ALGEBRA PRELIMINARY EXAM

Solve **three** problems from each part below. Full credit requires proving that your answer is correct. You may quote theorems and formulas from the lectures, unless a problem specifically asks you to justify such. Solve **three** problems from each part below. Full credit requires proving that your answer is correct.

- 1. PART 1: GROUPS, RINGS AND MODULES
- (1) Let A_6 be the group of even permutations on 6 elements. Construct a *p*-Sylow subgroup of A_6 for every prime *p* for which such a subgroup exists. For every *p*, determine how many such subgroups are there.
- (2) Let G be a group and H its normal subgroup. Denote by H^{ab} the abelianization (i.e. the maximal Abelian quotient) of H. Show that G/H acts on H^{ab} by conjugation, and in this manner get a homomorphism $G/H \rightarrow$ Aut (H^{ab}) .
- (a) Show that the group of invertible elements of the ring Z[√3] is infinite.
 (b) Show that the ring Z[√-3] is not a principal ideal domain.
- (4) Let R be a principal ideal domain. Prove that a submodule of a finitely generated free module is finitely generated and free.
- (5) Let R be a ring. Let F be the functor from the category of R-modules to itself given by $M \mapsto M \oplus M$. Describe the group of invertible natural transformations from F to itself as best as you can.

2. Part 2: Linear Algebra and Galois theory

- (1) Find a complete set of representatives for the similarity classes of matrices A which has characteristic polynomial $(x 1)^2(x^2 + 1)$ over
 - (a) \mathbb{C} .
 - (b) \mathbb{Q} .
- (2) Let A_1, \dots, A_k be a set of pairwise commuting $n \times n$ matrices over \mathbb{C} .
 - (a) Show that A_1, \dots, A_k have a common eigenvector.
 - (b) Show that $A_1, \dots A_k$ can be simultaneously triangularized: there is an invertible matrix X such that $X^{-1}A_1X, \dots X^{-1}A_kX$ are all upper triangular.
- (3) Consider the automorphisms of the field of rational functions $\mathbb{C}(t)$ given by the formulas:

$$\sigma: f(t) \mapsto f(t^{-1})$$

$$\tau: f(t) \mapsto f(e^{2\pi i/3}t)$$

- and let G be the group of automorphisms generated by σ, τ .
- (a) Show that G has order 6.
- (b) Compute the degree $[\mathbb{C}(t^3) : \mathbb{C}(t^3 + t^{-3})].$
- (c) Show that $\mathbb{C}(t^3 + t^{-3})$ is the subfield $\mathbb{C}(t)^G$ fixed by G.
- (4) Let p be a prime and let F/\mathbb{F}_p be an extension of degree n.

ALGEBRA PRELIMINARY EXAM

- (a) Show that $F = \mathbb{F}_p(\zeta)$ for some root of unity ζ . What is the order of the root of unity ζ ?
- (b) Suppose $n = \ell$ is a prime number. Find the number of primitive elements of F/\mathbb{F}_p , that is the number of $\alpha \in F$ such that $F = \mathbb{F}_p(\alpha)$.
- (5) Determine the Galois group of the polynomial $x^4 + 3x^2 + 3$ over
 - (a) \mathbb{Q} .
 - (b) \mathbb{F}_5 .

3. Part 3. Commutative Algebra

- (1) Let A be a commutative ring and let M be a finitely generated A-module. Suppose that $I \subseteq A$ is an ideal and that $f: M \to M$ is an A-module morphism such that $f(M) \subseteq IM$. Show that f satisfies an equation of the form $f^n + a_1 f^{n-1} + \cdots + a_n = 0$, where $a_1, \ldots, a_n \in I$.
- (2) Suppose that $A \subseteq B$ is an integral extension of integral domains and that A is integrally closed in its fraction field. Suppose that $\mathfrak{q} \subseteq B$ is a prime and that $\mathfrak{p} = \mathfrak{q} \cap A$. Show that $\operatorname{Spec} B_{\mathfrak{q}} \to \operatorname{Spec} A_{\mathfrak{p}}$ is surjective.
- (3) Let A be a noetherian commutative ring. Show that the polynomial ring A[x] is noetherian.
- (4) Let A be a commutative ring and let f_1, \ldots, f_r be elements of A such that the collection of open sets $\{X_{f_i} \subseteq \text{SpecA}\}_{1 \leq i \leq r}$ forms an open cover of A. Show that $A \to \prod_{i=1}^r A[1/f_i]$ is injective.
- (5) Let $A \to B$ be a map of commutative rings. Suppose that I is an injective A-module. Show that the B-module $\operatorname{Hom}_A(B, I)$ is injective.