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Example 14
Let T: R? — R? be the linear transformation defined by

T(a1,az) = (2a2 — ay, wnHvu

and suppose that U: R2 — R? is Eﬁmﬁ If we know ﬁwm; U(1,2) = (3, wv and

U(1,1) = (1,3), then U = T. This follows from the corollary and from the

fact that {(1,2), (1,1)} is a basis for R%. 4

:;E

EXERCISES

L.rl- 1. Label the following statements as true or false. In each part, V and W
are finite-dimensional vector spaces {over ¥}, and T is a function from
22 Ockelur fover 1)

V to W.

(a) T is linear, then T preserves swms and scalar \.Uwoacnﬂm

(b) I T(z+y)=T(z)+ T(y), then T is linear. :

(¢) T is one-to-one if and only if the only vector = such gmﬁ T(z) =0

- isz=0.

(d) If T is linear, then T(0v) = Ow. :

(e) If T is linear, then nullity(T) + rank({T) = dim(W).

(f} If T is linear, then T carries linearly independent subsets of V onto
linearly independent subsets of W.

(g) If T,U:V — W are both linear and agree on a basis for V, then
T =U.

(h) Given z1,72 € V and y1,y2 € W, there exists a linear transforma-
tion T: V — W such that T(z1) = y; and T(xy) = ya.

For Exercises 2 through 6, prove that T is a linear transformation, and find
bases for both N{T) and R(T). Then compute the nuility and rank of T, and
verify the dimension theorem. Finally, use the appropriate theorems in this
section to determine whether T i one-to-one or onto.

2. T:R® - R? defined by T(a1,a2,a3) = (a1 — ag, 2a3).
@‘._J R? — R® defined by T(a1,az) = (a1 + a3,0,2a; — ag).

4. T: _.,\_wam.mJ i _/\_wxmﬁmﬁv defined Uu\ .

em; DHHDHMQHw! MQHH! QHMDHwITMQHM
Q21 @32 Qg3 0 0 '

5. T:Py(R) — P3(R) defined by T(f(z)) = zf(z) + f'(z).
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6. T: Muxn(F) — F defined by T(A) = tr(4). Recall (Example 4, Sec-
tion 1.3) that

\nHA.\C = M A

7. Prove properties 1, 2, 3, and 4 on page 65.
8. Prove that the transformations in Examples 2 and 3 are linear.

9. In this exercise, T: R? — R? is a function. For each of the following
parts, state why T is not linear.
(8) T(a,a2)=(1,a)

(b) T(am,as) = (a1, 0f)

{c) T(ay,as) = (sina,0)
(d) T{a1,a2) = (|0, a2)
Amv AAQHgQMV == ADH -+ H“ DMV

10. Suppose that T: R2 —» R? is linear, T{1,0) = (1,4), and T(1, 1} = (2,5).
What is T(2,3)? Is T one-to-one?

11. Prove that there exists a linear transformation T: RZ — R® such that
T(1,1) =(1,0,2) and T{2,3) = (1,-1,4). What is T(8,11)7

12. Is there a linear transformation T: R® —+ R? such that T(1,0,3) = (1,1)
and T(~2,0,—6) = (2,1)?

_\Hwﬂ% Let V and W be vector spaces, let T:V — W be linear, and let

b sy, wy, ... ,wi} be a linearly independent subset of R(T). Prove that
if § = {v1,va,... , v} Is chosen so that ._.ASV =y fori=1,2,...,k
then S is Eymm.&% Eaﬂumﬂ,&mbﬁ

14. Let V and W be vector spaces and T: V — W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly inde-
pendent subsets of V onto linearly independent subsets of W.

(b) Suppose that T is one-to-one and that S is a subset of V. Prove
that § is linearly independent if and only if T(S) is linearly inde-

pendent.

(c) Suppose 8 = {v1,v2,-- ., U5} 18 a basis for V mba Tis oﬂmumo,obo
and onto. Prove that T(8) = {T(v1), T(vz),..., T(va)} is & basis
for W. .

@ Recall the definition-of P(R) on page 10. Define
T:P{R)—P(R) by T{(f(z))= \m (&) dt.

Prove that T linear and one-to-one, but not onto.
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16. Let T: P(R} — P{R) be defined by T{f{z)) = f'{z). Recall that T is
linear. Prove that T is onto, but not one-to-one.

/HJ Let V and W be finite-dimensional vector spaces and T: V — W be
linear.
(a) Prove that if dim(V) < dim{W), then T cannot be onto.
(b) Prove that if dim(V) > dim(W), then T cannot be one-to-one.

/Hmw Give an example of a linear transformation T: R? — R? such that
N(T) = R(T).

19. Give an example of distinet linear transformations T and U such that
N(T) = N(U) and R(T) = R(U}.

20. Let V and W be vector spaces with subspaces Vy and Wi, respectively.
ET:V — W is linear, prove that T(V;) is a subspace of W and that
{x € V: T(z) € Wy} is a subspace of V.

21. Let V be the vector space of sequences described in Example 5 of Sec-
tion 1.2, Define the functions T,U: V — V by

|_|ADTDNV. . V = An‘mu_mwu .. v and C?\H_qu. . v == nDn 1,32, .. u

T and U are called the left shift and right shift operators on V,
respectively.

(a) Prove that T and U are linear.
(b) Prove that T is onto, but not one-to-one.
{¢) Prove that U is one-to-one, but not onto.

22. Let T: R® — R be linear. Show that there exist scalars a, b, and ¢ such
that T(z,y, z) = az + by + ¢z for all (z,y,2) € R%. Can you generalize
this result for T: F* — F7?7 State and prove an analogous result for
T: F™* — F™,

23. Let T: R® — R be linear. Describe geometrically the possibilities for
the null space of T. Hinié: Use Exercise 22.

The following definition is used in Exercises 24-27 and in Exercise 30.

Definition. Let V be a vector space and W1 and Wy be-subspaces of
V such that V = W; ® Wa. (Recall the definition of direct sum given in the
exercises of Section 1.3.} A function T: V - V is called the projection on
Wi along W if, for & = x1 + 72 with z; € W) and =9 € W3, we have
T(z) = x:.

24. Let T: R? — R2. Include figures for each of the following parts.
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(a) Find a formula for T(a,b), where T represents the projection on
the y-axis along the z-axis.

(b) Find 2 formula for T{a,b), where T represents the projection on
the y-axis along the line L = {(s,s): s € R}.

25. Let T: R® — R%.
(a) If T(a,b,¢) = (a,b,0), show that T is the projection on the zy-
plane along the z-axis.
(b) Find a formula for T(a,b,c), where T represents the projection on
the z-axis slong the zy-plane.
(¢) I T(a,b,¢) = (a — ¢,b,0), show that T is the projection on the
zy-plane along the line L = {{e,0,a): a € R}.

26. Using the notation in the definition above, assume that T:V — V is
the projection on Wi along Wa.
(a) Prove that T is linear and Wy = {z € V: T(z) = z}.
(b) Prove that W) = R(T) and Wy = N(T).
(c) Describe T if Wy = V.
(d) Describe T if W, is the zero subspace.

27. Suppose that W is a subspace of a finite-dimensional vector space V.

(a) Prove that there exists a subspace W' and a function T: V — V
such that T is a projection on W along W'.

{b) Give an example of a subspace W of a vector space V such that
there are two projections on W along two (distinct) subspaces.

The following definitions are used in Exercises 28-32.

Definitions. Let V be a vector space, and Jet T: V — V be linear. A
subspace W of V is said to be T-invariant if T(x) € W for every x € W, that
is, T(W) C W. If W is T-invariant, we define the restriction of T on W to
be the function Tw: W — W defined by Tw(z) = T{z).forallz € W.

Tixercises 28-32 assume that W is a subspace of a vector space V and that
T:V — V is linear. Warning: Do not assume that W is T-invariant or that
T is a projection unless explicitly stated. :

28. Prove that the subspaces {0}, V, R(T), and N(T) are all T-invariant.

29. If'W is T-invariant, prove that Tw is linear.

30. mﬁuwo.wm that T is the projection on W along some subspace W’. Prove
that W is T-invariant and that Tw = lw.

31. Suppose that V= R{T)&W and W is T-invariant. (Recall the definition.
of direct sum given in the exercises of Section 1.3.)
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(a) Prove that W C N(T).

(b) Show that if V is finite-dimensional, then W = N(T).

(c) Show by example that the conclusion of (b) is not necessarily true
if V is not finite-dimensional.

32. Suppose that W is T-invariant. Prove that ZQ,SQ N(T) N"'W and
R{Tw) = T(W).

33. Prove Theorem 2.2 for the case that § is infinite, that is, R{T) =
span{{T(v): v € }).

34. Prove the following generalization of Theorem 2.6: Let V and W be
vector spaces over a common field, and let £ be a basis for V. Then for
any function f: 8 — W there exists exactly one linear transformation
T:V — W such that T(z) = f(z) for all z € 5.

Exercises 35 and 36 assume the definition of direct sum given in the exercises
of Section 1.3.

35. Let V be a finite-dimensional vector space and T: V — V be linear.
(a) Suppose that V == R(T) + N(T). Prove that V = R(T) & N(T).
(b) Suppose that R(T) N N(T) = {0}. Prove that V = R(T) & N(T).
‘Be careful 4o say in each part where finite-dimensionality is used.

36. Let V and T be as defined in Exercise 21.

(a) Provethat V =R({T)+N(T), but V is not a direct sum of these two
spaces. Thus the result of Exercige 35(a) above cannot be proved
without assuming that V is finite-dimensional.

(b) Find a linear operator T1 on V such that R{T1)N 235 = {0} but
V is not a direct sum of R{T:} and N{T;). Conclude that V being
finite-dimensional is also essential in Exercise 35(b).

@ A function T: V — W between vector spaces V and W is called additive
if Tz +y) = T(z)+ Tly) for &all z,y € V. Prove that if V and W
are vector spaces over the field of rational numbers, then any additive
function from V into W is a linear transformation.

38. Let T: ' — C be the function defined by T(z) =
additive {as defined in Exercise 37) but not linear.

Prove that T is

39. Prove that there is an additive function T: B — R {as defined in Ex-
ercise 37) that is not linear. Hint: Let V be the set of real numbers
regarded as a vector space over the field of rationsl numbers. By the
corollary to Theorem 1.13 (p. 60), V has & basis 8. Let z and y be two
distinct vectors in 8, and define f: § — V by flz) =y, fly) =z, and
f(z) = z otherwise. By Exercise 34, there exists a linear transformation
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T:V — V such that T{u} = f(u) for all u € 8. Then T is additive, but
for ¢ = y/z, Tlex) # cT(x). :

The following exercise requires familiarity with the definition of quotient space
given in Exercise 31 of Section 1.3.

40. Let V be a vector space and W be a subspace of V. Define the mapping

n:V—-V/Whby glv) =v+WforveV.

(a) Prove that 7 is a linear transformation from V onto V/W and that
N{n) = W.

(b) Suppose that V is finite-dimensional. Use (a) and the dimen-
sion theorem to derive a formula relating dim(V), dim(W), and
dim{V/W).

(c¢) Read the proof of the dimension theorem. Compare the method of
solving (b) with the method of deriving the same result as outlined
in Exercise 35 of Section 1.6. .

2.2 THE MATRIX REPRESENTATION OF A LINEAR
TRANSFORMATION

Until now, we have studied linear transformations by examining their ranges
and null spaces. In this section, we embark on one of the most useful ap-
proaches to the analysis of a linear transformation on a finite-dimensional
vector space: the representation of a linear transformation by a matrix. In
fact, we develop a one-to-one correspondence between matrices and linear
transformations that allows us to utilize properties of one to study properties
of the other.
‘We first need the concept of an ordered basis for a vector space.

Definition. Let V be a finite-dimensional vector space. An ordered
basis for V is a basis for V endowed with a specific order; that is, an ordered
basis for V is a finite sequence of linearly independent vectors in V that
generates V.

Example 1

In F%, 38 {e1,en,e3} can be considered an ordered basis. Also v =
{e2, €1, ea} is an ordered basis, but 3 ## v as ordered bases. 4

For the vector space F™, we call {e1,€es,...,en} the standard ordered
basis for F*. Similarly, for the vector space Pr(F), we call {1,z,...,2"} the
standard ordered basis for P,,{F).

Now that we have the concept of ordered basis, we can identify abstract
vectors in an n-dimensional vector space with n-tuples. This identification is
provided through the use of coordinate vectors, as introduced next.
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EXERCISES (a)
1. Label the following statements as true or false. Assume that V and (b)
W are finite-dimensional vector spaces with ordered bases § and «
respectively, and T,U: V — W are linear transformations.
(a) For any scalar a, aT -+ U is a linear transformation from V to W.
(b) [T]z = [U]} implies that T = U.
() If = dim(V) and n = dim(W), then [T]} is an m x n matrix. (c)
(@) [T+U]3 = [T} I} (@)
() L(V,W) is a vector space. (e)
() LV,W)= LW, V).
2. Let 5 and v be the standard ordered bases for R and R™, respectively. .
For each linear transformation T: R™ — R™, compute [T}}.
{a) T: R? — R® defined by AADHVQMV ==z mwn.u — Q9,340 +%QNUQ\HU.
(b) T:R®— R2 defined by T(a1,as,as) = (2a; + 3a3 — as, a; + as). (£)
(c) T:R®— R defined by T{ay,a2,a3) = 2a; + az — 3as. (g)
(d) T:R3®— R? defined by
;_lmDu; 4o, Qmu == ﬁwn.w + ag, .|=Q“_. + 4as -+ bas, a; + Qwv.
(e) T:R" - R™ defined by T(ay,az, ... ,as) = (a1,a1,... ,a1).
(f) T:R®— R™ defined by T{a1,82,--- ,0n) = (Gn,Gn-1,--- ,q1)-
(g) T:R™— R defined by T{a1,az,... ,a,) = a1 + an.

8. Let T: R?® — R® be defined by T{ay,a2) = (a1 — az,a1,2a; +az). Let 8
be the standard ordered basis for R and v = {{1,1,0),(0,1,1), (2,2,3)}.
Compute [T]3. I a = {{1,2), (2,3)}, compute [T]7.

Define
T: _SMXwAMNU — Twﬁwv by T AQ Mv = AD. + S “+ ﬁw&vﬁ -+ bz?.

Let

16996

Compute [T]}.

B eneneey

.Q = .A”Hu Du.u DNMWJ

i,

and

v={1}

‘..mmn. 2.2 The Matrix Representation of a Linear Transformation

10. Let V be a vector space with the ordered basis 8 = {v;,vs,.
Define vgp = 0. By Theorem 2.6 (p. 72}, there exists a linear trans-
formation T:V - V such that T(v;) =

" Compute [T]s.
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Define T: Maxa(F) — Maxa{F) by T(A4) = A, Compute [T]q.
Define

T: Pa(R) — Masa(R) by EETQ X wmwv

where ' denotes differentiation. Compute [T]3.
Define T: Mayo{F) — F by T(A) = tr(A). Compute [T|7.
Define T: P3(R) — R by T(f(z)) = f(2). Compute [T]}.

If
1 -2
0 4/’
compute [A],.

If f(z) =3~ 62 + 22, compute [f(x)]s.
For a € F, compute [a],.

A=

6. Complete the proof of part (b) of Theorem 2.7.
7. Prove part (b) of Theorem 2.8.

. @ ﬁmﬁ<UmE.B.&meﬂo&&ﬁoﬁoam@m.nmé#wmbowmmumavmﬂma.Ummbm
“ T:V — F® by T(z) = [z]3. Prove that T is linear.

9. Let V be the vector space of complex numbers over the field . Define
T:V — V by T(z) = Z, where Z is the complex conjugate of z. Prove
that T is linear, and compute [T]g, where 8 = {1,7}. (Recall by Exer-
cise 38 of Section 2.1 that T is not linear if V is regarded as a vector
space over the field C.)

— s Un k.

vi+w_y forj =1,2,....n

:.v Let V be an n-dimensional vector space, and let T: V — V be a linear
transformation. Suppose that W is a T-invariant subspace of V (see the
exercises of Section 2.1) having dimension k. Show that there is a basis

3 for V such that [T]z has the form

(6 2)

where 4 is a k x k matrix and O is the (n — k) x k zero matrix.
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12. Let V be a finite-dimensional vector space and T be the projection on :
W along W/, where W and W' are subspaces of V. (See the definition -
in the exercises of Section 2.1 on page 76.) Find an ordered basis g for

V such that [T is a diagonal matrix.

13. Let V and W be vector spaces, and let T and U be nonzero linear ;
10}, prove that -

transformations from V into W. If R(T) N R{U) =
{T, U} is a linearly independent subset of L(V,W).

14. Let V = P(R), and for j > 1 define T;(f(z)) = f9(z), where fU)(z) .
is the jth derivative of f(z). Prove ﬁrmﬁ the set {T1,Ta,..., Tu} isa

linearly independent subset of £{V) for any positive integer .

15. Let V and W be vector spaces, and let S be a subset of V. Define
= {T € L(V,W): T(z) = 0 forallz € S§}. Prove the following
statements.
(a) SP is a subspace of L(V,W).
(b) If Siand S are subsets of V and S; C S, then S§ C S7.
(c) If Vy and Vy are subspaces of V, then (Vi + V2)? = V{1 V3.

16) Let V and W be vector spaces such that dim(V) = dim(W), and let
T:V — W be linear. Show that there exist ordered bases 8 and v for
V and W, respectively, such that [T]; is a diagonal matrix.

2.3 COMPOSITION OF LINEAR TRANSFORMATIONS
AND MATRIX MULTIPLICATION

In Section 2.2, we learned how to associate a matrix with a linear transforma-
tion in such a way that both sums and scalar multiples of matrices are associ-
ated with the corresponding surns and scalar multiples of the transformations.
The question now arises as to how the matrix representation of a composite
of linear transformations is related to the matrix representation of each of the
asgociated linear transformations. The attempt to answer this question leads
10’ a definition of matrix multiplication. We use the more convenient notation
of UT rather than Uo T for the composite of linear transformations U and T.
{See Appendix B.)

"~ Our first result shows that the composite of linear transformations is lin-
ear.

Theorem 2.9. Let V, W, and Z be vector spaces over the same field F,
and let T: V — W and U: W — Z be Iinear. Then UT:V — Z is linear.

Proof. Let z,y € Vand a € F. Then
UT{az +y) = U(T{az +y)) = U(aT(z) + T{y))
= al(T(2)) + U(T{y)) = a(UT}(z) + UT(y). i

and B = [T]8, where o = {v1,v2,..-,Un}, B = {w1,wa,.
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The following theorem lists some of the properties of the oo@@oﬂﬁon, of

linear transformations.

Theorem 2.10. Let V be a vector space. Let T,U1,Us € L{V). Then
A u AC“_. -+ Cwu == TUy + TUqy and AC”_. -+ CmVx_.. =W T+ UsT

~(b) T(U1Uz) = (TUy)Us
© TI=IT=T
(d) a(U1Uz) = (aU:)Uz = Uz(aUy) for all scalars a.

Proof. Exercise. [ |

A more general result holds for linear transformations that have domains

‘unequal to their codomains. (See Exercise 8.}

Let T:V — W and'U: W — Z be linear transformations, and let A = [U]}
ESWQ and v =
{#1,%,...,2,} are ordered bases moH V, W, and Z, Hmm@moﬁa,&% We would

like to define the product AB of two matrices so that AB = [UT]Z. Consider
‘the matrix [UT]Z. For 1 < j < n, we have

(UT)(vy) = U(T{v;)) = U Mﬁé =" By U(ws)

where .

m
Cis = » _ AwBis-

k=1

‘This computation motivates the following definition of matrix multiplication.

. Definition. Let A be an m x n matrix and B be an n x p matrix. We
define the product of A and B, denoted AB, to be the m x p matrix such

._.ﬁwm:w

A\.HW Mu.baw.m.f forl<i<m, 1<j7i<p
k=1

Note that (AB);; is the sum of products of corresponding entries from the
th row of A and the jth column of B. Some interesting applications of this

“definition are presented at the end of this section.
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.mﬂpsm persons 1, 3, 4, and 5 dominate (can send messages to) all the others
in mwm most two stages, while persoms 1, 2, 3, and 4 are dominated by (can
receive messages from) all the others in at most two stages.

EXERCISES

1. Label the following statements as true or false. In each part, V,W
wwmﬁwu omﬁmwo.dm_; w@uwﬂn ,,w%mnmw with ordered ﬁmﬁd.@u bases «, g, umﬁm 4”
respec wﬁauww Q.m Vo Emwwwnm%. W — Z denote linear transformations;
(a) [UT]Z =[TH5[UT3.

(b) [T(v)]g=[T)2[v], for all v € V.

(¢) [U(w)ls = [U)2[w]s for all w & W,

(d) [W]a=1.

(e) [T%)5 = (TI5)>

(f) A% =7 implies that A=1 or A = —1I.
(g) T =L for some matrix A.

Q& A? = O implies that A = O, where O denotes the zero matrix.
C Larp=La+Lp. .
(i) If Aissquare and Ay; = &;; for all ¢ and 7, then A4 == I.

24 (a) Let
1 3 10 -3
A== -
mw ab“ mf? 1 wvu

o= (4 18, wa o-(os
3
) mmnﬁﬁm A(2B +3C), (AB)D, and A(BD).
o 2 5 3 =20
= 1M w , B= W ew w , and C=(4 0 3).

Compute A*, A*B, BC*, CB, and CA.

3. Let g(z) = 3+ z. Let T: Pa(R) — P2(R) and U: Py(R) — R® be the
. linear transformations respectively defined by

T(f{@) = f'(z)g(z) + 2f(x) and U(a+bz+ ca®) = (a+b,c,a—b).
Let 5 and v be the standard ordered bases of Po(R) and R3, respectively.

a) Compute [U]},[T]s, and UT]% directly. Then use Theorem 2.11
pr LB B

to verify your result. _
(b) Let h(z) = 3 — 2z + «*. Compute [k(z)]s and [U{(h(z))]y- Then
use [U]} from (a) and Theorem 2.14 to verify your result.

4.\ For each of the following parts, let T be the linear transformation defined
in the corresponding part of Exercise 5 of Section 2.2. Use Theorem 2.14
to compute the following vectors:

(a) [T(A)]a, where A= AL, @

(b) [T(f(z))la, where f(z)=4—6z+ 3z2.

(¢) [T(A)}, where A= @ w

(d) [T(f(z}))]y, where f(z) =62z + 222
5. Complete the proof of Theorem 2.12 and Its corollary.
6. Prove (b} of Theorem 2.13.
7. Prove (c) and (f) of Theorem 2.15.

&, Prove Theorem 2.10. Now state and prove a more general result involv-
ing linear transformations with domains unequal to their codomains.

9. Find linear transformations U, T: F2 — F2 such that UT = Ty (the zero
transformation) but TU # Tg. Use your answer to find matrices 4 and
B such that AB = O but BA# 0.

10. Let A be an n x n matrix. Prove that 4 is a diagonal matrix if and
OH_“J\. if \,w& = %s..,_.\wu..“_. for all 4 and .q

11. LetV be a vector space, and let T: V — V be linear. Prove that T2 =Ty
if and only if R(T) € N{T).

12. Let V, W, and Z be vector spaces, and let T:VoWand U: W —7
be linear.

(a) Prove that if UT is one-to-one, then T is one-to-one. Must U also

be one-to-one? .
(b} Prove that if UT is onto, then U is onto. Must T also be onto?
(c) Prove that if U and T are one-to-one and onto, then UT is also.

_Hw.u HoﬁmmeNWmsxq@Emﬁﬁoam.Wmo&:wmddgﬁ,@om &\»wm&mmum&
by

tr(A) = A

‘Prove that tr(AB)} = tr(BA) and tr(4) = tr(4").



