Math 320-1: Final Exam Solutions
Northwestern University, Fall 2015

1. Give an example of each of the following. You do not have to justify your answer.
(a) A nonempty bounded set S € R such that (sup S)? # sup S?, where S? = {2? | x € S}.
(b) A uniformly continuous differentiable function on (0, 00) with unbounded derivative.
(c) A non-integrable function f on [2,3] such that f(2) = f(3) = 10.
(d) A positive integrable function f on [1,2] such that % is not integrable on [1, 2]
(e) A differentiable function f : (1,2) — R such that f’(z) = sin(z?) for all z € (1,2).

Solution. (a) The interval S = (—10,3) works. We have S? = [0,100), which has supremum 100
and not (sup S)% = 9.

(b) The function f(z) = /= works. This is uniformly continuous since for any € > 0, § = €2
satisfies the required definition if we use the fact that |/ — /y| < y/|z — y, and its derivative is
f(x) = ﬁ, which is unbounded near 0.

(c) The function which is 10 at each rational and 0 at each irrational works. This is not
integrable since all lower sums equal 0 and all upper sums equal 10(3 — 2) = 10.

(d) The function defined by f(z) = 2 — 1 for  # 1 and f(1) = 2 works. This is integrable
since it is continuous except at a single point, but its reciprocal—ﬁ for x # 1 and % at 1—is
unbounded on [1, 2] and so is not integrable.

(e) The function F(z) = [ sin(t?) dt works by the Fundamental Theorem of Calculus. O
2. Suppose that S is a nonempty bounded subset of R. Show that there exists a sequence (x,)
with each x, € S which converges to inf .S. Hint: For any € > 0, inf S + € is not a lower bound of

S.

Proof. For each n € N, inf S + % is not a lower bound of S, so there exists z,, € S such that
. 1
T, <Iinf S+ —.
n
Since inf S < z,, (inf S is a lower bound of S), this gives
i 1
|z, —inf S| < —.
n
Thus for any € > 0, we can pick N € N such that % < ¢, and get:
. 1 1
|z, —inf S| < — < — < e for any n > N.
n- N

Hence the sequence (x,) of elements of S thus constructed converges to inf S. O

3. Define the sequence (z,,) by
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Show that (z,) converges. You can use the fact from a previous homework assignment that the
sequence yn = 45 + 55 + -+ + =5 converges.



Proof. We will show that this sequence is Cauchy. Let € > 0. Since (y,,) converges, it is Cauchy so
there exists N € N such that

[Yntk — Yn| < % for any K > 0 and n > N.

The difference y,,+1 — yn equals:
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and the difference x,, — x, equals:
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Since 15 < 45 for any m > N, we thus get that for any n > N and k > 0, we have:
m m
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< 2 iy 242
T (n+k)? (n+2)?  (n+1)?
= 2[Yntk = Yn
< 2% =€
Thus (z,) is Cauchy, so it converges. O

4. Suppose that f : R — R is continuously differentiable. Show that for any =,y € R with = # y,
there exists a rational ¢ between z and y such that

f(x)— [y 1
( ) ( ) _ fI(C)

T—y 1000
Hint: Use the Mean Value Theorem to rewrite %ﬁ(y)

Proof. By the Mean Value Theorem, for any x, # y there exists d between x and y such that:

f(x) = fy)

L= = pa),

Since f’ is continuous at d, there exists § > 0 such that

1
lf/(d) — fl(x)| < 1000 whenever |d — x| < 4.

Thus for a rational number ¢ in (d — §,d + 0)—which exists by the denseness of Q in R—we have:

f(x)_f(y)—f'(c) <L

1
1f'(d) — f(e)] < 1000° which is equivalent to Ty 1000

as desired. O



5. Show that the function f : [0,1] — R defined by

o) = 1—% x:%{jorsomeneN
1 otherwise

is integrable on [0, 1] and determine the value of fol f(x)dx.

Proof. Let € > 0. There are only finitely many numbers of the form % where n € N which are
larger than §—call the n’s which give these finite number ny,...,n, so that there are k in total.

Take an interval I; around each % whose length is smaller than:

€
length(I;) < oY

and furthermore if necessary shrink each I; so that they do not intersect and lie completely within
[0,1]. Take P to be the partition of [0, 1] defined by 0,1, and the endpoints of all the I;.

We break up the computation of U(f, P) — L(f, P) into three types of subintervals: those taken
over the subintervals I;; those taken over [0, §]; and those taken over the remaining subintervals.
Over the third type, sup f and inf f are both 1 since f is constant on these, so these contribute
nothing to the difference U(f, P) — L(f, P). Over the second type [0, §], we have:

(sup f — inf f)(length) < 1(length) = -

And finally over the first type, we have:

Z(supf inf f)(length) < Z (length) < Z i = g

Thus after adding up all three contributions, we get:

U(f, P) — L(f,P) < §+§+0=e,

which shows that f is integrable on [0, 1].
The value of all upper sums is 1(1 — 0) = 1 since the supremum of f over any subinterval is 1,
so the infimum of all upper sums, and hence the value of fol f(x)dx, is 1. O

6. Suppose f :[0,5] — R is continuous and define g : [0,5] — R by

flx) =#2,5
g(z) =410 T =2
—4  x=05.

Show that g is integrable on [0, 5]. You cannot simply quote the practice problem which says that
changing the value of an integrable function at a finite number of points still results in an integrable
function—the point here is to prove this in the special case where we change the value at 2 points.

Proof. Since f is continuous, it is bounded, and since g differs from f at possibly only two points,
it too is bounded. Let M be a bound on g, so that |g(z)| < M for all z € [0,5], which then implies



that |g(x) — g(y)| < 2M for all x,y € [0,5]. This in turn implies that supg — inf g < 2M on any
subinterval within [0, 5].
Pick an interval I = [2 — §1,2 + 01] around 2 of length smaller than
length(/l) < —
ength(1) < < *
and an interval J = [5 — d2, 5] containing 5 of length smaller than

€
8M°
Furthermore, if necessary shrink I and J so that they lie within [0, 5] and do not intersect. Since g

is continuous on [0,2 — ;] and [2 + 1,5 — d]—because it equals f on each of these—yg is integrable
on these so there exist partitions P, P» of these two intervals respectively such that

length(J) <

€ €
Ulg, 1) = L(g. P1) < ; and Ulg, P2) = L(g, P) < .

Let P be the partition of [0, 5] consisting of 0, 5, all the points making up P;, and all the points

making up P». Then the subintervals determined by P come in four types: those determined by Py,

[2— 91,2+ 01], those determined by P, and [5— 01, 5]. The value of U(g, P) — L(g, P) then consists

of four contributions. The first type contributes U(g, P1) — L(g, P1) < {; the second contributes:

€ €

SM 4
the third contributes U(g, P2) — L(g, P») < §; and the fourth contributes:

(sup g — inf g)(length) < 2M

(sup g — inf g)(length) < ZMSLM = i
Thus altogether we get:
Ulg.P)=L(g.P) < S+ +7+7=6

4 4 4 4
so g is integrable over [0, 5]. O
7. Define f:[-2,2] - R by
cosi t#£0
t) = !

o={t 7
and F :[-2,2] = R by

zte®

F(z) = / tf(t)dt for all z € [-2,2].
-2

Show that F’(0) exists. Careful: f is not continuous at 0

Proof. We have:

x x

o) — zte 0 ze
w:ioz tf(t)dt—/Qtf(t)dt>:£/o tf(t) dt.

In absolute value, we can found this by:

1 zhe® 1 zte®
< ﬂ/ f(8)] dt < |—/ 2dt = 2ade”,
Tl Jo Tl Jo

x
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where we use the fact that |[tf(¢)] < 2(1) =2 for t € [—2,2]. Since this final expression goes to 0 as
x — 0, the squeeze theorem implies that the initial expression on the left does too, and so

F(z)—-F
lim L@ = FO) _
z—0 x—0
as well. Hence F’(0) exists and equals 0. O



