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1. Introduction and statement of results

Let (X, g) be a metrically complete, simply connected Riemannian manifold
with bounded geometry and pinched negative curvature, i.e. there are constants
a > b > 0 such that −a2 < K < −b2 for all sectional curvatures K. Here bounded
geometry is used in the sense of Shubin, [15, Appendix 1], namely that all covariant
derivatives of the Riemannian curvature tensor are bounded and the injectivity
radius is uniformly bounded below by a positive constant. We show that there are
no superexponentially decaying eigenfunctions of ∆ on X; here ∆ is the positive
Laplacian of g. That is, fix some o ∈ X, and let r(p) = d(p, o), p ∈ X, be the
distance function. Then:

Theorem 1.1. Suppose that (X, g) is as above. If (∆−λ)ψ = 0 and ψ ∈ e−αrL2(X)
for all α, then ψ is identically 0.

Since the curvature assumptions imply exponential volume growth, and due to
elliptic regularity, the L2 norm may be replaced by any Lp, or indeed Sobolev,
norm. This result strengthens Mazzeo’s unique continuation theorem at infinity
[12] by eliminating the asymptotic curvature assumption (4) there.

As shown below, the negative curvature assumption enters via the strict uniform
convexity of the geodesic spheres centered at o, much as in the work of Mazzeo
[12]. Thus, as observed by Rafe Mazzeo, the arguments go through equally well if
X is replaced by a manifold M which is the union of a ‘core’ M0 (not necessarily
compact) and a product manifold M1 = (1,∞)r × N , with a Riemannian metric
g = dr2 + k(r, .), k a metric on N(r) = {r} × N , M1 having bounded geometry,
provided that the second fundamental form of N(r) is strictly positive, uniformly in
r. Indeed, the assumptions on ψ only need to be imposed on M1, see Remark 2.6.

Following [15, Appendix 1] we remark that an equivalent formulation of the
definition of a manifold of bounded geometry is the requirement that the injec-
tivity radius is bounded below by a positive constant rinj, and that the transition
functions between intersecting geodesic normal coordinate charts (called canoni-
cal coordinates in [15]) of radius < rinj/2, say, are C∞ with uniformly bounded
derivatives (with bound independent of the base points). We let Diff(X) denote
the algebra of differential operators corresponding to the bounded geometry, called
the algebra of C∞-bounded differential operators in [15, Appendix 1]. Thus, in
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any canonical coordinates, A ∈ Diffm(X) has the form
∑

|α|≤m aα(x)Dα
x , with

∂βaα uniformly bounded, with bound C|β| independent of the canonical coordinate
chart, for all multiindices β. Below we also write Hk(X) for the L2-based Sobolev
spaces, defined by localization, see e.g. [15, Appendix 1, Equation (1.3)] for details.

If E is a vector bundle of bounded geometry, in the sense of [15, Appendix 1], then
Theorem 1.1 is also valid for ∆ replaced by any second order differential operator
P ∈ Diff2(X,E) acting on sections of E with scalar principal symbol equal to that
of ∆, i.e. the metric function on T ∗X. Indeed, we can even localize at infinity,
i.e. assume Pu = 0 only near infinity, and obtain the conclusion that u is 0 near
infinity.

Theorem 1.2. Let (X, g) be as above. Suppose P ∈ Diff2(X,E), σ2(P ) = g Id,
where g denotes the metric function on T ∗X. If Pψ ∈ C∞c (X,E) and ψ ∈ e−αrL2(X,E)
for all α then ψ ∈ C∞c (X,E).

Remark 1.3. This theorem, together with the standard unique continuation result,
[10, Theorem 17.2.1], implies that if Pψ = 0 on X then ψ = 0 on X, just as in
Theorem 1.1.

In addition, the Sobolev order of the assumptions on ψ and Pψ is immaterial:
Let us assume Pψ is merely a compactly supported distribution, and that for
each α, ψ ∈ e−αrHk(α)(X,E) for some k(α) ∈ R. Elliptic regularity allows us to
conclude that near infinity, ψ ∈ e−αrL2(X,E). Since, as discussed in Remark 2.6,
our argument localizes near infinity, we conclude that ψ = 0 near infinity, hence is
a compactly supported distribution. If Pψ = 0, we deduce ψ = 0 on X by unique
continuation.

Often one actually wants to show that geometrically interesting operators, such
as ∆, have no L2-eigenfunctions, or at least no L2-eigenfunctions inside the continu-
ous spectrum. Previous work on eigenfunctions on negatively curved manifolds has
focused on these issues; see Donnelly [5, 6], Donnelly and Xavier [8], and Donnelly
and Garofalo [7]. In particular, these authors showed that under limiting curvature
assumptions (typically, K goes to a constant at infinity in some sense), the Lapla-
cian has no embedded eigenvalues. To our knowldege, ours is the first result on the
absence of eigenfunctions in the general bounded geometry setting (with negative
curvature), although we need stronger than L2 hypotheses on the eigenfunctions,
namely superexponential decay.

The gap between L2 and superexponential decay assumptions is by no means
small. In some settings, e.g. when (X, g) is conformally compact (this was studied
by Mazzeo in [12]), it is known that all L2-eigenfunctions decay superexponentially.
In general, it is by no means clear when L2-bounds imply superexponential decay.
Indeed, in the setting of quantum N -body Hamiltonians the structure of thresholds
determines the rate of exponential decay for eigenfunctions [9, 18]. Thus, the philos-
ophy underlying the present work is that for general manifolds with bounded geome-
try and pinched negative curvature, superexponential decay is a natural assumption
in ruling out decaying eigenfunctions, while the question whether L2-eigenfunctions
decay in such a fashion depends on the precise nature of such manifolds. It should
be mentioned here that the counterexample of Donnelly [5, Section 3] for eigenval-
ues embedded in the continuous spectrum is not of bounded geometry, and indeed
the eigenfunctions presented there are superexponentially decaying, so at least at
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this point it is not known whether, when restricted to the purely geometric setting,
the L2 and superexponential decay assumptions are equivalent.

We also remark on the bounded geometry hypotheses, more precisely on the
assumptions on covariant derivatives. The results of Anderson and Schoen [1] on
harmonic functions on negatively curved spaces are results below the continuous
spectrum. This makes them elliptic problems even at infinity, in a rather strong
sense—stronger than just the uniform ellipticity on manifolds with bounded ge-
ometry discussed below. In particular, the notion of positivity and the maximum
principle are available, and can be used to eliminate conditions on covariant deriva-
tives. However, for eigenfunctions embedded in the continuous spectrum such tools
are unavailable. Indeed, for λ large, ∆−λ can be seen to lose ‘strong’ ellipticity (so
e.g. it is not Fredholm on L2(X)), and is in many ways (micro)hyperbolic, at least
in settings with an additional structure (cf. the discussion in [13] in asymptotically
flat spaces). In such a setting commutator estimates are very natural, and have a
long tradition in PDEs; this explains the role of the assumption on the covariant
derivatives.

We conclude this section with a short summary of the relevant properties of
the bounded geometry setting. Due to the prominent role played by r, we work in
Riemannian normal coordinates. So let g = dr2+k(r, .) be the metric onX, where k
is the metric on the geodesic sphere of radius r, denoted by S(r), and let A(r, .) dr∧ω
denote the volume element, ω being the standard volume form on the unit sphere.
By the bounded geometry assumptions, ∂r logA = −∆r ∈ C∞b (X) = Diff0(X) (see
e.g. [20, Lemma 2.3] for the identity), i.e. is uniformly bounded with analogous
conditions on the covariant derivatives. Then

(1.1) −∆ = ∂2
r + (∂r logA)∂r −∆S(r)

for r > 0, so ∆ ∈ Diff2(X).
The role of the pinched negative curvature assumption is to ensure that there is

c > 0 such that

(1.2) H2
g r ≥ ck;

here Hg denotes the Hamilton vector field of g and the inequality of is quadratic
forms on the fibers of T ∗X. To analyze (1.2), recall that arclength parameterized
geodesics of g are projections to X of the integral curves of 1

2Hg inside S∗X, the
unit cosphere bundle of X. Thus, (1.2) tells us that r is strictly convex along
geodesics tangent to S(r0) at the point of contact. Equivalently, the Hessian ∇dr,
which is the form on the fibers of TX dual to H2

g r, is strictly positive on TS(r0),
uniformly as r0 → ∞. As r = r0 defines S(r0), with |∇r| = 1, this Hessian equals
the second fundamental form of S(r0); hence (1.2) is also equivalent to the uniform
convexity of the hypersurfaces S(r0).

Equation (1.2) follows immediately when the sectional curvatures of X are
bounded above by a negative constant −b2, since by the Hessian comparison the-
orem (see e.g. [14, Theorem 1.1]), H2

g r|TS(r0)X ≥ H2
g0
r|TS(r0)X , where g0 is the

metric with constant negative sectional curvature −b2, and the right hand side is
b coth br ≥ b (cf. [14, Equation (1.7)]).

We are very grateful to Rafe Mazzeo and Richard Melrose for numerous very
helpful conversations, and for their interest in the present work. We also thank the
anonymous referee for pointing out a number of references.
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2. The proofs

To make the argument more transparent, we write up the proof of Theorem 1.1,
at each step pointing out any significant changes that are needed to prove Theo-
rem 1.2. The proofs are a version of Carleman estimates (see (2.2) below), at least
for self-adjoint operators, but we phrase these somewhat differently, in the spirit
of operators with complex symbol and codimension 2 characteristic variety (which
in this case is in the semiclassical limit) on which the Poisson bracket of the real
and imaginary part of the (in this case, semiclassical) principal symbol is positive.
This corresponds most directly to subelliptic estimates with loss of 1/2 derivative
for a conjugated version of P , see [10, Theorem 27.1.11], but it is also related to
the non-solvability of the inhomogeneous PDE in the sense of [10, Section 26.4] (cf.
the proof of Proposition 27.1.7 there); see also [21] for a recent discussion. Related
conditions play a central role in the work of Tataru on unique continuation [16, 17].

The role of the lost 1/2 derivative in the subelliptic setting is played here by
the loss of a factor of h1/2, h being a semiclassical parameter which appears as the
(inverse) exponent of an exponential weight. The uniformity of this “subelliptic”
estimate near spatial infinity is ensured by the condition that c > 0 in (1.2). Thus,
from a PDE point of view, the two important aspects of the proofs presented
here are showing that uniform conditions on the principal symbol of the conjugated
version of P imply global subelliptic-type estimates, and showing that these uniform
conditions are satisfied in a geometrically interesting setting.

Carleman estimates have played a prominent role in recent research on spaces
with various asymptotic geometries, such as asymptotically Euclidean spaces, as ini-
tiated by Burq’s work [2] which placed the Carleman estimates of Lebeau-Robbiano
[11] into this context. In these settings the absence of embedded eigenvalues has
been known, and the main direction of research has been to obtain local energy
decay for the wave equation, or related high energy resolvent estimates [2, 3, 19, 4].
While one needs global estimates for this analysis, as in our case, these papers as-
sume much stronger types of asymptotic structures (not merely bounded geometry
and curvature assumptions); e.g. in [4], in equation (1.2), the derivatives of the
effective potential would have no additional decay over the effective potential itself
if one only made bounded geometry assumptions.

Turning to the actual proofs, we consider eigenfunctions of ∆ that are superex-
ponentially decaying: (∆ − λ)ψ = 0, and ψ ∈ e−αrL2(X) for all α, ‖ψ‖L2(X) = 1
(for convenience). Note that λ is real by the self-adjointness of ∆. Moreover,
ψ ∈ C∞(X) by standard elliptic regularity, and indeed ψ ∈ e−αr′

Hm(X) for all m,
where r′ is a smoothed version of r, changed only near the origin, where r fails to
be smooth. It is convenient to assume that r′ > 0, so infX r′ > 0.

For α real, we thus consider

Pα = eαr′
(∆− λ)e−αr′

.

For notational simplicity, to avoid an additional compactly supported error term
on almost every line, we will ignore the distinction between r and r′, and simply
add back a compactly supported error term later on, in (2.5).

Let

RePα =
1
2
(Pα + P ∗α), ImPα =

1
2i

(Pα − P ∗α),
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be the symmetric and skew-symmetric parts of Pα. Thus, Pα = RePα + i ImPα,
and RePα, ImPα are symmetric. Note also that Pαψα = 0 where ψα = eαrψ.
Thus,

(2.1) 0 = ‖Pαψα‖2 = ‖RePαψα‖2 + ‖ ImPαψα‖2 + 〈i[RePα, ImPα]ψα, ψα〉.

Roughly speaking, this will give a contradiction provided the commutator is posi-
tive, although in the presence of error terms one needs to be a little more careful.
Note that the local condition of ‘subellipticity with loss of α−1/2’ is exactly a con-
dition on the ‘large α principal symbol’ (i.e. semiclassical principal symbol, with
h = α−1) of i[RePα, ImPα], namely that it should be non-negative. (See [10, The-
orem 27.1.11] for the standard microlocal setting, namely subellipticity with loss of
1/2 derivative.)

Remark 2.1. The argument sketched above parallels the last part of the N -body
argument of [18], showing exponential decay and unique continuation results for
N -particle Hamiltonians with second order interactions, which in turn placed the
work of Froese and Herbst [9] in potential scattering into this framework. However,
in [18] (as in [9]) this is the simplest part of the argument; it is much more work to
show that L2-eigenfunctions decay at a rate given by the next threshold above the
eigenvalue λ—hence superexponentially in the absence of such thresholds.

Remark 2.2. In applying the usual Carleman estimates to a self-adjoint operator
P0, one constructs P±α, with the same notation as above, and computes ‖Pαψα‖2±
‖P−αψα‖2. By self-adjointness of P0, P−α = P ∗α, hence

‖Pαψα‖2 + ‖P−αψα‖2 = 2‖RePαψα‖2 + 2‖ ImPαψα‖2,
‖Pαψα‖2 − ‖P−αψα‖2 = 2〈i[RePα, ImPα]ψα, ψα〉.

(2.2)

Thus, the classical Carleman argument breaks up (2.1) into two pieces, and is
completely equivalent to (2.1). However, dividing up Pα into its symmetric and
skew-symmetric parts makes the calculations below more systematic, in particu-
lar making manifest an important double-commutator term in RePα. This double
commutator, in turn, makes it clear why various terms, which one might expect by
expanding out the squares ‖P±αψα‖2 in terms of P , α, etc., do not appear in the
evaluation of ‖Pαψα‖2 ± ‖P−αψα‖2.

A detailed account of the classical theory of Carleman estimates can be found
in [10, Chapter 17].

We now turn to the detailed computation of the terms in (2.1). To begin with,
we compute

Pα = ∆− λ+ eαr[∆, e−αr],

RePα = ∆− λ+
1
2
[eαr, [∆, e−αr]]

ImPα =
1
2i

(eαr[∆, e−αr] + [∆, e−αr]eαr).

Here the expressions for RePα and ImPα follow directly from the definition of the
symmetric and skew-symmetric parts, using that ∆ and e±αr are symmetric.

In the double commutator in the expression for RePα above, changing ∆ by a
first order operator would not alter the result, as commutation with a scalar reduces
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the order by 1. Thus, in view of (1.1), in the double commutator in RePα all terms
but ∂2

r give vanishing contribution, so we immediately see that

RePα = ∆− λ− α2.

We next compute the skew-symmetric part. This is

ImPα =
1
i
(2α∂r + α(∂r logA)).

Thus,
i[RePα, ImPα] = α[∆, 2∂r + (∂r logA)].

The crucial estimate for this commutator that we need below is that there is
c > 0 such that

(2.3) [∆, 2∂r + (∂r logA)] ≥ c∆S(r) +R, R ∈ Diff1(X);

here R is symmetric and the inequality is understood in the sense of quadratic
forms, e.g. with domain H2(X). Since the commutator is a priori in Diff2(X), this
means that we merely need to calculate its principal symbol, which in turn only
depends on the principal symbols of the commutants. Thus, with Hg denoting the
Hamilton vector field of g, and σ the canonical dual variable of r, with respect
to the product decomposition (0,∞) × S of X \ o, the principal symbol of ∂r is
σ1(∂r) = iσ, and

σ2([∆, 2∂r]) = 2Hgσ.

It is convenient to rephrase this by noting that 2∂r = −[∆, r] +R′, R′ ∈ Diff0(X),
so 2iσ = σ1(2∂r) = iHgr, and hence σ2([∆, 2∂r]) = H2

g r. This explains the role of
(1.2), i.e. the requirement that there exist c > 0 such that

H2
g r ≥ ck.

Indeed, (1.2) implies (2.3), since for each x ∈ X, both sides of (1.2) are quadratic
forms on T ∗X, depending smoothly on x, so their difference can be written as∑
aij(x)ξiξj (ξi are canonical dual variables of local coordinates xi), with aij a

non-negative matrix. This in turn is the principal symbol of
∑

ij D
∗
xi
aij(x)Dxj

,
and

〈
∑
ij

D∗
xi
aij(x)Dxjv, v〉 =

∫
X

∑
ij

aij(x)Dxiv Dxjv dg ≥ 0.

We will consider α→∞, but for the sake of conformity with standard notation it
is convenient to work in the semiclassical (rather than the large parameter) setting,
i.e. to let h = α−1, h ∈ (0, 1] and let h→ 0. So let ∆h = h2∆, ∆S(r),h = h2∆S(r),
and slightly abuse notation by writing Ph = h2er/h(∆− λ)e−r/h, so

RePh = ∆h − 1− h2λ, ImPh =
1
i
(2h∂r + h(∂r logA)),

i[RePh, ImPh] ≥ ch∆S(r),h + h3R, R ∈ Diff1(X).

We denote the space of semiclassical differential operators of order m by Diffm
h (X).

We recall that A ∈ Diffm
h (X) means that, in the usual multiindex notation, A =∑

|α|≤m aα(x)(hDx)α locally; in our bounded geometry setting we still impose, as
for standard differential operators, that for all multiindices β, ∂βaα be bounded
uniformly in all Riemannian normal coordinate charts of radius R (R less than half
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the injectivity radius, say), with bound only dependent on |β|. Then, weakening
the above statements somewhat, in a way that still suffices below,
(2.4)

RePh = ∆h−1+hR′1, ImPh =
1
i
(2h∂r+hR′2), i[RePh, ImPh] ≥ ch∆S(r),h+h2R′3.

with R′1, R
′
2 ∈ Diff1

h(X), R′3 ∈ Diff2
h(X).

We stated (2.4) in a weakened form to make it only depend on the principal
symbol of ∆. Namely, if ∆ is replaced by any operator ∆ + Q, Q ∈ Diff1(X,E)
(not necessarily symmetric), and P ′h = h2er/h(∆ + Q − λ)e−r/h, then P ′h − Ph =
h2er/hQe−r/h ∈ hDiff1

h(X,E), so ReP ′h − RePh, ImP ′h − ImPh ∈ hDiff1
h(X,E),

and thus
i[ReP ′h, ImP ′h]− i[RePh, ImPh]

= i[ReP ′h − RePh, ImP ′h] + i[RePh, ImP ′h − ImPh] ∈ h2 Diff2
h(X,E),

where we used that RePh, ImPh have scalar principal symbols, hence so do ReP ′h
and ImP ′h, giving the extra h (compared to the order of the product) and the lower
order in the commutators. In other words, (2.4) still holds for Ph replaced by P ′h.

In the above calculations we ignored a compact subset of X (recall that r should
really be replaced by a smooth, nonnegative, globally defined r′), so we need to add
a compactly supported error. Thus, we have shown that for some c > 0,

(2.5) i[RePh, ImPh] ≥ ch∆S(r),h + h2R0 + hR′0, R0, R
′
0 ∈ Diff2

h(X),

R′0 supported in r ≤ r1 for some r1 > 0, with the inequality holding in the sense of
operators. Since ∆S,h = ∆h − (hDr)2 − h(Dr logA)hDr, this estimate implies

(2.6) 〈i[RePh, ImPh]ψh, ψh〉 ≥ 〈(ch+hR1 RePh+hR2 ImPh+h2R3+hR4)ψh, ψh〉

with R1 ∈ Diff0
h(X), R2 ∈ Diff1

h(X) and R3, R4 ∈ Diff2
h(X), R4 having compact

support in r ≤ r1. (In fact, for our purposes the compact support assumption is
equivalent to assuming that R4 is o(1) as r →∞, as such a term can be absorbed
in the ch term modulo a compactly supported error term.)

We now show how to use (2.6) to prove unique continuation at infinity. To be
systematic, we set this part up somewhat abstractly. Recall that Ph ∈ Diff2

h(X,E)
is elliptic (or more precisely uniformly elliptic, both in X and in h) if there is C > 0
such that for all (x, ξ) ∈ T ∗X \ o, and for all h ∈ (0, 1], |σ2,h(Ph)(x, ξ)−1| ≤ C|ξ|−2

x ,
with |ξ|2x = gx(ξ, ξ) the length of ξ ∈ T ∗xX with respect to g and |.| is the operator
norm of the matrix of σ2,h(Ph)(x, ξ)−1 in any (bounded geometry) trivialization of
E.

Lemma 2.3. Suppose Ph ∈ Diff2
h(X,E) is elliptic and satisfies (2.6) for some

c > 0. Suppose also that ψ ∈ e−αrL2(X,E) for all α. If

(2.7) Phψh = 0, ψh = er/hψ,

then there exists R > 0 such that ψ vanishes when r > R.

Remark 2.4. To simplify notation, we drop the bundle E below. Its presence would
not require any changes, except in the notation.

Proof. Let Ψ(X) the algebra of pseudodifferential operators corresponding to the
bounded geometry, with uniform support, see [15, Appendix 1, Definition 3.1-3.2],
denoted by UΨ(X) there. The elements of Ψ0(X) are bounded on L2(X), and if
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A ∈ Ψm(X) is elliptic, there is B ∈ Ψ−m(X) such that AB−Id, BA−Id ∈ Ψ−∞(X),
so elliptic regularity statements and estimates work as usual.

We also need the corresponding semiclassical space of operators Ψh(X). These
can be defined by modifying the definition of Ψ(X) exactly as ifX were compact, i.e.
defining Ψm

h (X) near the diagonal using the semiclassical quantization of symbols
a, and globally as the sums of such operators and elements of Ψ−∞

h (X). The latter
space consists of operators with smooth Schwartz kernel that decays rapidly off the
diagonal as h → 0. More precisely, for R ∈ Ψ−∞

h (X) we require that its Schwartz
kernel K satisfy K ∈ C∞((0, 1]×X×X), that there is CR > 0 such that K(x, y) = 0
if d(x, y) > CR, and for all N there is CN > 0 such that for all α, β with |α| ≤ N ,
|β| ≤ N , and for all h ∈ (0, 1],

|∂α
x ∂

β
yK(x, y, h)| ≤ CNh

−n(1 + d(x, y)/h)−N ,

in canonical coordinates, with n = dimX. All standard properties of semiclassical
ps.d.o’s remain valid—indeed here we only require basic elliptic regularity. To
simplify such regularity statements we will use the semiclassical Sobolev spaces
Hk

h(X) defined by

u ∈ Hk
h(X) ⇐⇒ ‖(1 + h2∆)k/2u‖L2 ≤ C uniformly in h ∈ [0, 1).

We note that the use of ps.d.o.’s can be eliminated, if desired, by proving the elliptic
regularity estimates directly.

Since Ph is an elliptic family, (2.7) and elliptic regularity give

(2.8) ‖ψh‖H2
h(X) ≤ C1‖ψh‖L2(X),

C1 independent of h ∈ (0, 1]. Correspondingly, we will not specify below which
Sobolev norms we are taking. In general, the letters C,C ′ will be used to denote
constants independent of h ∈ (0, 1], which may vary from line to line.

We first remark that for any ε > 0, by the Cauchy-Schwarz inequality, and as
‖R∗jψh‖ ≤ C‖ψh‖, j = 1, 2, 3, 4,

|〈hR1 RePhψh, ψh〉| ≤ Ch‖ψh‖‖RePhψh‖ ≤ Chε‖ψh‖2 + Chε−1‖RePhψh‖2,
|〈hR2 ImPhψh, ψh〉| ≤ Ch‖ψh‖‖ ImPhψh‖ ≤ Chε‖ψh‖2 + Chε−1‖ ImPhψh‖2.

(2.9)

Next,

|〈ψh, h
2R3ψh〉| ≤ Ch2‖ψh‖2.(2.10)

Since R4 is supported in r ≤ r1, we can take some χ ∈ C∞(R) identically 1 on
(−∞, 3r1/2), supported in (−∞, 2r1), and deduce that

|〈ψh, hR4ψh〉| = |〈χ(r)ψh, hR4χ(r)ψh〉| ≤ h‖χ(r)ψh‖2H1
h(X).

Now, for r ≤ 2r1, |ψh| = er/h|ψ| ≤ e2r1/h|ψ|, with a similar estimate for the
semiclassical derivatives, so

|〈ψh, hR4ψh〉| ≤ h‖χ(r)ψh‖2H1
h(X)

≤ Che4r1/h‖ψ‖2H1
h(X) ≤ Che4r1/h‖ψ‖2H1(X) ≤ C ′he4r1/h‖ψ‖2.

(2.11)
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Hence, we deduce from (2.1) (with Pα replaced by Ph) and (2.6) that

0 ≥ (1− Cε−1h)‖RePhψh‖2 + (1− Cε−1h)‖ ImPhψh‖2 + h(c− Ch− Cε)‖ψh‖2

− Che4r1/h‖ψ‖2.

(2.12)

Taking ε = h1/2, say, and dropping the first two (positive) terms on the right hand
side, we conclude that there exists h0 > 0 such that for h ∈ (0, h0),

(2.13) Che4r1/h‖ψ‖2 ≥ h
c

2
‖ψh‖2.

Now suppose that R > 2r1 and suppψ ∩ {r ≥ R} is non-empty. Since e2r/h ≥
e2R/h for r ≥ R, we deduce that

‖ψh‖2 ≥ C ′e2R/h, C ′ = ‖ψ‖2r≥R > 0.

Thus, we conclude from (2.13) that

(2.14) C‖ψ‖2 ≥ c

2
C ′e2(R−2r1)/h.

But letting h→ 0, the right hand side goes to +∞, providing a contradiction.
Thus, ψ vanishes for r ≥ R. �

The proof of Theorem 1.1 is finished since if ψ vanishes on an open set, it vanishes
everywhere on X by the usual Carleman-type unique continuation theorem [10,
Theorem 17.2.1].

In fact, it is straightforward to strengthen Lemma 2.3 and allow Pψ to be com-
pactly supported. The following lemma thus completes the proof of Theorem 1.2:

Lemma 2.5. Suppose P ∈ Diff2(X;E) is elliptic, ψ ∈ e−αrL2(X,E) for all α,
and there is r0 > 0 such that Pψ = 0 for r > r0. Let Ph = er/hh2Pe−r/h, and
suppose that Ph satisfies (2.6) for some c > 0. Then there exists R > 0 such that
ψ vanishes when r > R.

Remark 2.6. Note that in this formulation, if X is replaced by a manifold with
several ends, one of which is of the product form alluded to in the introduction, our
theorem holds locally on this end. That is, if Pψ vanishes on this end and ψ has
superexponential decay there, then ψ vanishes on the end—hence globally by the
standard unique continuation theorem if Pψ is identically zero. To prove this, we
merely multiply by a cutoff function supported on this end, and apply the lemma
to the resulting inhomogeneous problem.

Proof. The elliptic regularity estimate now becomes

(2.15) ‖ψh‖H2
h(X) ≤ C1(‖ψh‖L2(X) + ‖Phψh‖L2(X)),

C1 independent of h ∈ (0, 1], and we need to keep track of the second term on the
right hand side.

Correspondingly, ‖R∗jψh‖ ≤ C(‖ψh‖ + ‖Phψh‖), j = 1, 2, 3, 4. Thus, on the
right hand side of (2.9), we need to add Chε‖Phψh‖2 on each line, while on the
right hand side of (2.10) we need to add Ch2‖Phψh‖2. Similarly, we need to add
C ′he4r1/h‖Pψ‖2 to the right hand side of (2.11). Thus, (2.12) becomes

(1 + Cεh)‖Phψh‖2 ≥ (1−Cε−1h)‖RePhψh‖2 + (1− Cε−1h)‖ ImPhψh‖2

+ h(c− Ch− Cε)‖ψh‖2 − Che4r1/h(‖ψ‖2 + ‖Pψ‖2).
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Since Phψh = er/hh2Pψ, we have ‖Phψh‖ ≤ er0/hh2‖Pψ‖. Let r2 = max(r0, r1).
Thus, taking ε = h1/2 again, we see that there exists h0 > 0 such that for h ∈ (0, h0),

(2.16) 2e4r2/h‖Pψ‖2 + Che4r1/h‖ψ‖2 ≥ h
c

2
‖ψh‖2.

Taking R > 2r2, the proof is now finished as in Lemma 2.3, for (2.14) becomes

2‖Pψ‖2 + Ch‖ψ‖2 ≥ c

2
C ′he2(R−2r2)/h,

and the right hand side still goes to +∞, while the left hand side is bounded as
h→ 0. �
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