e to T having minimum weight that does not com-
plete a cycle in T. When T has n — | edges, we stop.

28,

2L

22,

Formally state Kruskal’s Algorithm.
Show how Kruskal’s Algorithm finds minimal spanning trees
for the graphs of Exercises 1-5.

Show that Kruskal’s Algorithm is correct; that is, at the ter-
mination of Kruskal’s Algorithm, T is a minimal spanning
iree,

i Let V be a set of n vertices and let s be a “dissimilar-

ity function” on V x V (see Example 8.1.7). Let G be the
compiete, weighted graph having vertices V and weights
w(v;, v)) =5, v;). Medify Kruskal’s Algorithm so that it
groups data into classes. This modification is known as the
method of nearest neighbors (see [Gosel).

Exercises 24-30 refer to the following situation. Suppose that we
have stamps of various denomtinations and that we want to choose
the minimum number of stamps to make a given amount of postage.
Consider a greedy algorithm that selects stamps by choosing as

many of the largest denomination as possible, then as many of the
second-largest denomination as possible, and so on.

24.

*25,

26.

*28.

Show that if the available denominations are 1, 8, and 10 cents,
the algorithm does not always produce the fewest number of
stamps to make a given amount of postage.

Show that if the available denominations are 1, 5, and 25 cents,
the algorithm produces the fewest number of stamps to make
any given amount of postage.

Find positive integers a; and a; such that a; > 2a; > 1, aa
does not divide a;, and the algorithm, with available denomi-
nations 1, a;, a2, does not always produce the fewest number
of stamps to make a given amount of postage.

#7. Find positive integers @i and az such that gy > 242 > 1, ap

does not divide a;, and the algorithm, with available denom-
inations 1, a;, az, produces the fewest number of stamps to
make any given amount of postage. Prove that your values do
give an optimal solution.

Suppose that the available denominations are
=g <ay <+ <a,.
Show, by giving counterexamples, that the condition
a; = 2ai-q - di-2, 3gizn,

is neither necessary nor sufficient for the greedy algorithm to
be optimal for ail amounts of postage.

30.

31

9.5 % Binary Trees 467

7. Suppose that the available denominations are

l=a <a < <ay.
Prove that if the greedy algorithm is optimal for all amounts of
postage less than g, _| + &, then it is optimal for all amounts
of postage.

Show that the bound ap—1 + a,; in Exercise 29 cannot be
lowered.

What is wrong with the following “proof” that the greedy
algorithm is optimal for all amounts of postage for the denom-
inations 1, 5, and 67

We will prove that for all i > 1, the greedy algorithm
is optimal for all amounts of postage n < 6i. The Basis Step
is 7 = 1, which is true by inspection.

For the Inductive Step, assume that the greedy algorithm
is optimal for all amounts of postage » < 6/. We must show
that the greedy algorithm is optimal for all amounts of postage
r < 6(i + 1). We may assume that # > 6. Nown — 6 < 61,
so by the inductive assumption, the greedy algorithm is opti-
mal for n — 6. Suppose that the greedy algorithm chooses k
stamps for # — 6. In determining the postage for the amount
n, the greedy algorithm will first choose a 6-cent stamp and
then stamps for n — 6 for a total of & 4 1 stamps These & + 1
stamps must be optimal or otherwise » — 6 would use less than
k stamps. The Inductive Step is complete.

M
3%

a
Binary trees are among the most important special types of rooted trees. Every vertex
;_ c in a binary tree has at most two children (see Figure 9.5.1). Moreover, each child iy
designated as either a left child or a right child. When a binary tree is drawn, a left
L /-e child is drawn to the left and a right child is drawn to the right. The formal definition
follows.
g

A binary tree is a rooted tree in which each vertex has either no children, one child, or
two children. If a vertex has one child, that child is designated as either a left child or a

right child (but not both). If a vertex has two children, one child is designated a left child
and the other child is designated a right child.

In the binary tree of Figure 9.5.1, vertex & is the left child of vertex a and vertex ¢ is the
right child of vertex a. Vertex o is the right child of vertex b; vertex & has no left child.

Vertex e is the left child of vertex ¢; vertex ¢ has no right child. 4

A tree that defines a Huffman code is a binary tree. For example, in the Huffman coding
tree of Figure 9.1.10, moving from a vertex to a left child corresponds to using the bit 1,

and moving from a vertex to a right child corresponds to using the bit 0. 4

Chapter 9 & Trees

Binary search trees are useful for locating data. That is, given a data item D, we
can easily determine if D is in a binary search tree and, if it is present, where it is located.
To determine if a data item D is in a binary search tree, we would begin at the root. We
would then repeatedly compare D with the data item at the corrent vertex. If D is equal
to the data item at the current vertex, we have found D, so we stop. If D is less than the
data item at the current vertex v, we move to v’s left child and repeat this process. I[f D
is greater than the data item at the current vertex v, we move to v’s right child and repeat
this process. If at any point the child to move to is missing, we conclude that D is not in
the tree. (Exercise 6 asks for a formal statement of this process.)

The time spent searching for an item in a hinary search tree is longest when the
item is not present and we follow a longest path from the root. Thus the maximum time
to search for an item in a binary search tree is approximately proportional to the height
of the tree. Therefore, if the height of a binary search tree is small, searching the tree
will always be very fast (see Exercise 25). Many ways are known to minimize the height
of a binary search tree (see, e.g., [Cormen]).

We make more precise statements about worst-case searching in a binary search
tree. Let T be a binary search tree with n vertices and let 7* be the full binary tree obtained
from T by adding left and right children to existing vertices in T wherever possible. Tn
Figure 9.5.6, we show the full binary tree that results from modifying the binary search
tree of Figure 9.5.4. The added vertices are drawn as boxes. An unsuccessful search in 7'
corresponds to arriving at an added (box) vertex in T*. Let us define the worst-case time
needed to execute the search procedure as the height » of the tree T*. By Theorem 9.5.6,
lgs < h, where ¢ is the number of terminal vertices in 7*. The full binary tree T* has »
internal vertices, so by Theorem 9.5.4, 1 = n + 1. Thus in the worst case, the time will be
equal to at least 1g ¢ = lg(n -~ 1). Exercise 7 shows that if the height of T is minimized,
the worst case requires time equal to [lg(n 4 1)7. For example, since

Mg(2,000,000 + 1)] = 21,

Figure %.5.6 Expanding a binary
search tree to a full binary tree.

itis possible to store 2 million items in a binary search tree and find an item, or determine
that it is not present, in at most 21 steps.

. Define binary tree. Z IT T is a full binary trec with ¢ internal vertices, how many
terrninal vertices does 7 have?
%. If T is a full binary tree with / internal vertices, how many total

vertices does 7 have?

. What is a left child in a binary tree?

B

"]

. What is a right child in a binary tree?

4. What is a full binary tree?

7. How is the height of a binary tree related to the number of its

terminal vertices?

%. What is a binary search tree?

Exercises 1-4 concern n feams that play a single-elimination
tournamernt.

i, Afterthe teams are assigned, in how many ways can the tourna-
ment unfold? For example, if there are three teams, Scientists,
‘Whales, Pilots, assigned as

Selentists -

ey
Pilots ~

one way the tournament can unfold is

Scientists
x’%\.

s,

& Whales “\
e g
Whales /’f} Whales
Pilots ~

There are three other ways that the tournament can unfold;
{a) Whales defeat Scientists; Pilots defeat Whales.

(b) Scientist defeat Whales; Scientists defeat Pilots.,

{c) Scientist defeat Whales; Pilots defeat Scientists.

Thus, if three teams play a single-elintination tournament, af-
ter the teams are assigned, the tournament can unfold in four
ways.

2. As of 2007, the NCAA men’s basketball tournament was a

63-team single-elimination tournament. After the teams are
assigned, in how many ways can the tournament unfold? How
many (base-10) digits does this number have?

3. Suppose that after the teams are assigned in the NCAA men’s

baskethall tournament, someone randomly guesses how the
tournament will unfold. What is the probability that the guess
is correct?

4. Is the value in Exercise 3 a good estimate of the chance that

someone knowledgeable about basketball will successfully
predict how the tournament will unfold?

%, Place the words FOUR SCORE AND SEVEN YEARS AGO

OUR FOREFATHERS BROUGHT FORTH, in the order in
which they appear, in a binary seatch tree.

6. Write a formal algorithm for searching in 4 binary scarch tree.

.

search tree T of minimal height. Show that the derived tree
T, as described in the text, has height [1g(z + 1)7.

4. True or false? Let T be a binary tree. If for every vertex v in T

the data item in v is greater than the data item in the left child

Write an algorithm that stores r distinct words in a binary*

9.5 # Binary Trees 473

4. Give an exaniple of a binary search tree.

1%, Give an algorithm to construct a binary search tree.

of v and the data item in v is less than the data item in the right
child of v, then T is a hinary search tree. Explain.

In Exercises 9-11, draw a graph having the given properties or
explain why no such graph exists.

@

4.
10.
11.

12

i

13.

14,

i

P
&1

16.

17.

Full binary tree; four internal vertices; five tersinal vertices
Full binary tree; height = 3; nine terminal vertices
Full binary tree; height = 4; nine terminal vertices

A full m-ary tree is a rooted tree such that every parent has
m ordered children. If T is a full m-ary tree with 7 interpal
vertices, how many vertices does 7 have? How many terminal
vertices does T have? Prove your results.

Give an algorithm for constructing a full binary tree withn > 1
terminal vertices.

Give a recursive algorithm to insert a word in a binary search
tree.

- Find the maximum height of a full binary tree having ¢ terminal

vertices.

Write an algorithm that tests whether a binary tree in which
data are stored in the vertices is a binary search tree.

Let T be a full binary tree. Let T be the sum of the lengths
of the simple paths from the root to the internal vertices. We
call I the internal path length. Let E be the sum of the lengths
of the simple paths from the root to the terminal vertices. We
call £ the external path length. Prove that if T has s internal
vertices, then £ = I + 2n.

A binary tree T is balanced if for every vertex v in T, the heights of
the left and right subtrees of v differ by at most 1. (Here the height
of a “missing subtree” is defined to be —1.)

State whether each tree In Exercises 18-21 is balanced or not.

iz, 19.
a
:‘\
b4 w .
al
Sd
* e
240. e
a
\‘\..‘ c \.\“ c
,/ \-\ “\‘
% te h\f L4 s 1
' g \‘i 4 '~.\‘\
g h L @
g h

474 9.6 % Tree Traversals 475

Chapter 9 + Trees

In Exercises 22-24, Ny, is defined as the minimum number of ver- time to search in an n-vertex balanced binary search tree is

tices in a balanced binary tree of height h and f1, f, ... denotes O(lgn).

the Fibonacci sequence. 26, Prove that if a binary tree of height 4 has n > 1 vertices, then

. Show that Ng = 1, N; = 2, and Ny = 4. Iﬁn < k4 1. This result, together with Exercise 25, shows that
the worst-case time to search in an n-vertex balanced binary

23, Showthat N, = 1+ Ny + Ny_a,for i = 0, search tree is O(lgn).

PT

e e .
Figure BE Flgure 9.6.2

24. Show that Ny = fa4a — Lforh = 0. Input for Atline 5 of
1%, Show that the height 2 of an n-vertex balanced binary tree Algorithm 9.6.1. ALgonthm.Q.é.l,.
satisfies & = O(lgn). This result shows that the worst-case where the input is
the tree of
Figure 9.6.1.

In what order are the vertices of the tree of Figure 9.6.3 processed if preorder traversal
is used?

Following lines 3—7 (root/left/right) of Algorithm 9.6.1, the traversal proceeds as
shown in Figure 9.6.4. Thus the order of processing is ABCDEFGHIJ.

Breadth-first search and depth-first search provide ways to “walk” a tree, that is, to
traverse a tree in a systematic way so that each vertex is visited exactly once. In this
section we consider three additional tree-traversal methods. We define these traversals
recursively.

Root Left

Thls recurswe algonthm processes the Vertlees ef a bmary tree usmg preorder
traversal ST - . . . R

Input PT the root of a bmary tree or the specrai value null to md:leate

Output Dependent on how process *is rnterpreted in hne 3

figure 9.6.3 A binary tree.
Preorderis ABCDEFGHIJ.

Inorderis CBDEAFIHIG. - ~ - T—
Postorder is Root Left Right Root Left Right

preorder(PT) {
if (PT null}
: retum '
S process PT
sl =left chﬂd ofPT
- preorder(l) -
. ori=Tright chﬂd of PT.
: preorder(r)

CEDBIJHGFA. e
B C (D F

oy ww~

Root Left Right

Let us examine Algorithm 9.6.1 for some simple cases. If no tree is input (i.e.,
PT equals null), nothing is processed since, in this case, the algorithm simply returns
at line 2,

Suppose that the input consists of a tree with a single vertex, We set PT to the
root and call preorder(PT). Since PT is not equal to null, we proceed to line 3, where
we process the root. At line 5, we call preorder with PT equal to null since there is
no left child, However, we just saw that when no tree is input to preorder, nothing
is processed. Similarly at line 7, when no tree is input to preorder, again nothing is
processed. Thus when the input consists of a tree with a single vertex, we process the root
and return,

Now suppose that the input is the tree of Figure 9.6.1. We set PT to the root
and call preorder(£1'). Since PT is not equal to null, we proceed to line 3, where we
process the root. Atline 5 we call preorder with PT equal to the left child of the root (see
Figure 9.6.2). We just saw that if the tree input to preorder consists of a single vertex,
preorder processes that vertex. Thus we next process vertex B. Similarly, at line 7, we
process vertex C. Thus the vertices are processed in the order ABC.

Right

A B C D E F G H ! J

Figure B.5.4 Preorder traversal of the tree in Figure 9.6.3. K

