
Math 320-3: Midterm 1 Solutions
Northwestern University, Spring 2016

1. Give an example of each of the following. You do not have to justify your answer.
(a) A continuous function f : R2 → R such that fx(0) exists but fy(0) does not.
(b) An open U ⊆ R2 and non-constant differentiable f : U → R such that Df(x) = 0 for all x.
(c) A differentiable f : R→ R such that u(x, y) = f(xy) has Jacobian Du(x, y) =

(
2xy2 2x2y

)
.

(d) A point (a, b) such that f(x, y) = (x+ y, x2y3) is invertible near (a, b).

Solution. (a) The function f(x, y) = x+ |y| works.
(b) Take U to be the union of B1(0, 0) and B1(5, 5), and define f to be 1 on B1(0, 0) and 2 on

B1(5, 5). This is not constant but does have derivative zero everywhere since it is locally constant.
Any valid example will have to involve a disconnected U .

(c) The chain rule gives
Du(x, y) =

(
f ′(xy)y f ′(xy)x

)
.

Thus we need f ′(xy) = 2xy in order to satisify the requirement, so f(t) = t2 works.
(d) Since

Df(x, y) =

(
1 1

2xy3 3x2y2

)
,

any point where Df(x, y) is invertible, say (1, 1) for instance, works by the Inverse Function The-
orem.

2. Show that the function f : R2 → R defined below is continuous but not differentiable at the
origin.

f(x, y) =

{
1− 3x2 + 4y + x3y2

(x2+y2)2
(x, y) 6= (0, 0)

1 (x, y) = (0, 0)

Proof. Since |x|, |y| ≤
√
x2 + y2, we have

|f(x, y)− 1| =
∣∣∣∣−3x2 + 4y +

x3y2

(x2 + y2)2

∣∣∣∣
≤ 3|x|2 + 4|y|+ |x|3|y|2

(x2 + y2)2

≤ 3
√
x2 + y2

2
+ 4
√
x2 + y2 +

√
x2 + y2

5

(x2 + y2)2

= 8
√
x2 + y2.

Thus for ε > 0, δ = ε
8 satisfies

0 < ‖x− 0‖ < δ implies |f(x)− f(0)| < ε,

so f is continuous at 0.
We have

f(x, 0) = −3x2 for all x and f(0, y) = 4y for all y.



Thus ∂
∂x(f(x, 0)) = −6x exists, so fx(0, 0) = 0, and ∂

∂y (f(0, y)) = 4 exists, so fy(0, 0) = 4. In order
for f to be differential at 0, we would need

lim
h→0

f(0 + h)− f(0)−
(
0 4

)
h

‖h‖
= 0.

With h = (h, k), we get

f(0 + h)− f(0)−
(
0 4

)
h = −3h2 +

h3k2

(h2 + k2)2
.

After converting to polar coordinates, we get

f(0 + h)− f(0)−
(
0 4

)
h

‖h‖
= −3r cos2 θ + cos3 θ sin2 θ.

The first term here as limit 0 as r → 0 by the squeeze theorem, but the second term does not have
a limit as r → 0 since the limit depends on which value of θ we approach the origin along. Thus

lim
h→0

f(0 + h)− f(0)−
(
0 4

)
h

‖h‖
does not exist, so f is not differentiable at 0.

3. Suppose f : Rn → Rm is a function and A is an m× n matrix such that

‖f(x)− f(y)‖+ ‖A‖ ‖x− y‖ ≤ ‖x− y‖2 for all x,y ∈ Rn.

Show that f has the form f(x) = Ax+b for some b ∈ Rm. Hint: First show that g(x) = f(x)−Ax
satisfies ‖g(x)− g(y)‖ ≤ ‖x− y‖2 for all x,y ∈ Rn. What property of g is equivalent to required
claim about f? Why does g have this property?

Proof. We have:

‖g(x)− g(y)‖ = ‖f(x)−Ax− (f(y)−Ay)‖
= ‖f(x)− f(y)− (Ax−Ay)‖
≤ ‖f(x)− f(y)‖+ ‖A(x− y)‖
≤ ‖f(x)− f(y)‖+ ‖A‖ ‖x− y‖
= ‖x− y‖2 .

Thus
‖g(x)− g(y)‖
‖x− y‖

≤ ‖x− y‖ ,

so the squeeze theorem implies that

lim
h→0

‖g(x)− g(y)‖
‖x− y‖

= 0.

Hence

lim
h→0

g(x)− g(y)− 0(x− y)

‖x− y‖
= 0,

so g is differentiable everywhere with Jacobian matrix 0 everywhere. Since Rn is connected, this
implies that g is constant; say g(x) = b for some b and all x. Then

f(x)−Ax = b, so f(x) = Ax + b for all x,

and thus f has the required form.
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4. Suppose f : Rn → Rm is differentiable and let x,a ∈ Rn. Show that for any u ∈ Rm, there
exists c ∈ L(x;a) such that

u · (f(x)− f(a)) = u · [Df(c)(x− a)],

where · denotes the usual dot product: (x1, . . . , xn)·(y1, . . . , yn) = x1y1+· · ·+xnyn. Hint: Consider
the single-variable function h : R→ R defined by h(t) = u · f(a + t(x− a)).

Proof. The function t 7→ a + t(x − a) is differentiable for all t, so h(t) = u · f(a + t(x − a)) is as
well. By the single-variable Mean Value Theorem, there exists c ∈ (0, 1) such that

h(1)− h(0) = h′(c)(1− 0),

which becomes
u · f(x)− u · f(a) = h′(c).

The chain rule applied to the composition of t 7→ a+ t(x− a) and f(x) gives that the derivative of
f(a + t(x− a) with respect to t is

Df(a + t(x− a))(x− a).

Setting c = a + c(x− a), we have that c ∈ L(x;a) since 0 < c < 1, and hence

u · f(x)− u · f(a) = h′(c) = u · [Df(c)(x− a)]

as required.

5. Let A be the set of all points (x, y, z) in R3 satisfying

xyz + sin(x+ y + z) = 0.

(a) Show that there exists an open set W ⊆ R2 containing (0, 0) and a differentiable function
g : W → R such that (x, y, g(x, y)) ∈ A for all (x, y) ∈W .

(b) Let B denote the set of all points satisfying

x2 + y4 − y + z = 0.

Note that (0, 0, 0) is in the intersection of A and B. Show that near (0, 0, 0) this intersection is a
curve given by parametric equations of the form

x = x(t), y = y(t), z = t.

Proof. (a) Since
∂g

∂z
= xy + cos(x+ y + z)

is nonzero at z = 0, the implicit function theorem implies that near (0, 0) we can solve for z in terms
of (x, y), or more precisely that there exists an open set W containing (0, 0) and a C1 function
g : W → R such that (x, y, g(x, y)) ∈ A as claimed.

(b) Let F (x, y, z) = (xyz + sin(x + y + z), x2 + y4 − y + z). Note that F (0, 0, 0) = (0, 0). We
have

DF(x,y) =

(
yz + cos(x+ y + z) xz + cos(x+ y + z)

2x 4y3 − 1

)
,
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so

DF(x,y)(0, 0, 0) =

(
1 1
0 −1

)
.

Since DF(x,y)(0, 0, 0) is invertible, the Implicit Function Theorem implies that near (0, 0, 0) there
exists C1 function x(z) and y(z) such that

F (x(z), y(z), z) = (0, 0).

This says that the parametric equations

x = x(t), y = y(t), z = t

describe the curve where the two surfaces intersect.
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