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Abstract. We study the resolvent for nontrapping obstacles on manifolds with Euclidean
ends. It is well known that for such manifolds, the outgoing resolvent satisfies ‖χR(k)χ‖L2→L2 ≤
Ck−1 for k > 1, but the constant C has been little studied. We show that, for high frequencies,

the constant is bounded above by 2/π times the length of the longest generalized bicharac-
teristic of |ξ|2g − 1 remaining in the support of χ. We show that this estimate is optimal in

the case of manifolds without boundary. We then explore the implications of this result for

the numerical analysis of the Helmholtz equation.

1. Introduction

Let (M, g) be a manifold with Euclidean ends and Ω b M an obstacle with smooth bound-
ary. Assume that all Melrose-Sjöstrand generalized bicharacteristics (i.e., geodesics) escape to
infinity. Let ∆Ω,g be the Dirichlet realization of the Laplacian on M \ Ω. It is well known that
for any χ ∈ C∞c (M), there exists a constant C > 0 and k0 > 0 so that

‖χ(−∆Ω,g − k2 − i0)−1χ‖L2(M\Ω)→L2(M\Ω) ≤ C|k|−1, k > k0.

In this paper we study how the constant C > 0 depends on the classical dynamics on ((M, g),Ω).
Suppose that there are no geodesics tangent to ∂Ω to infinite order and let ϕt : S∗M → S∗M

denote the Melrose–Sjöstrand generalized bicharacteristic flow [29, Section 24.3]. Next, fix
R1 > 0 so that Ω ⊂ B(0, R1) and (M, g) is Euclidean outside B(0, R1). Then define for any
R ≥ R1,

(1.1) L(g,Ω, R) := inf
{
t > 0 | ϕt(S∗B(0,R)M) ∩ S∗B(0,R)M = ∅

}
.

(We will omit the Ω from the notation when Ω = ∅.)
In the statement of the following estimates, we will use a family of Sobolev spaces with

appropriate semiclassical scaling, using the global definition for s ∈ R,

(1.2) ‖u‖2Hs(M\Ω) =
〈
(−∆Ω,g + k2)su, u

〉
.

Theorem 1. Let (M, g) be a manifold with Euclidean ends with g ∈ C1,1. Suppose that Ω bM
has smooth boundary, g is C∞ near Ω, and Ω is nowhere tangent to the geodesic flow to infinite
order. Assume the generalized geodesic flow on M\Ω is nontrapping. Then for every R > R1,
χ ∈ C∞c (B(0, R); [0, 1]), there exists k0 > 0 so that for k > k0,

(1.3) ‖χ(−∆Ω,g − k2 − i0)−1χ‖L2(M\Ω)→L2(M\Ω) ≤
2L(g,Ω, R)

πk
.

More generally, for 0 ≤ s ≤ 2,

(1.4) ‖χ(−∆Ω,g − k2 − i0)−1χ‖L2(M\Ω)→Hs(M\Ω) ≤
2
s
2 +1L(g,Ω, R)

π
ks−1.
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The constant k0 may be chosen uniformly as g varies within a sufficiently small open neighbor-
hood in C2,α (α > 0) of a given nontrapping metric in C2,α (where all metrics are taken smooth
near ∂Ω).

Conversely, when Ω = ∅ and g ∈ C∞, for every R′ > R1 with B(0, R′) ⊂ {χ ≡ 1}, there is
k0 > 0 so that for k > k0,

(1.5) ‖χ(−∆g − k2 − i0)−1χ‖L2(M\Ω)→L2(M\Ω) ≥
2L(g,R′)

πk
.

Notice that in the interior of M \Ω, the Melrose-Sjöstrand flow is equal to the geodesic flow
except that, on the unit cotangent bundle, the speed of the flow is 2 rather than 1. Thus, in
the case where Ω = ∅, the theorem states that the growth of the resolvent as a map on L2 as
k →∞ is controlled above and below by 1/π times the length of the longest geodesic contained
entirely in B(0, R1).

1.1. More general operators. In §6.2 below, we recall that several important physical appli-
cations of the Helmholtz equation involve an operator that differs slightly from −∆Ω,g, namely
the divergence form operator −

∑
∂ig

ij∂j which is self-adjoint with respect to the Euclidean
volume form on Rn. In order to deal with this and similar operators, we will prove a slightly
more general result.

Theorem 2. Let (M, g) be a manifold with Euclidean ends, g ∈ C1,1. Suppose that Ω ⊂M has
smooth boundary, g is C∞ in a neighborhood of Ω, and Ω is nowhere tangent to the geodesic
flow to infinite order. Assume the generalized geodesic flow on M\Ω is nontrapping. Suppose
that P (g) ∈ Diff2(M) so that

(1.6) P (g) + ∆g =
∑
j

Lj∂xj + L

where Lj , L ∈ C0,α
c (B(0, R1)), for some α > 0. Suppose further that ν is a density on M so

that PΩ(g) is self adjoint with respect to L2(M \ Ω; ν) where PΩ(g) is the Dirichlet realization
of P (g). Let

(1.7) ‖u‖2Hsν(M\Ω) :=
〈
(PΩ(g) + k2)su, u

〉
L2(M\Ω;ν)

.

Then for every R > R1, χ ∈ C∞c (B(0, R); [0, 1]), there exists k0 > 0 so that for k > k0 and
0 ≤ s ≤ 2,

(1.8) ‖χ(PΩ(g)− k2 − i0)−1χ‖L2
ν(M\Ω)→Hsν(M\Ω) ≤

2
s
2 +1L(g,Ω, R)

π
ks−1.

The constant k0 may be chosen uniformly as g varies within sufficiently small open neighborhoods
of in C2,α (α > 0) of a given nontrapping metric in C2,α and Lj , L vary in small neighborhoods
in C0,α (where all g, Lj , L are taken smooth near ∂Ω and the subset is assumed to be contained
in a small open neighborhood in CN for some sufficiently large N near ∂Ω).

1.2. Motivation from, and applications to, numerical analysis. In the last few years,
there has been growing interest from the numerical-analysis community in proving bounds on
solutions of the Helmholtz equation where the constants are explicit in the metric (i.e, the
coefficients); see [7, 17, 4, 40, 43, 37, 26, 27]. Almost all of these previously-obtained bounds
used variants of the Morawetz commutator x ·∇, and thus are restricted to star-shaped domains
and certain classes of coefficients (although this class includes discontinuous coefficients; see,
e.g., [26]); the exception are the 1-d bounds in [43], which use the fact that the solution of the
Helmholtz equation with piecewise-constant coefficients in 1-d can be expressed in terms of the
solution of a linear system of algebraic equations.
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This interest from the numerical-analysis community is because the analysis of any numer-
ical method for solving the Helmholtz equation with variable coefficients requires a resolvent
estimate, and if the constant in the resolvent estimate is not given explicitly in terms of the
coefficients, then the numerical analysis will not be explicit in the coefficients. For example,
having proved a bound explicit in the coefficients, [17, 27] were then concerned with analyzing
standard finite-element methods applied to Helmholtz problems with variable coefficients, and
[7, 17, 4, 40] were concerned with designing and analyzing methods tailored to the coefficients.

The resolvent estimate (1.8) will therefore be a fundamental ingredient in the numerical
analysis of variable-coefficient Helmholtz problems in nontrapping scenarios. In §6 we illustrate
this fact by proving an error estimate for the finite-element method applied to the variable-
coefficient Helmholtz equation posed in the exterior of a nontrapping Dirichlet obstacle, with
this estimate explicit in k, the coefficients, and the parameters of the discretization; see Theorem
3 below. The key point is that Theorem 3 shows how the condition on the discretization for
the error estimate to hold depends on the length of the longest ray, showing that this condition
becomes more restrictive as the length of the longest ray grows.

In §6 we also briefly outline the implications of the estimate (1.8) for (i) preconditioning
finite-element discretizations of the Helmholtz equation (see Remark 6.8), and (ii) “uncertainty
quantification” of the Helmholtz equation (see Remark 6.9).

Acknowledgements. The first author was supported by NSF Postdoctoral Research Fellow-
ship DMS-1502661 and thanks Maciej Zworski for helpful conversations. The second author was
supported by EPSRC grant EP/R005591/1. The third author was partially supported by NSF
grant DMS–1600023. The authors are grateful to an anonymous referee for helpful comments
on the manuscript.

2. Manifolds with Euclidean Ends

We now define the notion of a manifold with Euclidean ends. Note that the canonical example
of a manifold with Euclidean ends is the space Rn with a metric g so that I − g has compact
support. In order to allow more general topologies, we define the general notion of a manifold
with Euclidean ends.

Definition 2.1. (M, g) is an n-dimensional manifold with Euclidean ends if it is a non-compact,
complete Riemannian manifold such that

• there exists a function r ∈ C∞(M ;R) such that the sets {r ≤ c} are compact for all c,
and

• there exists R1 > 0 such that {r ≥ R1} is the disjoint union of finitely many components,
each of which is isometric to Rn \B(0, R1) with the Euclidean metric, and the pullback
of r under the isometry is the Euclidean norm.

The connected components of {r ≥ R1} are called the infinite ends of M . The notation
B(0, R) is defined for R ≥ R1 and has the following meaning:

B(0, R) := {r < R}.

2.1. The outgoing resolvent on manifolds with Euclidean ends. We now review (follow-
ing the treatment in [20, Section 4.2]) some properties of the outgoing resolvent on a manifold
with Euclidean ends. Let Ei, i = 1, . . .m be the infinite ends of M . and let R0(k) denote the
free resolvent on Rn. That is R0(k) : L2

comp(Rn) → L2
loc(Rn) is the meromorphic continuation

of (−∆− k2)−1 from the half plane Im k > 0. Define R̃0(k) : L2
comp(M)→ L2

loc(M) by

(2.1) R̃0(k)f :=

m∑
i=1

1EiR0(k)1Eif.
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Next, let χi ∈ C∞c (M ; [0, 1]), i = 0, . . . 3 so that

(2.2) χi ≡ 1 on suppχi−1, supp(1− χi) ⊂M \B(0, R1), suppχi ⊂ B(0, R)

for some R > R1. Then for k0 ∈ C with Im k0 � 1, let

Q(k, k0) := Q0(k) +Q1(k0)

Q0(k) := (1− χ0)R̃0(k)(1− χ1), Q1(k) := χ2(−∆g − k2
0)−1χ1.

following the proof in [20, Section 4.2], we can write

(2.3) R(k) := (PΩ(g)− k2)−1 = Q(k, k0)(I +K(k, k0)χ3)−1(I −K(k, k0)(1− χ3)).

where K(k, k0) : L2(M)→ L2
comp(M) and in particular, (1−χ3)K(k, k0) = 0. This implies that

(1− χ3)R(k) lies in the image of R̃0(k).

3. The case of a manifold without boundary

To illustrate the methods we begin by proving (1.3) in the case of a manifold without bound-
ary. The idea of the proof is identical when the boundary is non-empty, but the proofs of
propagation statements are more involved. Thus we take ∂M = ∅ throughout this section.

3.1. Defect measures. We will argue by contradiction. Let h = k−1 and P (h) := h2PΩ(g)−1.
We also write L2 for L2

ν(M \ Ω) and Hs for Hs
ν(M \ Ω).

Remark 3.1. We will sometimes write ‖·‖Hsh for hs‖·‖Hs ; since ‖·‖Hs has a semiclassical scaling
built into it, this means that

‖u‖2Hsh = 〈(h2∆Ω,g + 1)su, u〉.

Note that if χ0, χ1 ∈ C∞c (M ; [0, 1]) and χ1 ≡ 1 on suppχ0, then

‖χ0(P − i0)−1χ0f‖L2

‖f‖L2

=
‖χ0χ1(P − i0)−1χ1χ0f‖L2

‖f‖L2

≤ ‖χ0χ1(P − i0)−1χ1χ0f‖L2

‖χ0f‖L2

≤ ‖χ1(P − i0)−1χ1χ0f‖L2

‖χ0f‖L2

≤ ‖χ1(P − i0)−1χ1‖L2→L2 .

In particular,

‖χ0(P − i0)−1χ0‖L2→L2 ≤ ‖χ1(P − i0)−1χ1‖L2→L2 .

and, since R > R1, we may assume without loss of generality that χ ≡ 1 on B(0, R1).
If (1.3) fails, there exists a sequence of discrete values of h = hj ↓ 0 and a sequence 0 6=

f(h) ∈ L2 such that

‖χ(P − i0)−1χhf(h)‖L2 = 1

and

lim
h→0

‖χ(P − i0)−1χhf(h)‖L2

‖f(h)‖L2

= M ≥ 2L(g,R).

(note that we allow M = ∞.) There exists R′ < R such that we still have suppχ ⊂ B(0, R′),
hence we have the strict inequality M > L(g,R′). Let

u(h) = (P − i0)−1χhf ∈ L2
loc.

so that ‖χu‖L2 = 1.

Lemma 3.2. For all χ̃ ∈ C∞c (M), there exists C > 0 so that ‖χ̃u‖L2 ≤ C.
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Proof. Let χi ∈ C∞c (M ; [0, 1]), i = 0, 1 so that χ ≡ 1 on suppχ1 and χ1 ≡ 1 on suppχ0, and
χ0 ≡ 1 on B(0, R1). Then

(1− χ0)P (1− χ1) =
∑
i

(1− χ0)(−h2∆Rn − 1)1Ei(1− χ1)

where Ei denotes the ith Euclidean end of M .
Then,

P (1− χ1)u =
∑
i

(1− χ0)1Ei(−h2∆Rn − 1)1Ei(1− χ1)u

= (1− χ1)χhf −
∑
i

(1− χ0)[−h21Ei∆Rn1Ei , χ1]u

= (1− χ1)χhf −
∑
i

[−h21Ei∆Rn1Ei , χ1]u.

Next extend u1Ei by 0 to a function vi on Rn so that vi ≡ u1Ei on Rn \B(0, R1). Then

(−h2∆Rn − 1)(1− χ1)1Eivi = 1Ei(1− χ1)χhf − [h2∆Rn , 1Eiχ1]vi.

Since by (2.3) vi is h−1 outgoing,

(1− χ1)1Eivi = h−2R0(h−1)(1Ei(1− χ1)χhf − [h2∆Rn , 1Eiχ1]vi).

In particular, since χ ≡ 1 on suppχ1,

‖(1− χ1)1Eivi‖L2 ≤ C(‖f‖L2 + ‖[∆Rn , 1Eiχ1]vi‖H−1) ≤ C(‖f‖L2 + ‖χu‖L2).

Now,

(1− χ1)u = (1− χ1)
∑
i

1Eivi.

Therefore,

‖(1− χ1)u‖L2 ≤ C(‖f‖L2 + ‖χu‖L2).

Let χ̃ ∈ C∞c (M ; [0, 1]). Then using again that χ ≡ 1 on suppχ1,

lim sup
h→0

‖χ̃u‖L2 ≤ lim sup
h→0

(‖χ̃(1− χ)u‖L2 + ‖χ̃χu‖L2)

≤ lim sup
h→0

(‖χ̃(1− χ1)u‖L2 + ‖χu‖L2)

≤ C lim sup
h→0

(‖f‖L2 + ‖χu‖L2) ≤ C
( 1

2L(g,R′)
+ 1
)

completing the proof of the lemma. �

By Lemma 3.2, u is uniformly bounded in L2
loc and, taking subsequences, we may assume

that u has defect measure µ, χf has defect measure α, and u and χf have joint defect measure
µj ; in other words, for h = hj in this chosen subsequence, and for every a ∈ C∞c (T ∗M),

(3.1)

lim
h↓0
〈a(x, hD)u, u〉 =

∫
a dµ

lim
h↓0
〈a(x, hD)χf, χf〉 =

∫
a dα

lim
h↓0
〈a(x, hD)χf, u〉 =

∫
a dµj .

Note that we use a quantization procedure that sends symbols with compact support in x to
operators with compactly supported kernel.
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The Cauchy-Schwarz inequality gives us a simple inequality satisfied by these three measures.
We use the notation

µ(a) ≡
∫
a dµ

for the pairing of a function and a measure.

Lemma 3.3. For any a ∈ C0
c (T ∗M ;R).

|µj(a)| ≤
√
µ(|a|)

√
α(|a|).

Proof. If b =
√
a is in C∞c (T ∗M),

〈a(x, hD)χf, u〉 =
〈
b2(x, hD)χf, u

〉
= 〈b(x, hD)χf, b(x, hD)u〉+O(h)

≤
√
〈b(x, hD)χf, b(x, hD)χf〉

√
〈b(x, hD)u, b(x, hD)u〉+O(h)

≤
( ∫

b2 dα
)1/2( ∫

b2 dµ
)1/2

+ o(1),

which proves the desired inequality by letting h→ 0.
Next, let a ∈ C∞c (T ∗M) with a ≥ 0, ψi ∈ C∞c (T ∗M ; [0, 1]), i = 0, 1 have ψi ≡ 1 in a

neighborhood of supp a and ψ1 ≡ 1 in a neighborhood of suppψ0. Then we apply the previous
result to aε = ψ2

0(a+ εψ1) and let ε ↓ 0 to see that |µj(a)| ≤
√
µ(a)

√
α(a).

Now, letting 0 ≤ a ∈ C0
c (T ∗M), 0 ≤ an ∈ C∞c (T ∗M) with an → a uniformly. Then we have

µj(an)→ µj(a), µ(an)→ µ(a), α(an)→ α(a)

In particular,

|µj(a)| ≤
√
µ(a)

√
α(a), 0 ≤ a ∈ C0

c (T ∗M).

Next, for a ∈ C0
c (T ∗M ;R), write a = a+ − a− with 0 ≤ a± ∈ C0

c (T ∗M). Then,

|µj(a)| ≤ |µj(a+)|+ |µj(a−)| ≤
√
µ(a+)

√
α(a+) +

√
µ(a−)

√
α(a−)

≤
√
µ(|a|)

√
α(|a|).

�

Since Pu = hχf , for a ∈ C∞c (T ∗M ;R),

(3.2)
ih−1〈[P, a(x, hD)]u, u〉 = ih−1(〈a(x, hD)u, Pu〉 − 〈a(x, hD)Pu, u〉

= 2 Im〈a(x, hD)χf, u〉.

Sending h→ 0 yields

(3.3) µ(Hpa) = 2 Imµj(a).

For the proof of the following standard result, we use the formula (2.3) relating R(k) :=
(PΩ(g) − k2 − i0)−1 to the free outgoing resolvent on Rn and refer the reader to, e.g., [9,
Proposition 3.5].

Lemma 3.4. Let

I :=
{
ρ ∈ S∗M

∣∣ ⋃
t≥0

ϕ−t(ρ) ∩ suppχ = ∅
}

be the directly incoming set. Then µ(I) = 0.

Next, we show that µ is supported on the characteristic variety and that u is oscillating at
frequency roughly h−1.
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Lemma 3.5. The measure µ is supported on S∗M . In addition, for b ∈ S1,

lim
h→0
‖b(x, hD)χu‖2L2 = µ(|b|2χ2).

Proof. Suppose that a ∈ C∞c (T ∗M) with a ≡ 0 in a neighborhood of |ξ|g = 1. Then there exists
E ∈ Ψ−2 compactly supported so that

a(x, hD) = EP +OL2
loc→L2

comp
(h∞).

Therefore,

〈a(x, hD)u, u〉 = 〈Ehχf, u〉+O(h∞)→ 0.

Hence, µ(a) = 0. In particular, suppµ ⊂ S∗M .
Fix ψ ∈ C∞c (T ∗M) with ψ ≡ 1 on suppχ ∩ {|ξ|2g ≤ 2}. Then, there exists E ∈ Ψ0 compactly

supported so that

χ(x)b(x, hD)∗b(x, hD)χ(x)(1− ψ(x, hD)) = EP +OL2
loc→L2

comp
(h∞).

In particular,

‖b(x, hD)χu‖2L2 = 〈χ(x)b(x, hD)∗b(x, hD)χ(x)u, u〉
= 〈χ(x)b(x, hD)∗b(x, hD)χ(x)ψ(x, hD)u, u〉

+ 〈χ(x)b(x, hD)∗b(x, hD)χ(x)(1− ψ(x, hD))u, u〉
= 〈χ(x)b(x, hD)∗b(x, hD)χ(x)ψ(x, hD)u, u〉+ 〈hEχf, u〉+O(h∞)

→ µ(|b|2χ2ψ) = µ(|b|2χ2).

�

3.2. Hölder continuous metrics. We now make the necessary adjustments to allow the metric
g to be Hölder continuous. We refer the reader to [47, Chapter 3, Section 11] for an analogous
account of propagation of singularities for the wave equation as well as a review of the history of
propagation of singularities theorems for operators with rough coefficients. Stronger results (i.e.,
with weaker regularity hypotheses) are probably possible in line with the work of Burq–Zuily
[11, Remark 3.3], but low regularity is not our main focus here.

Lemma 3.6. Let g0, L0, Lj,0 satisfy the hypotheses of Theorem 2. Suppose that g(h) ∈ C1,α and
L(h), Lj(h) ∈ C0,α for some α > 0 satisfy

lim
h→0
‖g(h)− g0‖C1,α = 0,

lim
h→0
‖L(h)− L0‖C0,α = 0,

lim
h→0
‖Lj(h)− Lj,0‖C0,α = 0, j = 1, . . . , n.

Then the measure µ is supported in S∗M , for b ∈ S1,

(3.4) µ(|b|2χ2) = lim
h→0
‖Oph(b)χu‖2L2

and for a ∈ C∞c (T ∗M),

(3.5) µ(Hpa) = 2 Imµj(a).

where p = |ξ|2g0 − 1.

This lemma (together with the results of Section 3.3 below) suffices to prove our estimate
provided the bicharacteristic flow is unique. Note that the lemma only requires the hypothesis
that g ∈ C1,α for α > 0 and that this regularity suffices to prove existence of solutions to
Hamilton’s equations. However, it is not adequate for proving uniqueness. Hence Theorem 1
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is only stated for α = 1, which is sufficient to guarantee the existence of a well-defined single-
valued bicharacteristic flow. (A quantitative result using the dynamics of the multi-valued flow
for α < 1 would be an interesting direction for further research.)

To prove Lemma 3.6, we will need a more general set of symbol classes. Let r ∈ N, 0 < α < 1,
0 ≤ ρ < 1. We say that p(x, ξ) ∈ Cr,αSmρ if

‖Dβ
ξ p(·, ξ)‖Cr,α ≤ Cβh

−rρ〈ξ〉m−|β|.

We say p ∈ Smρ if p ∈
⋂
r Cr,αSmρ . We need the following boundedness property for operators

with symbol in Cr,αSm.

Lemma 3.7. For r ≥ 0 and α > 0, the map Oph : Cr,αSm → L(Hm
h , L

2) with p 7→ p(x, hD) is
continuous with norm bounded independently of h.

Proof. It is enough to show that Oph : Cr,αS0 → L(L2, L2) is continuous with norm bounded
independently of h. For this, we rescale to h = 1. That is, let Th : L2(Rn) → L2(Rn) be given

by (Thu)(x) = h
n
4 u(h

1
2x). Then Th is unitary and

Oph(a)u = T ∗hOp1(ah)Thu

where

ah(x, ξ) = a(h
1
2x, h

1
2 ξ).

Now, for a ∈ Cr,αSm,

‖Dβ
ξ ah(·, ξ)‖Cr,α ≤ Cβh

|β|
2 〈h1/2ξ〉−|β|.

In particular, ah is uniformly bounded in Cr,αSm. Therefore, by [48, Chapter 13, Theorem 9.1]
Op1(ah) : L2 → L2 uniformly in h with norm bounded by a finite sum of Cr,αS0 seminorms.
Since Th is unitary, this completes the proof. �

Lemma 3.8. Let a ∈ C∞c (T ∗M), m ∈ R, and 0 < α < 1

C1,αSm 3 p 7→ h−1[p(x, hD), a(x, hD)] ∈ L(L2, L2)

is continuous with norm bounded independently of h.

Proof. Let p ∈ C1,αSm and choose ρ ∈ (2/(2 + α), 1) so that (1 + α/2)ρ > 1. Let ψ ∈ C∞c (R)
with ψ ≡ 1 on [−2, 2]. Define ph(x, ξ) = (ψ(hρ|Dx|)p)(x, ξ). Then, ph ∈ Smρ . Moreover,

|DxD
β
ξ ph(x, ξ)| ≤ Cβ〈ξ〉m−|β|,

|Dγ
xD

β
ξ ph(x, ξ)| ≤ Cβh−ρ(|γ|−1)〈ξ〉m−|β|, |γ| > 1.

Note that the symbol classes Smρ have a symbol calculus and, in particular,

(3.6) h−1[Oph(ph), a(x, hD)] =
1

i
Oph({ph, a}) +O(h1−ρ)L2→L2 .

Next, note that by the characterization of of Hölder spaces by Littlewood–Paley decomposition
[48, Chapter 13, Theorems 8.1, 8.2],

‖(p− ph)(·, ξ)‖C0,α/2 ≤ hρ(1+α
2 )‖p(·, ξ)‖C1,α = o(h)‖p(·, ξ)‖C1,α

In particular, p− ph ∈ o(h)C0,α/2S2 and hence

h−1[Oph(p− ph), a(x, hD)] = o(1)L2→L2 .

Combining this with (3.6) completes the proof. �
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Proof of Lemma 3.6. We start with the proof of (3.4). Note that P = Oph(p0) + hOph(p1)
where p0(h) = |ξ|2g(h) − 1 ∈ C1,αS2 and p1(h) ∈ C0,αS1 uniformly as h→ 0.

Fix ψ ∈ C∞c (R) with ψ ≡ 1 on [−2, 2] and let ε > 0. Let pi,ε(x, ξ) = (ψ(ε|Dx|)pi)(x, ξ). Then,
pi,ε ∈ S2−i and again by Littlewood–Paley,

‖Dβ
ξ (p0 − p0,ε)(·, ξ)‖C0,α ≤ Cβε〈ξ〉2−|β|.

In particular, for ε > 0 small and h < h0 small, pε is elliptic on ||ξ|g − 1| ≥ Cε. Therefore, for
a ∈ S0(T ∗M) supported away from p = 0, there is ε > 0, h0 small enough so that p0,ε is elliptic
on supp a. Hence there is Eε ∈ Ψ−∞ (uniformly for ε > 0 small) so that

a(x, hD) = EεOph(p0,ε) +O(h∞)Ψ−∞ .

In particular,

a(x, hD) = Eε(P −Oph(p0 − p0,ε)− hOph(p1)) +O(h∞)Ψ−∞

Therefore,

µ(a) = lim
h→0
〈EεPu, u〉 − 〈Eε[Oph(p0 − p0,ε) + hOph(p1)]u, u〉

= lim
h→0
〈Eεhχf, u〉+O(ε) = O(ε)

Since the left-hand side does not depend on ε, sending ε→ 0, µ(a) = 0 and hence suppµ ⊂ S∗M .
Next, fix K > 0 large enough so that for h < h0, {|ξ|g(h) ≤ 2} ⊂ {|ξ| ≤ K}. We apply the

previous argument with a(x, hD) = χ(x)b(x, hD)∗b(x, hD)χ(x)(1−ψ(K−1|hD|)). In particular,
there exists Eε ∈ Ψ0 compactly supported so that

χ(x)b(x, hD)∗b(x, hD)χ(x)(1− ψ(|hD|g)) = EεP +OL2
loc→L2

comp
(ε).

Therefore,

lim
h→0
‖b(x, hD)χu‖2L2 = lim

h→0
〈χ(x)b(x, hD)∗b(x, hD)χ(x)u, u〉

= lim
h→0
〈χ(x)b(x, hD)∗b(x, hD)χ(x)ψ(K−1|hD|)u, u〉

+ lim
h→0
〈χ(x)b(x, hD)∗b(x, hD)χ(x)(1− ψ(K−1|hD|))u, u〉

= lim
h→0
〈χ(x)b(x, hD)∗b(x, hD)χ(x)ψ(K−1|hD|)u, u〉

+ lim
h→0
〈hEεf, u〉+O(ε)

= µ(|b|2χ2ψ(|ξ|g)) +O(ε) = µ(|b|2χ2) +O(ε).

Again, since the left hand side is independent of ε, this proves (3.4).
We now prove (3.5). Let a ∈ C∞c (T ∗M ;R). Then,

i

h
〈[P, a(x, hD)]u, u〉 = i[(a(x, hD)u, hχf)− (ha(x, hD)χf, u)]→ 2 Imµj(a).

Therefore, it remains to show that

(3.7)
i

h
〈[P,A]u, u〉 → µ(Hpa).

First, observe that by Lemma 3.7 and the fact that

‖Dβ
ξ (p1 − p1,ε)(·, ξ)‖C0, α2 ≤ Cβε

α
2 〈ξ〉1−|β|,

we obtain

‖ha(x, hD)Oph(p1 − p1,ε)‖+ ‖hOph(p1 − p1,ε)a(x, hD)u‖L2 ≤ Chεα2 .
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Therefore,

(3.8) ‖[hOph(p1), a(x, hD)u]‖L2 ≤ Chεα2 ‖u‖L2 +Oε(h
2).

Next, observe that by Lemma 3.8,

(3.9) ‖[Oph(p0 − p0,ε), a(x, hD)]u‖L2 ≤ Cεh‖u‖L2 .

Finally, with qε := limh→0 p0,ε,

(3.10) lim
h→0
〈 i
h

[Oph(p0,ε), a(x, hD)]u, u〉 = µ(Hqεa).

Combining (3.8), (3.9), and (3.10) gives∣∣∣ lim
h→0

i

h
〈[P,A]u, u〉 − µ(Hqεa)

∣∣∣ ≤ Cεα2
Since p0 ∈ C1,αS2 uniformly in h, Hqε → Hp. In particular, sending ε → 0 and applying the
dominated convergence theorem gives (3.7). �

3.3. Appearance of the Volterra Operator. To complete the proof of (1.3) in the bound-
aryless case, we prove the following measure-theoretic proposition. This lemma will be modified
slightly in the case of a manifold with boundary to account for the fact that the generalized
bicharacteristic flow is not generated by a vector field.

Proposition 3.9. Suppose that µ, µj, and α are Radon measures on T ∗M with α finite and µ
finite on compact subsets of T ∗M . Let X be a continuous vector field on T ∗M and ϕt : T ∗M →
T ∗M be given by ϕt(q) = exp(tX)(q). Let Σ ⊂ T ∗M be a hypersurface transverse to X so that
the map F : R × Σ 3 (t, q) 7→ ϕt(q) ∈ T ∗M is homeomorphism onto its image. Suppose that
µ(F ((−∞, 0)× Σ)) = 0 and for a ∈ C0

c (T ∗M ;R),

(3.11) |µj(a)| ≤
√
µ(|a|)α(|a|).

Furthermore, for ψ ∈ C1
c (R), a ∈ C0

c (Σ), let fψ,a(F (t, q)) = ψ(t)a(q) and assume that

(3.12) µ(f∂tψ,a) = 2 Imµj(fψ,a).

Then,

µ(F ([0, L]× Σ)) ≤ 4L2

π2
α(F ([0, L]× Σ))).

Proof. For 0 ≤ a ∈ C0
c (T ∗M), define the Radon measures µ]a, Imµj,], and α]a on R by

µ]a(ψ) = µ(fψ,a), µj,]a (ψ) = µj(fψ,a), α]a(ψ) = µ(fψ,a).

Lemma 3.10. The measure µ] is absolutely continuous with respect to Lebesgue measure and

µ]a = µ̇]adt

with |µ̇]a| ≤ C sup |a|.

Proof. First, observe that for ψ ∈ C1
c (R), (3.12) implies

µ]a(∂tψ) = 2 Imµj(fψ,a).

Let [b, c] ⊂ R, 0 ≤ χε ∈ C∞c (R; [0, 1]) with χ ≡ 1 on [b, c] and suppχε ⊂ (b− ε, c+ ε). Define

ψε(t) = −
∫
χε(s)ds+

∫ t

−∞
χε(s)ds.

Then, since µ((−∞, 0)× Σ) = 0, µj(F ((−∞, 0)× Σ)) = 0 and hence

|µ]a(χε)| = 2| Imµj(1F ([0,∞)×Σ)fψε,a)|
≤ C sup |a| sup |ψε|
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≤ C sup |a|
∣∣∣ ∫ χεds

∣∣∣ ≤ C sup |a|(c− b+ 2ε).

Since χε → 1[b,c], we have by the dominated convergence theorem,

|µ]a([a, b])| ≤ C sup |a|(c− b).
In particular, µ]a is absolutely continuous with respect to Lebesgue measure since the intervals
generate the Borel sets on R. Moreover, its Radon–Nikodym derivative is linear in a and bounded
by C sup |a|. �

By (3.11), since µ]a is absolutely continuous with respect to Lebesgue measure, µj,]a is also.
Let µ̇]a, µ̇j,]a , and α̇]a be the Radon–Nikodym derivatives of µ]a, µj,]a , and α]a respectively with
respect to Lebesgue measure. In particular,

µ]a = µ̇]adt, Imµj,]a = Im µ̇j,]a dt, α]a = α̇]adt+ λ

where λ ⊥ dt. Now, by (3.11),

1

2r

∣∣∣µj,]a ([t− r, t+ r])
∣∣∣ ≤ 1

2r

√
µ]a([t− r, t+ r])

√
α]a([t− r, t+ r])

So, by the Lebesgue differentiation theorem [23, Theorem 3.22], for Lebesgue a.e. t,

(3.13) |µ̇j,]a (t)| ≤
√
µ̇]a(t)

√
α̇]a(t).

Lemma 3.11. With µ̇]a(t) as above, µ̇]a(t) is continuous and

(3.14) µ̇]a(t) ≤ 2

∫ max(t,0)

0

| Im µ̇j,]a (s)|ds ≤ 2

∫ t

0

√
µ̇]a(s)

√
α̇]a(s)ds.

Proof. By (3.12), for ψ ∈ C1
c (R),

(3.15)

∫
ψ′(t)µ̇]a(t)dt = 2

∫
ψ(t) Im µ̇j,]a (t)dt.

Let χ ∈ C∞c (R; [0, 1]) with
∫
χ(s)ds ≡ 1 and define χε,t′(s) = ε−1χ(ε−1(s− t′)) and

ψε,t′(s) = −1 +

∫ t

−∞
χε,t′(s)ds.

Then by (3.15), together with the fact that µj,]a (t) = 0 for t < 0,∫
χε,t′(t)µ̇

]
a(t)dt = 2

∫ ∞
0

ψε,t′(t) Im µ̇j,]a (t)dt.

Applying the Lebesgue differentiation theorem on the left and dominated convergence on the
right, we find for Lebesgue a.e. t′

µ̇]a(t′) = −2

∫ max(t′,0)

0

Im µ̇j,]a (t)dt.

Note that this implies µ̇]a(t′) is continuous. Applying (3.13) gives (3.14). �

Lemma 3.12. Let 0 ≤ b(t), c(t) ∈ L2 with b(t) continuous and

b2(t) ≤ 2

∫ t

0

b(s)c(s)ds.

Then

(3.16) b(t) ≤
∫ t

0

c(s)ds.
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Proof. Supposing (3.16) to be false, there exists ε > 0 and t > 0 such that

b(t) ≥
∫ t

0

c(s)ds+ ε;

hence we may define

t0 := inf
{
t > 0 |

∫ t

0

c(s)ds+ ε ≤ b(t)
}
.

Then,[ ∫ t0

0

c(s)ds+ ε
]2

= b2(t0) ≤ 2

∫ t0

0

b(s)c(s)ds

≤ 2

∫ t0

0

∫ s

0

c(r)c(s)drds+ 2ε

∫ t0

0

c(s)ds

=
[ ∫ t0

0

∫ s

0

c(r)c(s)drds+

∫ t0

0

∫ t0

s

c(r)c(s)drds
]

+ 2ε

∫ t0

0

c(s)ds

=
[ ∫ t0

0

c(s)ds
]2

+ 2ε

∫ t0

0

c(s)ds

=
[ ∫ t0

0

c(s)ds+ ε
]2
− ε2

which is a contradiction. �

Using the continuity of µ̇]a together with (3.14) to apply Lemma 3.12 with b(t) =

√
µ̇]a(t),

c(t) =

√
α̇]a(s), we have √

µ̇]a(t) ≤
∫ t

0

√
α̇]a(s)ds.

Now,

µ(F ([0, L]× Σ) =

∫ L

0

µ̇]1(t)dt ≤
∫ L

0

∣∣∣ ∫ t

0

√
α̇]1(s)ds

∣∣∣2dt
=

∥∥∥∥V√α̇]1∥∥∥∥2

L2([0,L])

≤ ‖V ‖2L2([0,L])→L2([0,L])

∫ L

0

α̇]1(t)dt

where V : L2([0, L]) → L2([0, L]) is the Volterra operator. Since the Volterra operator acting
on L2([0, L]) has norm (2L)/π ([28], Problem 188) and

α(F ([0, L]× Σ)) =

∫ L

0

α̇]1(t)dt,

we have

µ(F ([0, L]× Σ)) ≤ 4L2

π2
α(F ([0, L]× Σ)).

�

3.4. Completion of the proof of (1.3) in the boundaryless case. Let

Σ =
{
ρ ∈ T ∗∂B(0,R)M : (Hpr)(ρ) < 0

}
,

where r is the radial variable defined in the Euclidean end(s) as in Definition 2.1. Thus, these
are the inward-pointing covectors over the boundary of the ball of radius R. By convexity of
Euclidean balls, ⋃

t>0

exp(tHp)(Σ) ⊃ Ic,
⋃
t≤0

exp(tHp)(Σ) ⊂ I,
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and F as in Proposition 3.9 is a diffeomorphism onto its image.
Then, by (3.3) and Lemmas 3.3, 3.4, and 3.6, (µ, µj , α,Σ) satisfy the hypotheses of Proposi-

tion 3.9 with ϕt = exp(tHp). Therefore,

µ
( L⋃
t=0

ϕt(Σ ∩ S∗M)
)
≤ 4L2

π2
α(T ∗M),

where we may take L = L(g,R′). So, since 0 ≤ χ2 ≤ 1 and

suppχ ∩ S∗M ⊂
L(g,R′)⋃
t=0

ϕt(Σ ∩ S∗M),

we conclude

lim sup
h→0

‖χu‖L2 =
√
µ(χ2) ≤ 2L(g,R′)

π

√
α(T ∗M) ≤ lim inf

2L(g,R′)

π
‖f(h)‖L2 .

This completes the proof of (1.3) in the case of a manifold without boundary.

3.5. Uniformity of k0 and Sobolev estimates. In this section we prove the uniformity of
k0 statement from Theorem 1, as well as the more general Sobolev mapping property (1.4). We
will omit the terms L,Lj from this discussion for brevity, but will on the other hand prove a
slightly more general statement about metric perturbations as follows.

We begin with uniformity in the case s = 0, i.e., in the basic L2 estimate. Fix R1 > 0 and
let C be a subset of C1,1 metrics so that for g ∈ C, g is nontrapping and supp(I − g) ⊂ B(0, R1).
Furthermore, suppose that for any {gk}∞k=1 ⊂ C, there exists a subsequence {gkm}∞m=1, γ > 0 and
g ∈ C so that ‖gkm−g‖C1,γ → 0 and limm→∞ L(gkm , R1) ≥ L(g,R1). Let χ ∈ C∞c (B(0, R); [0, 1])
and R1 < R′ < R′′ < R so that suppχ ⊂ B(0, R′).

We start by showing that there exists k0 > 0 so that for all g ∈ C, and k > k0,

(3.17) ‖χ(P (g)− k2 − i0)−1χ‖L2→L2 ≤ 2L(g,R′′)

πk

Suppose not. Then since L(g,R′) < L(g,R′′), there exists {gk}∞k=1 ⊂ C, hk → 0, fk ∈ L2(M),
uk ∈ Hs

loc(M), with ‖χuk‖L2 = 1, and δ > 0 so that

(h2
kP (gk)− 1)uk = hkχfk,

1 = ‖χuk‖L2 ≥
2L(gk, R

′)‖fk‖L2(M)

π
+ δ.(3.18)

Extracting subsequences, we may assume that gk → g in C1,γ for some γ > 0 and limL(gk, R
′) ≥

L(g,R′). Note also that by Lemma 3.2, uk is uniformly bounded in L2
loc and hence, by extracting

further subsequences, we may assume that uk has defect measure µ, χfk has defect measure α,
and uk, χfk has joint defect measure µj . Let Σ denote the set of directly incoming points on
T ∗∂B(0,R′)M . By Lemmas 3.3, 3.4, and 3.6, (µ, µj , α,Σ) satisfy the hypotheses of Proposition 3.9

with ϕt = exp(tHp) and p = |ξ|2g − 1. Therefore,

µ
( L⋃
t=0

ϕt(Σ ∩ S∗M)
)
≤ 4L2

π2
α(T ∗M),

and we arrive at a contradiction just as above.
Finally, to obtain the bound (1.4), we begin by considering the case s = 2. We compute

(P (g) + k2)χ(P (g) − k2 − i0)−1χf = χ2f + ([−∆Rn , χ] + 2k2χ)(P (g) − k2 − i0)−1χf.
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We next consider [−∆Rn , χ] and show that there exists k1 > 0 so that for k > k1 and g ∈ C,

(3.19) ‖[−∆Rn , χ](P − k2 − i0)−1χ‖L2→L2 ≤ sup
S∗M
|H
|ξ|2
χ|2L(gk, R

′′)

π
.

Suppose that (3.19) does not hold. Then there is δ > 0 and a sequence hk → 0, fk ∈ L2(M),
uk ∈ H2(M) with ‖fk‖L2 = 1, uk so that

(h2
kP (gk)− 1)uk = χhkfk, uk|∂M = 0,

‖h−1
k [−h2

k∆Rn , χ]uk‖L2 ≥ sup
S∗M
|H
|ξ|2
χ|2(L(gk, R

′) + δ)

π

Let χ̃ ∈ C∞c (B(0, R′); [0, 1]) with χ̃ ≡ 1 on suppχ. As before, we may assume that uk has a
defect measure and then, by Lemma 4.2 applied with χ replaced by χ̃ ∈ C∞c (B(0, R′)),

sup
S∗M
|H
|ξ|2
χ2|4(L(gk, R

′) + δ)2

π2
≤ ‖h−1[−h2∆Rn , χ]χ̃uk‖2L2 → µ(|H

|ξ|2
χ|2χ̃2)

≤ sup
S∗M
|H
|ξ|2
χ|2µ(χ̃2) ≤ sup

S∗M
|H
|ξ|2
χ|2 4(L(g,R′))2

π2
.

a contradiction.
Thus, by (3.17), for k > k0, and any g ∈ C,

‖(P (g) + k2)χ(P (g)− k2 − i0)−1χf‖L2

≤ 2k2‖χ(P (g)− k2 − i0)−1χf‖L2 + ‖χ2f‖+ ‖[−∆Rn , χ](P (g)− k2 − i0)−1χf‖

≤ 4L(g,R′′)k

π
‖χf‖L2 + ‖[−∆Rn , χ](P (g)− k2 − i0)−1χf‖L2 + ‖χ2f‖L2 .

Using (3.19), we have for k > k1, and any g ∈ C,

‖[−∆Rn , χ](P (g)− k2 − i0)−1χf‖L2 ≤ sup
S∗M
|H
|ξ|2
χ|2L(gk, R

′′)

π
‖f‖L2 .

In particular, letting

k > max
(
k0, k1,

supS∗M |H|ξ|2χ|2L(g,R′′) + π

4(L(g,R)− L(g,R′′))

)
,

we have for all g ∈ C,

(3.20)

‖χ(P (g)− k2 − i0)−1χf‖H2 = ‖(P (g) + k2)χ(P (g)− k2 − i0)−1χf‖L2

≤ 4L(g,R)k

π
‖f‖L2 .

Since L(g,R′′) ≤ L(g,R), the general case of 0 ≤ s ≤ 2 then follows by interpolation be-
tween (3.17) and (3.20)

If we choose C to be a subset of an open neighborhood in the C2,α topology of a given C2,α

nontrapping metric, then provided this neighborhood is chosen sufficiently small, all the metrics
in C are nontrapping, and the subsequence condition is guaranteed by the compactness of the
embedding C2,α ↪→ C1,γ ; indeed we have subsequential convergence in C1,1, which ensures that
limL(gkm , R1) = L(g,R1). This choice of C then gives the uniformity assertion from Theorem 1.
This completes the proof of (1.3) in the case of a manifold without boundary.
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4. Manifolds with boundary

We now turn to the case of manifolds with boundary. Our treatment of the propagation of
defect measures in this setting is motivated by previous work of Miller [36] and Burq–Lebeau
[10]; see also [8].

Let M̃ be an open manifold extending M and extend P to an operator on M̃ . We then let u
be the extension of u by 0. As in the boundaryless case, we will assume that we have a sequence
h = hj ↓ 0 with

Pu(h) = hχf(h) in M, u|x1=0 = 0,

and we take

‖f(h)‖ = 1,

lim
h→0
‖χu‖L2 = M > L(Ω, g, R).

Since propagation of singularities is a local consideration, we may employ Riemannian normal
coordinates (x1, x

′) in which ∂M is given by x1 = 0, M = {x1 > 0}, and the operator P is given
by

(4.1) P = (hDx1
)2 +R(x1, x

′, hDx′) + hE

for some self-adjoint E ∈ Diff1
h and for R ∈ Diff2

h with symbol r(x1, x
′, ξ′).

We proceed as before, letting µ be a defect measure of u, α be a defect measure of χf, µj a
joint defect measure of u and χf . Finally, let ν̇ be the defect measures of hDx1

u|x1=0 on ∂M.
Thus,

(4.2)

lim
h↓0
〈a(x, hD)u, u〉 =

∫
a dµ

lim
h↓0

〈
a(x, hD)χf, χf

〉
=

∫
a dα

lim
h↓0

〈
a(x, hD)χf, u

〉
=

∫
a dµj ,

lim
h↓0
〈b(x′, hD′)hDxu, hDxu〉∂M =

∫
∂M

b dν̇.

4.1. Local study of the measure µ.

Lemma 4.1. For a = a0(x, ξ′) + a1(x, ξ′)ξ1 with ai ∈ C∞c ([0, ε)× T ∗∂M), we have

µ(Hpa) = 2 Imµj(a)− ν̇(a1|x1=0).

Proof. Here we work in a small neighborhood of the boundary and write

A = a0(x, hD′) + a1(x, hD′)hDx1
.

Equation (3.2) must now be modified owing to boundary terms arising in integration by parts.
In particular,

〈(hDx1
)2Au, u〉M

= ih(〈hDx1Au, u〉L2(∂M) + 〈Au, hDx1u〉L2(∂M)) + 〈Au, (hDx1)2u〉L2(M).

There is also a term arising when we integrate by parts to change 〈f,Au〉 to 〈Au, f〉 but this
term is O(h). Now,

〈hDx1
Au, u〉L2(∂M) = 〈a0hDx1

u+ a1(hDx1
)2u, u〉L2(∂M) + o(1)

= 〈a0hDx1
u+ a1(1 + h2∆∂M )u, u〉L2(∂M) + 〈a1hχf, u〉∂M + o(1)
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Now, with Dirichlet boundary conditions, this is actually just 0. Moreover,

〈Au, hDx1
u〉L2(∂M) = 〈[a0 + a1hDx1

]u, hDx1
u〉 = 〈a1hDx1

u, hDx1
u〉.

So (3.2) now reads

ih−1〈[P,A]u, u〉M = Im〈Aχf, u〉M − 〈a1hDx1
u, hDx1

u〉∂M + o(1). �

Now, we want to upgrade this to a statement for all functions in C∞c (T ∗M). First, we need
to show that µ is supported on S∗M .

Lemma 4.2. Let µ be a defect measure associated to u as above. Then suppµ ⊂ S∗M and
µ(χ2) = 1. Moreover, for b ∈ S1(T ∗M), supported away from ∂M ,

lim
h→0
‖Oph(b)χu‖2L2 = µ(|b|2χ2).

Proof. Note that

Pu = 1x1≥0Pu+ h(−δ(x1)⊗ h∂x1u|x1=0 + hδ′(x1)⊗ u|x1=0)

Now, suppose a ∈ C∞c (T ∗M̃) has supp a ∩ {p = 0} = ∅. Then, there exist E ∈ Ψ−2 so that
a(x, hD) = EP +OD′→C∞(h∞). Therefore,

a(x, hD)u = a(x, hD)1x1≥0Pu+ hE(−δ(x1)⊗ h∂x1
u|x1=0)

Now, since E : Hs
h → Hs+2

h , is bounded and ‖h∂x1
u|x1=0‖ ≤ C, we have

a(x, hD)u = a(x, hD)1x1≥0Pu+OL2(h1/2).

In particular, this implies that µ(a) = 0 completing the proof.
To see that µ(χ2) = 1, let ψ ∈ C∞c (R) with ψ ≡ 1 on |s| ≤ 2. Then, as above there exists

E ∈ S−2 so that

χ(1− ψ)(|hD|)χ = EP +OD′→S(h∞)

and hence again

χ(1− ψ)(|hD|))χu = OL2(h
1
2 ).

In particular,

1 = 〈χ2u, u〉 = 〈χψ(|hD|)χu, u〉+O(h
1
2 )

=

∫
χ2(x)ψ(|ξ|)dµ =

∫
χ2dµ

where in the last line we use the fact that µ is supported on S∗M .
The last claim follows the same arguments as in the boundaryless case. �

We now introduce notation for the even and odd parts of smooth functions on T ∗M.

Definition 4.3. For a ∈ C∞(T ∗M), let

ao(x, ξ1, ξ
′) =

a(x, ξ1, ξ
′)− a(x,−ξ1, ξ′)

2ξ1
,

ae(x, ξ1, ξ
′) =

a(x, ξ1, ξ
′) + a(x,−ξ1, ξ′)

2

Thus, a = ae + ξ1ao and ae, ao are both even functions of ξ1.

Next we upgrade the test functions for which we can compute µ(Hpa).
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Lemma 4.4. For a ∈ C∞c (T ∗M̃),

µ(Hpa) = 2 Imµj(a)− ν̇(ao|x1=0)

In particular, for a = a(x, x1ξ1, ξ
′) ∈ C∞c (bT ∗Rn+),

µ(Hpa) = 2 Imµj(a).

Remark 4.5. Here, bT ∗Rn+ denotes the b-cotangent bundle of this local model for a manifold
with boundary, constructed so that smooth functions on this space are simply functions of
(x, x1ξ1, ξ

′). See Section 4.2 for a more precise description of this space and for additional

references. We are regarding a here as extended to a smooth function on T ∗M̃ ; the choice of
extension is immaterial, as µ is supported on M.

Proof. Since ao and ae are both even functions, we may write

ae/o(x, ξ1, ξ
′) = ãe/o(x, ξ

2
1 , ξ
′)

for smooth functions ãe/o; thus,

a = ãe(x, ξ
2
1 , ξ
′) + ão(x, ξ

2
1 , ξ
′)ξ1.

Now, since Hp is tangent to S∗M̃ , Hp1S∗M̃a = 1
S∗M̃

Hpa. In particular, since suppµ ⊂ S∗M̃ ,

µ(Hpa) = µ(Hp1S∗M̃a).

Now,

S∗M̃ := {ξ2
1 − r(x, ξ′) = 0}.

Therefore,

1
S∗M̃

a = 1
S∗M̃

[ãe(x, r(x, ξ
′), ξ′) + ão(x, r(x, ξ

′), ξ′)ξ1].

Let be/o = ae/o(x, r(x, ξ
′), ξ′). Then we have

µ(Hpa) = µ(Hp1S∗M̃ [be + boξ1])

= µ(Hp(be + boξ1))

= 2 Imµj(be + boξ1)−ν̇(bo|x1=0).

Now, since suppµ ⊂ S∗M , suppµj ⊂ S∗M (by Lemma 3.3) and hence

µj(be + boξ1) = µj(a).

Therefore, we have

µ(Hpa) = 2 Imµj(a)− ν̇(bo|x1=0).

�

Before proceeding further, we recall the decomposition of T ∗∂MM into elliptic, hyperbolic,
and glancing regions. In the notation of (4.1), with r the symbol of R(x1, x

′, hDx′), we write

(y, ξ1, ξ
′) ∈ E if r(0, x′, ξ′) > 0

(y, ξ1, ξ
′) ∈ H if r(0, x′, ξ′) < 0

(y, ξ1, ξ
′) ∈ G if r(0, x′, ξ′) = 0

to denote the elliptic resp. hyperbolic resp. glancing sets.
We further split the glancing set into subsets as follows: we let

Gd := G ∩ {H2
px1 > 0},

Gg := G ∩ {H2
px1 < 0}
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these are the diffractive and gliding sets respectively. We will also employ the filtration of the
remainder of the glancing set given by the order of contact with the boundary as follows:

Gk := {ρ ∈ G | (Hj
px1)(ρ) = 0, for 0 ≤ j < k, and (Hk

px1)(ρ) 6= 0}.

(We remark that this definition differs from the Gk defined in [29, Section 24.3] in that our Gk
does not include higher-order glancing as well.)

With an open set U ⊂ bT ∗M fixed, we will also use the notation

G̃k := {ρ ∈ U | ρ is connected to Gk by a generalized bicharacteristic}.

We further let

G̃≥k :=
⋃
k′≥k

G̃k
′
.

Near Glancing:

We now commence the study of the measure µ near the glancing set G. Here we follow an
inductive strategy employed in [10].

Lemma 4.6. There exists a positive measure µ∂ on the glancing set G so that

µ = µ1x1>0 + δ(x1)⊗ δ(Hpx1)⊗ µ∂ .

In particular, µ(H) = 0.

Proof. Let aε = ϕ(x, ξ′)εχ(ε−1x1) with χ ∈ C∞c (R), χ(0) = χ′(0) = 1.
By Lemma 4.4,

µ(Hpaε) = 2 Imµj(aε).

By the Dominated Convergence Theorem,

2 Imµj(aε)→ 0

On the other hand,

Hpaε = χ′(ε−1x1)ϕ(x, ξ′)Hpx1 +O(ε).

So, by dominated convergence,

µ(Hpaε)→ µ(1x1=0Hpx1ϕ).

In particular,

µ1x1=0(Hpx1ϕ) = 0

for any ϕ and hence µ1x1=0 is supported on G. Since it is a positive measure, µ1x1=0 takes the
form specified. �

Lemma 4.7. We have

−(H2
px1)µ∂ = 4ν̇1G .

In particular, since µ∂ and ν̇ are positive measures,

suppµ∂ ∪ supp ν̇ ⊂ {H2
px1 ≤ 0},

hence

µ(Gd) = 0,

and for E ⊂ G,
ν̇(E) = ν̇

(
E ∩ {H2

px1 < 0}
)
.
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Proof. Since Hpx1 = 2ξ1,

Hp(2a(x, ξ)ξ1) = aH2
px1 + 2ξ1Hpa.

Let aε = χ(ε−1x1)χ(ε−1r(x, ξ′))2a(x, ξ′)ξ1 where χ ∈ C∞c (R) has χ(0) = 1, χ′(0) = 0. Then

Hpaε = ε−1χ′(ε−1x1)χ(ε−1r(x, ξ′))2aξ1Hpx1

+ ε−1χ(ε−1x1)χ′(ε−1r(x, ξ′))2aξ1Hpr

+ 2ξ1χ(ε−1x1)χ(ε−1r(x, ξ′))Hpa+ aχ(ε−1x1)χ(ε−1r(x, ξ′))H2
px1

= aχ(ε−1x1)χ(ε−1r(x, ξ′))H2
px1 +O(1)(|χ′(ε−1x1)|+ |χ′(ε−1r(x, ξ′))|+ ε1/2)

Here we have used that on S∗M, Hpr = −Hpξ
2
1 = O(ξ1). Then by dominated convergence,

µ(Hpaε)→
1

2
µ∂([H2

px1]a).

On the other hand, since aε = O(
√
ε) on S∗M,

µ(Hpaε) = 2 Imµj(aε)− ν̇(2a(0, x′, ξ′)χ(ε−1r))→ −ν̇(21Ga)

So, −H2
px1µ

∂ = 4ν̇1G as claimed. �

4.2. Invariance of the measure µ.

The b-cotangent bundle, bT ∗M

In our discussion of the invariance of µ, it will be convenient to have some facts about the
b-cotangent bundle, bT ∗M . We refer the reader to [29, Section 18.3] (where the notation T̃ ∗M
is used) and [49] for more details on the bT ∗M . Recall that bT ∗M is the dual to the vector
bundle of vector fields tangent to ∂M . In local coordinates with ∂M = {x1 = 0}, the bundle of
vector fields tangent to M is generated over C∞(M) by the vector fields

{x1∂x1
, ∂x2

, . . . , ∂xn}.

Over x1 > 0, bT ∗M is canonically diffeomorphic to T ∗M with

(x, ζ, ξ′) 7→ (x, ζ/x1, ξ
′).

In fact, we can identify T ∗M as a subset of bT ∗M using the canonical projection map π : T ∗M →
bT ∗M given in local coordinates by

π : (x, ξ1, ξ
′) 7→ (x, x1ξ1, ξ

′).

Using this map, we can push forward the measure µ to a measure on bT ∗M . It is actually this
pushforward π∗µ for which we will show invariance under the generalized bicharacteristic flow.

Define

HG
p = Hp +

H2
px1

H2
x1
p
Hx1

.

That is, HG
p is the gliding vector field. Then HG

p is tangent to G (cf. [29, Section 24.3]). Let

also ϕt : bT ∗M → bT ∗M denote the generalized bicharacteristic flow on bT ∗M .



20 JEFFREY GALKOWSKI, EUAN A. SPENCE, AND JARED WUNSCH

Invariance

The aim of the rest of this section is to show that

(4.3) π∗µ(q ◦ ϕt)− π∗µ(q) =

∫ t

0

2 Imπ∗µ
j(q ◦ ϕs)ds, q ∈ C∞c (bT ∗M).

The main lemma is as follows.

Lemma 4.8. Let µ and µ1 be measures on T ∗M supported by S∗M with µ1 � µ. The following
are equivalent:

(1)

(4.4) π∗µ(q ◦ ϕt)− π∗µ(q) =

∫ t

0

π∗µ1(q ◦ ϕs)ds, q ∈ C∞c (bT ∗M).

(2) For a = a(x1, x
′, x1ξ1, ξ

′)

(4.5) µ(Hpa) = µ1(a).

and µ(Gd ∪H) = 0.

Once we prove this, Lemmas 4.4 and 4.7 imply that µ satisfies condition (2) with µ1 = 2 Imµj

and hence satisfies (4.3).

Proof of Lemma 4.8
Here we follow [10, Section 3.3].

(1) implies (2):
Let a ∈ C∞c (T ∗M) with a = a(x, x1ξ1, ξ

′). Then there exists q ∈ C∞c (bT ∗M) such that
a = π∗q. Then, q ◦ ϕs(ρ) is differentiable from the left and right for all s and

(4.6) ∂∓s (q ◦ ϕs)(ρ) = Hpa(π−1
± (ϕs(ρ))),

where π−1
± denotes the outward and inward pointing inverses of π. In particular, for s such that

ϕs(ρ) /∈ H,

∂s(q ◦ ϕs)(ρ) = Hpa(ϕs(ρ)).

Now, π∗µ(H) = 0 since π∗µ satisfies (4.4) and H is transverse to the flow ϕs. Therefore, since
π∗µ satisfies (4.4), differentiating yields

π∗µ(∂tq ◦ ϕt|t=s) = π∗µ1(q ◦ ϕs)

and setting s = 0, gives

µ(Hpa) = µ1(a).

Finally, since Gd is transverse to the flow, and π∗µ satisfies (1), π∗µ(1Gd) = µ(1Gd) = 0. This
completes the proof of (2). �

(2) implies (1):

Lemma 4.9. For b ∈ C∞c (T ∗M),

µ(Hpb) = µ1(b) + µ(1x1=0∂x1
rbo|ξ21=r(x,ξ′)) + u0(bo|x1=0,ξ21=r(0,x′,ξ′))

where u0 is a measure supported H, 1x1=0µ is supported by G \ Gd, and

bo =
b(x, ξ1, ξ

′)− b(x,−ξ1, ξ′)
2ξ1

is the ξ1 odd part of b.
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Proof. Write

b = be + ξ1bo

where

be =
b(x, ξ1, ξ

′) + b(x,−ξ1, ξ′)
2

.

Then, be = b̃e(x, ξ
2
1 , ξ
′), b0 = b̃o(x, ξ

2
1 , ξ
′) and so on S∗M ,

be = b̃e(x, r(x, ξ
′), ξ′) =: ae(x, ξ

′), bo = b̃o(x, r(x, ξ
′), ξ′) =: ao(x, ξ

′).

So, since Hp is tangent to S∗M ,

µ(Hpb) = µ(Hp(ae + ξ1ao)) = µ(Hpξ1ao) + µ1(ae).

Now, let

(4.7)
χ ∈ C∞c (R), χ ≡ 1 near 0, χ′ ≤ 0 on x1 ≥ 0,

χε(x1) = χ(ε−1x1).

Then,

µ(Hp(1− χε)ξ1ao)) = µ1((1− χε)ξ1ao)→ µ1(1x1>0ξ1ao).

Now,

µ(Hp(χεξ1ao)) = µ(χεξ1Hpao + χε∂x1rao + 2ε−1χ′εξ
2
1ao) =: Iε + IIε + IIIε.

By the dominated convergence theorem,

Iε → µ(1x1=0ξ1Hpao), IIε → µ(1x1=0∂x1rao).

Note that since µ(H) = 0 and ξ1 = 0 on {x1 = 0} \ H, we have

(4.8) Iε → 0, IIε → µ(1x1=0∂x1
rao).

Now, observe that

µ1((1− χε)ξ1ao) = µ(Hp(1− χε)ξ1ao) = µ((1− χε)Hpξ1ao)− IIIε.

So,

IIIε = µ((1− χε)Hpξ1ao)− µ1((1− χε)ξ1ao)
and in particular,

(4.9) lim
ε→0

IIIε(ao) = µ(1x1>0Hpξ1ao)− µ1(1x1>0ξ1ao).

On the other hand for ao ≥ 0,

IIIε(ao) ≤ 0.

Therefore, IIIε is a family of measures with a weak limit. In particular, IIIε → u0 for some
measure u0 supported in x1 = 0. In fact, this also shows that

(4.10) ao 7→ µ(1x1>0Hp(ξ1ao))− µ1(ξ1ao) =: u0(ao).

is a measure. We now check that u0 is supported in H. Note that once we show this the proof
will be complete, since by (4.8) and (4.9) together with µ1(H) = 0, we then have

µ(Hpb) = µ1(ae) + µ1(ξ1ao) + µ(1x1=0∂x1rao) + u0(ao)

= µ1(b) + µ(1x1=0∂x1
rao) + u0(ao)

as desired.
Let χ, χε be as in (4.7). Note that for each ε > 0, aoχε(x1)χ√ε(ξ1) can be written as a

smooth function of (x1, x
′, x1ξ1, ξ

′). Using (4.10), we now decompose

u0(aoχε(x1)χ√ε(ξ1)) = u0
1(ε) + u0

2(ε) + u0
3(ε) + u0

4(ε)
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where

u0
1(ε) = µ(1x1>0χε(x1)χ√ε(ξ1)ξ1Hpao),

u0
2(ε) = µ(1x1>0ε

−1χ′ε(x1)χ√ε(ξ1)2ξ2
1ao),

u0
3(ε) = µ(1x1>0χε(x1)(ξ1ε

− 1
2χ′√ε(ξ1) + χ√ε(ξ1))∂x1rao),

u0
4(ε) = −µ1(ξ1aoχε(x1)χ√ε(ξ1)).

Clearly u0
1(ε) → 0 by dominated convergence. The same is true of u0

2(ε) : the function
χ′ε(x1)χ√ε(ξ1)2ξ2

1ao is uniformly bounded as ε ↓ 0 since ξ2
1 ≤ Cε on suppχ√ε(ξ1). Next,

u0
3(ε)→ 0

as ξ1ε
− 1

2χ′√
ε
(ξ1) + χ√ε(ξ1) likewise remains uniformly bounded. Finally,

u0
4(ε)→ −µ1(1x1=01ξ1=0ξ1ao) = 0.

In particular, this implies by the dominated convergence theorem that

u0(ao1x1=ξ1=0) = 0

and so u0 is supported by H. �

Invariance away from glancing
We now prove the integral invariance statement (1) away from glancing.

Lemma 4.10. Suppose ã = ã(x, σ, ξ′) ∈ C∞c and let a = ã(x, x1ξ1, ξ
′). Furthermore, assume

that for ρ ∈ supp a, on [−T, 0] ϕ−t(ρ) intersects x1 = 0 at most once and in a hyperbolic point.
Then,

µ(a)− µ(a ◦ ϕ−T ) =

∫ 0

−T
µ1(a ◦ ϕ−s)ds.

Proof. Let −T (ρ) be the time that ϕ−T (ρ)(ρ) ∈ H. Then∫ 0

−T
Hp(a ◦ ϕs)(ρ)ds =

∫ −T (ρ)−0

−T
Hp(a ◦ ϕs)ds+

∫ 0

−T (ρ)+0

Hp(a ◦ ϕs)ds

= a ◦ ϕ−T (ρ)−0(ρ)− a ◦ ϕ−T (ρ) + a− a ◦ ϕ−T (ρ)+0(ρ)

Now, since at x1 = 0, a(0, x′, ξ1, ξ
′) = a(0, x′,−ξ1, ξ′), a ◦ ϕ−T (ρ)−0 = a ◦ ϕ−T (ρ)+0 and we have∫ 0

−T
Hp(a ◦ ϕs)(ρ)ds = a(ρ)− a ◦ ϕ−T (ρ).

Now, by Lemma 4.9∫ ∫ 0

−T
Hp(a ◦ ϕs)(ρ)dsdµ(ρ) = (H∗pµ)

(∫ 0

−T
a ◦ ϕsds

)
= µ1

(∫ 0

−T
a ◦ ϕsds

)
+ u0

[( ∫ 0

−T
a ◦ ϕsds|H

)
o

]
.

Note that

ρ 7→
∫ 0

−T
a ◦ ϕsds|H(ρ)

is even under ξ1 7→ −ξ1, since points (x = 0, y,±ξ, η) over the hyperbolic set are both mapped
to the same point in T ∗M◦ under the short-time flow; thus the u0 term vanishes. Therefore,∫ 0

−T

∫
a ◦ ϕ−s(ρ)dµ1ds = µ1

(∫ 0

−T
a ◦ ϕsds

)
=

∫
a− a ◦ ϕ−T dµ.
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�

Invariance on the glancing set
We now turn to analysis at the glancing set. Our strategy will be to prove (1) for all t < t0

fixed and small. To do this, we may break up the support of q by a partition of unity and work
locally, assuming that q is replaced by a function a supported in a neighborhood U of a point
ρ ∈ G; we will show that for each such U, if t0 is taken to be small, (1) holds with q replaced by
a.

We will do this using a ‘layer stripping’ argument. First, we ‘strip away’ the hyperbolic layer

using the invariance established in Lemma 4.10. In particular, recall that G̃ denotes the set of
generalized bicharacteristics in U which encounter G. Then we have already seen that (1) holds

on G̃c. Since G̃c is open, π∗1G̃cµ satisfies

(4.11) π∗1G̃cµ(q ◦ ϕt)− π∗1G̃cµ(q) =

∫ t

0

π∗2 Im 1G̃cµ1(q ◦ ϕs)ds, q ∈ C∞c (bT ∗M).

In particular, since (1) implies (2), 1G̃cµ satisfies

(4.12) 1G̃cµ(Hpa) = 1G̃cµ1(a).

Subtracting this from (4.5) for µ, µ1G̃ satisfies

(4.13) µ1G̃(Hpa) = 1G̃µ1(a).

Thus we may turn our attention to studying the new measures µ1G̃ , 1G̃µ1. By a slight abuse of

notation, then we assume henceforth that µ and µ1 are supported on G̃.
As we proceed through the proof, we will ‘strip away’ the higher order tangent layers. We

start by showing that at points where the bicharacteristics of Hp are tangent to exactly order 2,
the measure is invariant in the sense of (1). Once we have shown this, we can argue as we did
to remove the hyperbolic set and replace the measure µ by µ1G̃≥3 . We then prove invariance on

G̃k by induction. As before, the fact that (1) implies (2) allows us to assume that µ is supported

on G̃≥k. Then, since the flow is transverse to Gk we may work with a measure supported on G̃k
when showing invariance at order k. We will obtain this invariance by using the transversality of
the flow to Gk to show that there is no jump in the measure across these points. In particular,
this argument will show that µ accumulates no mass across Gk and thus that the invariance
continues to hold.

The case of Gd
We choose the neighborhood of U of ρ ∈ G̃d so small that U ∩ (H∪G \Gd) = ∅. Next, suppose

that a ∈ C∞c (U). Recall that

µ(Hpa) = µ1(a) + µ(1x1=0∂x1
rao|ξ21=r(x,ξ′)) + u0(ao),

with u0 supported in H ∩ suppµ and µ(Gd) = 0. Since suppµ ⊂ G̃ and supp a ⊂ U , we have

µ(Hpa) = µ1(a).

and hence (4.4) holds since the generalized bicharacteristics through Gd are bicharacteristics of
Hp.

The case of Gg
Let G̃g be the set of generalized bicharacteristics encountering Gg in U . Recall that we may

assume µ and µ1 are supported on G̃g; may further choose U small enough so that U ∩ G̃g ⊂ Gg,
hence we may in fact assume at this stage that µ and µ1 are supported by Gg.
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Let a ∈ C∞c (U). For q = q(x1, x
′, x1ξ1, ξ

′), 1GH
G
p q = 1GHpq. Moreover, since HG

p x1 =

HG
p ξ1 = 0, letting a0 = a|ξ1=0,

(4.14) 1GH
G
p a = 1GH

G
p a0 = 1GHpa0.

Now, since on U , suppµ ⊂ Gg
(4.15) µ(HG

p a) = µ(1GgH
G
p a) = µ(1GgH

G
p a0) = µ(Hpa0) = µ1(a0) = µ1(1Gga0) = µ1(a)

Since HG
p generates the bicharacteristic flow in Gg, this implies (4.4).

Remark 4.11. While it may seem at first that the argument used for Gg applies directly to
higher order tangencies, we observe that it does not. In fact, the equality µ(Hpq) = µ1(q) for
q = q(x, x1ξ1, ξ

′) a priori only implies that µ mass can either ‘stick’ to the boundary as in Gg or
instantly detach from the boundary as in Gd. It does not rule out either case. In Gg, the fact

that trajectories which detach from the boundary instantly leave M, while in Gd, the fact that
µ(Gd) = 0, rule out detaching from and sticking to the boundary at Gg and Gd respectively. In
order to determine whether mass at a point of higher order tangency sticks or detaches, we will
use the transversality of the flow to such points to show that mass can neither accumulate nor
dissipate.

Higher order tangencies
Recall that

Gk := {ρ ∈ G | (Hj
px1)(ρ) = 0, for 0 ≤ j < k and (Hk

px1)(ρ) 6= 0}.

We have shown that (4.3) holds for a ∈ C∞c (T ∗M) with supp a ∩ Gk = ∅ for k ≥ 3. We now
proceed by induction on k.

Let r0(x′, ξ′) = r(0, x′, ξ′) and r1(x,′ , ξ′) = ∂x1r(0, x
′, ξ′). Then note that by [29, Lemma

24.3.1],

Gk = {x1 = 0 = 1− r(0, x′, ξ′), Hj
r0r1 = 0, 0 ≤ j < k − 2, Hk−2

r0 r1 6= 0}.

For each k, let G̃k denote the set of generalized bicharacteristics encountering Gk in a small
fixed neighborhood of Gk.

Suppose (4.4) holds for q ∈ C∞c (T ∗M) with supp q∩G̃k = ∅ for k ≥M−1. We show that (4.4)

holds for a ∈ C∞c (T ∗M) with a ∩ G̃k = ∅ for k ≥M .
Let ρ ∈ GM and U a neighborhood of ρ so that U ∩ Gk = ∅ for k > M . As before, we may

assume µ and µ1 are supported on G̃≥M ; thus by our choice of U , we may in fact assume without

loss of generality that µ, µ1 are supported on G̃M . Let (x2, ρ) be coordinates on T ∗(∂M) so that
∂x2 = Hr0 . Shrinking U if necessary, by the implicit function theorem there exists Θ(ρ) such
that on U,

G̃M ∩ GM = {(x, ξ) ∈ G̃M | x2 = Θ(ρ)}.
Let

G̃0 := G̃M ∩ GM , G̃+ := {(x, ξ) ∈ G̃M | x2 > Θ(ρ)},

G̃− : {(x, ξ) ∈ G̃M | x2 < Θ(ρ)}.

We write

µ1G̃M = µ− + µ+ + Υ,

µ− = 1G̃−µ, µ+ = 1G̃+µ, Υ = 1G̃0µ.

Then, for q = q(x1, x
′, x1ξ1, ξ

′) supported in U,

(4.16) Υ(Hpq) = −µ−(Hpq)− µ+(Hpq) + µ1(q).
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Let

H̃(ρ) =

{
Hp(ρ) ρ /∈ Gg
HG
p (ρ) ρ ∈ Gg;

this vector field generates the bicharacteristic flow on G̃M , so by our inductive hypothesis,

(4.17) H̃∗µ = µ1

on G̃M\GM . Moreover, since on G̃0 we have HM
p x1 6= 0, the flow within U (perhaps after further

shrinking that set) for forward and backward time is either in {x1 > 0} or lies entirely in Gg
(with separate cases for forward/backward flow depending on the parity of M and the sign of

HM
p x1). In either case, the flow stays away from H, hence is generated by H̃ on G̃M ∩ U.
Now as in Lemma 3.10 and the surrounding discussion, given any continuous a defined on G0

and ψ ∈ C∞c (R), we extend a to be constant on the flow, and set

µ]a(ψ) = µ(ψ(s)a(ρ));

here we are using ρ ∈ G0 together with s ∈ R as local (non-smooth) coordinates on G̃M defined

by the flow, mapping (−δ, δ) × G̃0 homeomorphically to G̃M via (s, ρ) 7→ exp(tH̃)(ρ). Just as

in Lemma 3.10, the flow invariance established on G̃M\G0 implies that µ]a is AC with respect
to Lebesgue measure on R \ 0; moreover the Radon–Nikodym derivative is itself bounded by a
multiple of sup|a|, hence is a function of s with values in measures on G0, denoted G(s). Finally,
let tr µ̇± = G(0±) denote the restrictions of these functions to G0 from left and right; these are
well defined since the relation (4.17) together with the arguments in Lemma 3.11 show that G
is continuous on s ≤ 0 and on s ≥ 0 separately but that there may be a jump at s = 0.

Moreover, denoting the function ψ(s)a(ρ) by ψ ⊗ a, we have for 0 /∈ suppψ, µ(ψ′ ⊗ a) =
µ1(ψ ⊗ a). So in particular, ∫

[G(a)](s)ψ′(s)ds = µ1(ψ ⊗ a).

Now, let χ ∈ C∞c (R) with χ ≡ 1 on [−1, 1] and suppχ ⊂ (−2, 2) and χε(s) = χ(ε−1s). Then,

µ((1− χε(s))H̃(ψ ⊗ a)) = µ(H̃[(1− χε)ψ]⊗ a) + µ([ψ ⊗ a]H̃χε)

= µ(H̃[(1− χε)ψ ⊗ a]) + µ(ε−1ψχ′(ε−1·)⊗ a)

= µ1((1− χε)ψ ⊗ a) + µ(ε−1ψχ′(ε−1·)⊗ a)

Then,

µ(ε−1ψχ′(ε−1·)⊗ a) = ε−1

∫
R\0

[G(a)](s)χ′(ε−1s)ψ(s)ds

= ψ(0)(Ga(0−)−Ga(0+))−
∫
R\0

Ga(s)χε(s)ψ
′(s)ds+ µ1(χεψ ⊗ a)

→ ψ(0)(Ga(0−)−Ga(0+)) + µ1((ψ ⊗ a)1G̃0)

In particular,

(4.18)
µ+(H̃ψ ⊗ a) + µ−(H̃ψ ⊗ a) = ψ(0)([G(a)](0−)− [G(a)](0+)) + µ1(ψ ⊗ a)

= tr µ̇+(ψ ⊗ a)− tr µ̇−(ψ ⊗ a) + µ1(ψ ⊗ a).

Now we claim that we may also apply (4.16) to the function q = ψ ⊗ a. We begin by

approximating a with a smooth function on G0. Since H̃ locally generates the flow and is at

least Lipschitz across G0, we find that the flow on G̃M is at least C1. We note further that G̃M
is without loss of generality disjoint from H (after appropriately shrinking U) since depending
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on the parity and sign of HM
p x1 along G0 the flow is either gliding or enters x1 > 0 in each of

G̃±. In particular, π(G̃M ) ⊂ bT ∗M is C1. Moreover,

(−δ, δ)× G0 3 (s, q) 7→ ϕs(q) ∈ π(G̃M )

are C1 coordinates on G̃M . Hence b = π∗ψ ⊗ a is C1 on π(G̃M ) and we may extend b to b̃, a C1

function on bT ∗M . Equivalently, setting q̃ = π∗b̃, we have q̃ = b̃(x, x1ξ1, ξ
′) with b̃ a C1 function

of its arguments and q̃|G̃M = ψ ⊗ a.
Since b̃ is C1, we may approximate it in C1 by smooth functions b̃ε and hence we obtain using

the dominated convergence theorem that (4.16) holds for q̃. Finally, since q̃|G̃M = ψ ⊗ a and

suppµ ⊂ G̃M , we obtain (4.16) for q = ψ ⊗ a. Moreover, since µ± are each supported in the

interior or Gg, we can replace H̃ by Hp in (4.18).
Now (4.16) and (4.18) yield:

(4.19) Υ(Hpψ ⊗ a) = − tr(µ̇+)(ψ ⊗ a) + tr(µ̇−)(ψ ⊗ a)

and hence
|Υ(Hpψ ⊗ a)| ≤ C| supψ ⊗ a|.

Since Υ is supported at G̃0, and the collection of functions ψ ⊗ a is dense, this implies that
for all q,

|Υ(Hpq)| ≤ C| sup q|.
Then, using that Υ is a measure supported at G̃0 and Hp is transverse to G̃0, this implies Υ = 0.
Finally, inserting Υ = 0 into (4.19) yields

tr(µ̇−) = tr(µ̇+).

Moreover, since µ1 is absolutely continuous with respect to µ, µ11G̃0 = 0.

Let ψt0(s) = ψ(s+ t0). Then (ψ ⊗ a) ◦ ϕt = ψt ⊗ a and

µ(ψt0 ⊗ a)− µ(ψ ⊗ a) =

∫ t0

0

∂t

∫
[G(a)](s)ψ(s+ t)dsdt

=

∫ t0

0

∫ 0

−∞
[G(a)](s)ψ′(s+ t)ds+

∫ ∞
0

[G(a)](s)ψ′(s+ t)dt

=

∫ t0

0

∫ ∞
−∞

µ1(ψt ⊗ a)ds+ tr µ̇−(a)ψ(t)− tr µ̇+(a)ψ(t)dt

=

∫ t0

0

µ1(ψt ⊗ a)dt

In particular, we have

µ((ψ ⊗ a) ◦ ϕt0)− µ(ψ ⊗ a) =

∫ t0

0

µ1([ψ ⊗ a] ◦ ϕt)dt.

Since the collection of functions of the form ψ ⊗ a is dense in C0(bT ∗M), this completes the

proof that µ is invariant on G̃M .
As there are no infinite order tangencies, G =

⋃
M GM and this completes the proof of (4.4).

�
Finally, to complete the proof of (1.3) we use Proposition 3.9 and the following lemma.

Lemma 4.12. Suppose that µ satisfies (4.3). Let ψ ∈ C1
c (R), Σ be a hypersurface transverse to

the generalized bicharacteristic flow so that ϕt : R × Σ → bT ∗M is a homeomorphism onto its
image, and a ∈ C0

c (Σ). Define fψ,a(ϕt(ρ)) = ψ(t)a(ρ). Then

π∗µ(f∂tψ,a) = 2 Imµj(fψ,a).
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Proof. We have for q ∈ C∞c (bT ∗M),

∂tπ∗µ(q ◦ ϕt)|t=0 = 2 Imµj(q).

Therefore, it is enough to show that we can move the derivative inside π∗µ. This follows from
the dominated convergence theorem since π∗µ(H) = 0. Now approximation of fψ,a by smooth
functions gives the result. �

In order to obtain the required uniformity, we adjust the set C by fixing neighborhood U of
Ω in which we assume that for {gk}∞k=1 ⊂ C, we not only have ‖g− gkm‖C1,γ → 0 for some γ > 0
but also, ‖g−gkm‖C∞(U) → 0. Arguing as in Section 3.5 then completes the proof ot Theorem 2
when Ω 6= ∅.

5. Lower bounds on manifolds without boundary

The idea behind our proof of the lower bounds in Theorem 1 is that near any segment of a
geodesic γ, which is not trapped, P is globally microlocally equivalent to hDx1

and hence it is
enough to construct examples which saturate the L2

comp → L2
loc bounds for the solution operator

for hDx1
where we impose the condition that the solution be supported in x1 ≥ 0.

Let U be an open set. Assume there exists a null bicharacteristic curve γ such that

(5.1) {π(γ(s)), s ∈ (0, L)} ⊂ U, π(γ(s)) /∈ U for s /∈ (0, L).

For any interval I (open or closed), let

ΓI ≡ {γ(s), s ∈ I} ⊂ T ∗M, Γ0
I = {x1 ∈ I, ξ1 = 0, x′ = ξ′ = 0} ⊂ T ∗Rn

Lemma 5.1. There exist neighborhoods V ⊂ T ∗M of Γ[0,L], U ⊂ T ∗Rn of Γ0
[0,L] and a symplec-

tomorphism κ : U → V with

κ : Γ0
[0,L] → Γ[0,L], κ∗p = ξ1.

Proof. Let ρ0 = γ(0). Then by Darboux’s theorem, there exist neighborhood V1 ⊂ T ∗M of ρ0,
U1 ⊂ T ∗Rn of 0 and a symplectomorphism κ1 : U1 → V1 so that

κ∗1p = ξ1, κ1 : Γ0
[0,L] ∩ U1 → Γ[0,L] ∩ V1.

We will extend κ1 so that its image covers a neighborhood of Γ[0,L]. For this, let Σ :=
κ1({x1 = 0} ∩ U1). Shrinking U1 if necessary, we assume that there is ε > 0 so that

(−ε, L+ ε)× Σ 3 (t, q) 7→ ϕt(q) ∈ V ⊂ T ∗M

is a diffeomorphism onto its image, V . Then, let

xi(ϕt(q)) = xi(κ1(q)), 1 < i ≤ n, ξi(ϕt(q)) = ξi(κi(q)), 1 ≤ i ≤ n,
x1(ϕt(q)) = t.

In particular, we have

Hpxi = 0, 1 < i ≤ n, Hpξi = 0, 1 ≤ i ≤ n, Hpx1 = 1.

By Jacobi’s identity, for f, g ∈ C∞(T ∗M),

Hp{g, f} = {g,Hpf} − {f,Hpg}.

Therefore, since the corresponding identities hold at Σ,

{xi, xj} = 0, {ξi, ξj} = 0, {ξi, xj} = δij .

In particular, this implies that κ−1 : V → T ∗Rn

κ−1(q) := (x(q), ξ(q))
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is a symplectomorphism onto its image, U . Furthermore, since p is invariant under Hp, κ
∗p = ξ1

and hence also κ(Γ0
[0,L]) = Γ[0,L]. �

Proposition 5.2. Let γ, a geodesic, and U ⊂M satisfy (5.1). Then for any ε > 0 there exists
χ ∈ C∞c (U) and f ∈ L2 with supp f ⊂ {χ = 1} and u ∈ L2

loc with

Pu = f

and

WFh u ⊂
⋃
s≥0

[
exp(sHp) WFh f

]
.

and where

‖χu‖L2 ≥
(

2L− ε
πh

)
‖f‖L2

Note that u is purely microlocally outgoing by the wavefront set statement, hence is given
by the outgoing resolvent applied to f (modulo O(h∞)).

Proof. We first let κ be a symplectomorphism from T ∗Rn into T ∗M with

κ : Γ0
[0,L] → Γ[0,L], κ∗p = ξ1,

where

Γ0
I = {x1 ∈ I, ξ1 = 0, x′ = ξ′ = 0};

this exists by Lemma 5.1.
Now quantize κ to a microlocally unitary FIO T : C∞c (Rn) → C∞c (M) with parametrix S

such that ST − I, TS − I have no microsupport near Γ0
[0,L] resp. Γ0

[0,L] and such that

ThD1 = PT +O(h∞) microlocally near Γ0
[0,L].

(There are no obstructions to such a quantization as long as we work on a contractible neigh-
borhood of Γ0.) Assume without loss of generality that T is defined on a δ0-neighborhood of
Γ0

[0,L].

Now for any δ < δ0 we define on Rn

f0 =

{
φ(x′) cosπ(x1 − δ)/2(L− 2δ), x1 ∈ [δ, L− δ],
0, otherwise

where φ is smooth and compactly supported in B(0, δ), with∫
|φ(x′)|2 dx′ = 1.

Let

v0 =


0, x1 < δ,

h−1 2(L−2δ)
π φ(x′) sinπ(x1 − δ)/2(L− 2δ), x1 ∈ [δ, L− δ],

h−1 2(L−2δ)
π φ(x′), x1 > L− δ;

Thus of course hD1v0 = f0 as distributions. Let ψ(x1) be a smooth cutoff function supported
in (0, L − δ/4) and equal to 1 on [δ, L − δ/2]. Set u0 = ψ(x1)v0, w = Tu0, and f = Tf0 Then
modulo O(h∞),

Pw ≡ PTu0 ≡ ThDx1
u0 ≡ Tf0 + Tr0 ≡ f + r

where r0 is the error term coming from the hD1(ψ) term. Note that

WF r0 ⊂
{
x1 ∈ [L− δ/2, L− δ/4], |x′| < δ, ξ = 0};
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which is thus in an arbitrarily small neighborhood of the endpoint of Γ0
[0,L]. Thus by the con-

struction of T , r ≡ Tr0 has wavefront set in an arbitararily small neighborhood of γ(L) (as
δ ↓ 0).

Note also that we may construct a cutoff function χ ∈ C∞c (U) such that

χ = 1 on WFh f and χ = 0 on π{exp(sHp)(WFh r), s ≥ 0} :

This follows from our hypotheses since on Rn f is supported on x1 ∈ [δ, L − δ] in a small
neighborhood of Γ0 while WFh r0 ⊂ x1 ∈ [L − δ/2, L − δ/4], and the forward flowout is thus
contained (in these local coordinates) in {x1 ≥ L − δ/2}. Since the Hamilton flow is non-
radial and x1 maps to the flow parameter under κ, we know that WFh r0 is separated from a
neighborhood of Γ[0,L−δ] in base variables, not just in the cotangent bundle, and shrinking δ if
necessary we obtain the separation in the base variables. Note for use below that since χ = 1
on WFh f, pulling back by T yields a fortiori κ∗(χ) = 1 on WFh f0 and hence

(5.2) κ∗(χ) = 1 on
{
x1 ∈ [δ, L− δ], |x′| < δ, ξ = 0}

Finally we set

u = w − (P − i0)−1r

so that

Pu = f.

Owing to the propagation of singularities for the outgoing resolvent, WFh(u − w) lies in the
forward flowout of WFh r; by construction this WFh r is disjoint from the support of χ and by
our geometric hypotheses, its forward flowout remains disjoint from U : here we use the fact
that πγ(L+s) /∈ U for s > 0 and indeed this point escapes to infinity, hence π exp(sHp)(γ(L)) /∈
WFh f for all s > 0. By continuity, the same is true with γ(L) replaced by any point in WFh r
for δ sufficiently small. Thus,

χu = χw +O(h∞).

By microlocal unitarity of T we compute by the Egorov Theorem

‖χu‖2 = ‖χw‖2 +O(h∞)

= ‖SχTSw‖2 +O(h∞)

= ‖Op(κ∗χ)u0‖2 +O(h)

≥
∫ 1−δ

δ

∫
B(0,δ)

|v0|2dx′ dx1 +O(h)

≥
∫ 1−δ

δ

∫
B(0,δ)

h−2 4(L− 2δ)2

π2
|φ(x′)|2 sin2 πx1/2(L− δ) dx′ dx1 +O(h)

=
π

4

1

h2µ3
+O(h),

where

µ =
π

2(L− 2δ)
;

here we have used the fact that κ∗χ equals 1 on the zero section over [δ, 1− δ]×B(0, δ), while
the semiclassical wavefront set of u0 lies within the zero section, hence the last inequality follows
by existence of a microlocal parametrix for Op(κ∗χ) on this set.

Meanwhile,

‖f‖2 =

∫ 1−δ

δ

∫
B(0,δ)

|φ(x′)|2 cos2 πx1/2(L− 2δ) dx′ dx1 =
π

4

1

µ
.
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Thus

‖χu‖
‖f‖

≥ 1

hµ
=

2(L− 2δ)

πh
.

�

Finally, we apply Proposition 5.2 in the case of a nontrapping manifold with Euclidean ends
and P = −h2∆g − 1. Let R1 < R′ < R′′ so that B(0, R′′) ⊂ {χ ≡ 1}. By the definition
of L(g,R′′), there is a null-bicharacteristic (a speed-2 geodesic lifted to S∗M) γ with πγ(0) ∈
∂B(0, R′′), πγ(s) ∈ B(0, R′′) for s ∈ (0, L(g,R′′)) and γ(s) /∈ B(0, R′′) for s > L(g,R′′). In
particular, since L(g,R′) < L(g,R′′), Proposition 5.2 applies to γ with U = B(0, R′′) and
ε < 2L(g,R′′)− 2L(g,R′). In particular, there exist f ∈ L2(M) with supp f ⊂ B(0, R′′) so that

(5.3) Pu = hf, WFh u ⊂
⋃
s≥0

[exp(sHp) WFh f ]

and

‖u‖L2(B(0,R′′)) ≥
2L(g,R′′)− 2L(g,R′′) + 2L(g,R′)

π
‖f‖L2 =

2L(g,R′)

π
‖f‖L2 .

Next, observe that (5.3) implies that

u = (−h2∆g − 1− i0)−1hf +O(h∞‖f‖L2)L2
loc

In particular, letting k = h−1,

‖χ(−∆g − k2 − i0)−1f‖L2 ≥
(

2L(g,R′)

πk
− CNk−N

)
‖f‖L2

completing the proof of the lower bound in Theorem 1.

6. Application to numerical analysis of the finite-element method

6.1. Summary. In this section, we focus on the implications the bound (1.8) has on the numer-
ical analysis of solving the Helmholtz exterior Dirichlet problem by the finite-element method
(FEM). We mention two other numerical-analysis applications of (1.8) in Remarks 6.8 and 6.9
at the end.

We consider the h-version of the FEM; i.e. the solution is approximated in spaces of piecewise
polynomials of fixed degree on a mesh with meshwidth hFEM (we use this notation to avoid a
notational clash with the semiclassical parameter h := k−1 in the rest of the paper). The
question of how fast hFEM must decrease with k to maintain accuracy as k →∞ was thoroughly
investigated in the case of the constant-coefficient Helmholtz equation (i.e. (6.2) below with
A = I and ν = 1) by [30, 31] when d = 1 and by [33, 34, 35, 22] when d = 2, 3. For example, in
the case of piecewise-linear polynomials, and when the solution of the boundary value problem
is nontrapping, the FEM satisfies a quasioptimal error estimate (of the form (6.22) and (6.29)
below) when

(6.1) hFEMk
2 ≤ c

for a sufficiently small constant c (the case when the boundary value problem is trapping is
more complicated; see [13, §1.4] for some initial results).

In this section, we use the bound (1.8) to prove the analogue of the result above in the case of
the variable-coefficient Helmholtz equation ((6.2) below) posed in the exterior of a nontrapping
Dirichlet obstacle (see Theorem 3 below). In particular, we show how the constant c in (6.1)
depends on the constant in (1.8). The key point is that our bound on hFEM shows explicitly
how the constant c in (6.1) decreases (i.e. the requirement on hFEM for quasioptimality becomes
more stringent) as the length of the longest ray increases.
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6.2. The Helmholtz exterior Dirichlet problem and FEM set-up.

Motivation from applications. Several important physical applications involve the PDE

(6.2) ∇ · (A∇u) + k2νu = −f
posed in Rn \Ω, where A is a symmetric positive-definite matrix-valued function of position and
ν is a strictly-positive scalar-valued function of position. One example is via reductions of the
time-harmonic Maxwell equations

(6.3) curlH + ikεE = (ik)−1J, curlE − ikµH = 0 in R3,

when all the fields involved depend only on two Cartesian space variables, say x and y. In
the transverse-magnetic (TM) mode, J and E are given by J = (0, 0, Jz(x, y)) and E =
(0, 0, Ez(x, y)) so, when additionally the permittivity ε is a scalar and the permeability µ satisfies

(6.4) µ =

(
µ̃ 0
0 1

)
for µ̃ a 2× 2 symmetric positive-definite matrix, Ez satisfies (6.2) with ν = ε,

(6.5) A =

(
0 1
−1 0

)T (
µ̃
)−1

(
0 1
−1 0

)
,

and f = Jz. Similarly, in the case of the transverse-electric (TE) mode, J and H are given by
J = (Jx(x, y), Jy(x, y), 0) and H = (0, 0, Hz(x, y)), so that when µ is a scalar and ε satisfies
an equation analogous to (6.4), Hz satisfies (6.2) with A given by (6.5) with µ̃ replaced by ε̃,
ν = µ, and

f = − 1

ik
∇ ·
[(

0 1
−1 0

)(
ε̃
)−1

(
Jx
Jy

)]
.

Additionally, the so-called acoustic-approximation of the elastodynamic wave equation is (6.2)
with A the inverse of the (scalar) density and ν the inverse of the (scalar) bulk modulus; see,
e.g., the derivation in [16, §1.2.6].

Placing the PDE (6.2) in the framework of §1.1. We let M := Rn \ Ω, where Ω is a
compact set such that its complement is connected,

gij :=
Aij
ν
, Lj :=

n∑
i=1

gij√
det g

∂i
(√

det g
)

+

n∑
i=1

∂i(g
ij)−

n∑
i=1

1

ν
∂i(Aij), L := 0,

and

P (g)φ := −1

ν

n∑
i,j=1

∂i
(
Aij∂jφ),

and then observe that (1.6) is satisfied, since

∆gφ :=

n∑
i,j=1

1√
det g

∂i
(√

det g gij ∂jφ
)
.

With these definitions, the PDE (6.2) is (P (g)−k2)u = f/ν. The operator PΩ is then self-adjoint
with respect to L2(Rn \ Ω; ν) and the H1 norm defined by (1.7) becomes

(6.6) ‖φ‖2H1
ν(Rn\Ω) :=

∫
Rn\Ω

(
(A∇φ) · ∇φ+ k2ν|φ|2

)
dx.

In this section (§6) only, to make contact with the standard numerical-analysis literature, we
use non-semiclassically scaled Sobolev spaces; i.e., the norms on the spaces Hs do not include
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powers of k unless otherwise indicated. Indeed, in this section we write (6.6) as the weighted
H1 norm

(6.7) ‖φ‖2H1
k,A,ν(Rn\Ω) :=

∥∥A1/2∇φ
∥∥2

L2(Rn\Ω)
+ k2

∥∥ν1/2φ
∥∥2

L2(Rn\Ω)
,

and we use analogous notation for norms over subsets of Rn \ Ω. We also define the norms

‖φ‖2Hm(Rn\Ω) :=
∑
|α|≤m

∫
Rn\Ω

|∂αφ|2 dx;

i.e., if there are no A, ν in the subscript, the Hm norm is the ‘standard’ Hm norm on Rn.
By (1.1), L(νA−1,Ω, R) is the length of the longest generalized bicharacteristic (informally,

ray) in B(0, R) \ Ω. Recall that, in the case Ω = ∅, the (generalized) bicharacteristics are the
projections in x of the solutions (x(s), ξ(s)) ∈ Rn × Rn of the Hamiltonian system

(6.8)
dxi
ds

(s) =
∂

∂ξi
H
(
x(s), ξ(s)

)
,

dξi
ds

(s) = − ∂

∂xi
H
(
x(s), ξ(s)

)
,

where the Hamiltonian H(x, ξ) is given by

(6.9) H(x, ξ) :=
1

ν(x)

n∑
i=1

n∑
j=1

Aij(x)ξiξj − 1.

Exterior Dirichlet problem and its variational formulation. With Ω a compact set such
that its complement is connected, we define Ω+ := Rn \Ω. Since the vast majority of numerical-
analysis applications of the Helmholtz equation are in two and three dimensions, we restrict
attention to d = 2, 3. Let γ : H1

loc(Ω)→ H1/2(∂Ω) be the trace operator. Let A be a symmetric
positive-definite matrix-valued function of position such that supp(I − A) is a compact subset
of Rn. Let ν be a strictly-positive scalar-valued function of position such that supp(1− ν) is a
compact subset of Rn. Let Amin and Amax be such that

(6.10) Amin ≤ A(x) ≤ Amax for all x ∈ Ω+, in the sense of quadratic forms.

and νmin and νmax be such that

(6.11) νmin ≤ ν(x) ≤ νmax for all x ∈ Ω+.

We consider solving both the exterior Dirichlet problem

(6.12a) ∇ · (A∇u) + k2νu = −f in Ω+,

(6.12b) γu = 0 on ∂Ω, and

(6.12c)
∂u

∂r
(x)− iku(x) = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r,

and the sound-soft scattering problem

(6.13a) ∇ ·
(
A∇u

)
+ k2νu = 0 in Ω+,

(6.13b) γu = 0 on ∂Ω, and

(6.13c) (u− uI) satisfies the radiation condition (6.12c),

where uI is solution of ∆uI + k2uI = 0 (such as a plane wave or point source) that is smooth
in a neighborhood of supp(I −A) ∪ supp(1− ν) ∪ Ω.

The standard variational formulations of these problems are posed on ΩR := Ω+ ∩B(0, R) =
B(0, R) \Ω, where R is chosen large enough such that supp(I−A), supp(1− ν), and supp f are
all compactly contained in B(0, R), and also such that uI is smooth in B(0, R). Let

(6.14) H1
0,D(ΩR) :=

{
v ∈ H1(ΩR) : γv = 0 on ∂Ω

}
,
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let ΓR := ∂B(0, R), and let TR : H1/2(ΓR) → H−1/2(ΓR) be the Dirichlet-to-Neumann (DtN)
map for the equation ∆u+ k2u = 0 posed in the exterior of B(0, R) with the Sommerfeld radi-
ation condition (6.12c); the definition of TR in terms of Hankel functions and polar coordinates
(when d = 2)/spherical polar coordinates (when d = 3) is given in, e.g., [12, Equations 3.5 and
3.6] [39, §2.6.3], [34, Equations 3.7 and 3.10]. The variational formulation of (6.12) is:

(6.15) find u ∈ H1
0,D(ΩR) such that a(u, v) = F (v) for all v ∈ H1

0,D(ΩR),

where

(6.16) a(u, v) :=

∫
ΩR

(
(A∇u) · ∇v− k2νuv

)
dx− 〈TR(γu), γv〉ΓR and F (v) :=

∫
ΩR

f v dx,

and where 〈·, ·〉ΓR denotes the duality pairing on ΓR that is linear in the first argument and
antilinear in the second. The variational formulation of (6.13) is (6.15) but with F (v) instead
given by

F (v) :=

∫
ΓR

(
∂uI

∂r
− TRuI

)
γv ds.

Finite-element method. Let ThFEM
be a family of triangulations of ΩR (in the sense of, e.g.,

[19, Page 67]) that is shape regular (see, e.g., [6, Definition 4.4.13], [19, Page 128]). Let

HhFEM
:= {v ∈ C(ΩR) : v|K is a polynomial of degree 1 for each K ∈ ThFEM

},

and observe that the dimension of HhFEM
is proportional to hFEM

−n. Our main result, Theorem
3 below, is valid when Ω is C∞ (or, more precisely, Cm for some large m not given explicitly).
For such Ω it is not possible to fit ∂Ω exactly with simplicial elements (i.e. when each element
of ThFEM

is a simplex), and fitting ∂Ω with isoparametric elements (see, e.g, [19, Chapter VI])
or curved elements (see, e.g., [5]) is impractical, and therefore some analysis of non-conforming
error is necessary; since this is very standard (see, e.g., [6, Chapter 10]), we ignore this issue
here.

The finite-element method for the variational problem (6.15) is the Galerkin method applied
to the variational problem (6.15), i.e.

(6.17) find uhFEM
∈ HhFEM

such that a(uhFEM
, vhFEM

) = F (vhFEM
) for all vhFEM

∈ HhFEM
.

6.3. Main result. Before stating the main result (Theorem 3 below) we define the following
constants – all independent of k but dependent on one or more of A, ν, Ω, R, and k0 – upon
which the main result depends.

Cint: Recall that the nodal interpolant IhFEM
: C(ΩR) → HhFEM

is well-defined for functions in
H2(ΩR) (for d = 2, 3) and satisfies

(6.18)
∥∥ν1/2(v−IhFEM

v)
∥∥
L2(ΩR)

+hFEM

∥∥A1/2∇(v−IhFEM
v)
∥∥
L2(ΩR)

≤ Cint(hFEM)2 ‖v‖H2(ΩR) ,

for all v ∈ H2(ΩR), for some constant Cint = Cint(A, ν). The only reason Cint depends on A
and ν is because of the weights A and ν in the norms on the left-hand side of (6.18). Indeed,
by, e.g., [6, Equation 4.4.28],

‖v − IhFEM
v‖L2(ΩR) + hFEM ‖∇(v − IhFEM

v)‖L2(ΩR) ≤ C̃int(hFEM)2 ‖v‖H2(ΩR) ,

for all v ∈ H2(ΩR), for some C̃int that depends only on the shape-regularity constant of the
mesh, and thus (6.18) holds with

Cint(A, ν) := C̃int max
{

(Amax)1/2, (νmax)1/2
}
.
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CDtN: There exists CDtN = CDtN(A, ν,R, k0) such that
(6.19)∣∣〈TR(γu), γv〉ΓR

〉∣∣ ≤ CDtN ‖u‖H1
k,A,ν(ΩR) ‖v‖H1

k,A,ν(ΩR) for all u, v ∈ H1(ΩR) and for all k ≥ k0;

see [34, Lemma 3.3]. As above, the only reason CDtN depends on A and ν is because of the
weights A and ν in (6.7). Indeed, [34, Lemma 3.3] bounds the left-hand side of (6.19) by
H1/2(ΓR) and L2(ΓR) norms of γu and γv, and then uses trace theorems to prove that∣∣〈TR(γu), γv〉ΓR

〉∣∣ ≤ C̃DtN(R, k0)‖u‖H1
k,I,1(ΩR)‖v‖H1

k,I,1(ΩR),

for some C̃DtN(R, k0) given explicitly in the proof of [34, Lemma 3.3]. Therefore, (6.19) holds
with

CDtN(A, ν,R, k0) := C̃DtN(R, k0) max

{
1

(Amin)1/2
,

1

(νmin)1/2

}
.

CH2 : There exists CH2 = CH2(A,Ω, R) such that, if f̃ ∈ L2(ΩR+1) and v ∈ H1(ΩR+1) satisfy

∇ · (A∇v) = f̃ in ΩR+1 and γv = 0 on ∂Ω,

then

(6.20) ‖v‖H2(ΩR) ≤ CH2

(
‖A1/2∇v‖L2(ΩR+1) + ‖v‖L2(ΩR+1) + ‖f̃‖L2(ΩR+1)

)
;

since A ∈ C0,1 and Ω ∈ C1,1, such a CH2 exists by, e.g., [32, Theorem 4.18] and CH2 depends on
Amin in (6.10), the C0,1 norm of A, and the C1,1 norm of the parametrisation of ∂Ω. Note that
the R+ 1 in the norms on the right-hand side of (6.20) can be replaced by R+ b for any b > 0,
but the constant CH2 blows up as b→ 0.

Theorem 3 (Quasioptimality of the Galerkin method). Let Ω, A, and ν be as in §6.2; i.e. Ω a
compact set such that its complement Ω+ is connected, A a symmetric positive-definite matrix-
valued function of position such that supp(I−A) is a compact subset of B(0, R) and ν a strictly-
positive scalar-valued function of position such that supp(1− ν) is a compact subset of B(0, R).
Furthermore, let Ω be C∞, and let A, ν ∈ C1,1(ΩR) be such that A and ν are C∞ in a neighborhood
of ∂Ω. Finally assume that Ω is nowhere tangent to infinite order to the geodesic flow generated
by A and ν via the Hamiltonian (6.9), and that this flow on Ω+ is nontrapping.

There exists a k0 > 0 such that if

1 ≥ hFEMk
2
√

1 + (hFEMk)2 L
(
νA−1,Ω, R+ 2

)
CintCH2(1 + CDtN)

(
νmax

νmin

)1/2
4
√

2

π
(6.21)

×
(

(νmax)1/2 +
1 + (νmin)1/2

k0
+

1

k2
0(νmin)1/2

)
,

then the Galerkin equations (6.17) have a unique solution which satisfies

(6.22) ‖u− uhFEM‖H1
k,A,ν(ΩR) ≤ 2

(
1 + CDtN

)(
min

vhFEM
∈HhFEM

‖u− vhFEM‖H1
k,A,ν(ΩR)

)
.

(Note that k0 depends on A, ν, and Ω but—as in Theorem 2—is uniform on small C2,α neigh-
borhoods of A and ν; see Section 3.5.)

Remark 6.1 (The mesh threshold (6.21)). If one assumes that hFEMk ≤ C, then the mesh
threshold (6.21) can be written in the form (6.1), i.e. hFEMk

2 ≤ c. The key point is that if A, ν,
and Ω are as in the statement of the theorem with the C0,1 norms of A and ν and the C1,1 norm
of Ω all bounded by C̃, say, then all the constants in c apart from L(νA−1,Ω, R + 2) (namely,

Amax, Cint, CH2 , CDtN) are bounded in terms of C̃, Amin and νmin, but L(νA−1,Ω, R + 2) can
be arbitrarily large. Furthermore, c decreases as L(νA−1,Ω, R+ 2) increases; i.e., the condition



OPTIMAL CONSTANTS IN NONTRAPPING RESOLVENT ESTIMATES 35

on the mesh threshold for quasioptimality becomes more restrictive as the length of the longest
ray grows.

Remark 6.2 (Quasioptimality for higher-order finite-element spaces). We have only considered
the lowest-order conforming finite-element space of H1, namely continuous piecewise-linear poly-
nomials. In the case of the constant-coefficient Helmholtz equation, the mesh threshold for
quasioptimality (analogous to (6.1)) has been determined by [34, 35, 22] for spaces of arbitrary
order p (possibly depending on k), with the threshold then explicit in k, h, and p. These results
are obtained by a careful splitting of the solution that does not immediately generalise to the
case A 6= I. However, in the case of p fixed, the mesh thresholds for quasioptimality from
[34, 35, 22] have recently been obtained in [18] using a simpler method (relying on well-known
elliptic regularity results such as (6.20)), although the constants are not given explicitly in p. In
the case when the DtN map is approximated by an impedance boundary condition, the results
of [18] immediately apply to the case A 6= I, and they can in principle be extended to the full
scattering problem considered here.

Remark 6.3 (Comparison to existing results in the literature). The only existing results in the
literature on quasioptimality (explicit in all parameters and coefficients) for the Galerkin method
applied to the variable-coefficient Helmholtz equation are in [17] and [27]. The main similarity
between these two works and the present paper is that they all use the “Schatz argument”
described in Lemma 6.6 below (and pioneered for Helmholtz problems in [44, 3]). The main
differences between [17, 27] and the present paper are that (i) both [17] and [27] consider the
Helmholtz equation in a bounded domain ([17] in 1-d, [27] in 1-, 2-, or 3-d) with an impedance
boundary condition (recall that this is the simplest-possible approximation to the DtN map
operator TR), and (ii) to get an a priori bound explicit in k and the coefficients, both [17] and
[27] impose conditions on the coefficients and the domain that are stronger than the analogue
of nontrapping for the interior impedance problem (i.e., the assumption that every ray reaches
the boundary in a uniform time).

6.4. Proof of Theorem 3. The heart of the proof is Lemma 6.6 below. This gives a condi-
tion for quasi-optimality to hold in terms of how well the solution of the adjoint problem is
approximated by the finite-element space, and relies on the fact that a(·, ·) satisfies a G̊arding
inequality. This argument essentially goes back to Schatz [45] (using the Aubin-Nitsche tech-
nique; see, e.g., the references in [46, Remark 26]) and was extensively used in the analysis of
the FEM for Helmholtz problems by [44, 34, 35, 22].

Before stating Lemma 6.6 we need to introduce some notation. Let Ccont = Ccont(A, ν,R, k0)
be the continuity constant of the sesquilinear form a(·, ·) (defined in (6.16)) in the norm ‖ ·
‖H1

k,A,ν(ΩR); i.e.

a(u, v) ≤ Ccont ‖u‖H1
k,A,ν(ΩR) ‖v‖H1

k,A,ν(ΩR) for all u, v ∈ H1
0,D(ΩR).

By the Cauchy-Schwarz inequality and (6.19) we have

(6.23) Ccont ≤ 1 + CDtN.

Definition 6.4 (The adjoint sesquilinear form a∗(·, ·)). The adjoint sesquilinear form, a∗(u, v),
to the sesquilinear form a(·, ·) defined in (6.16) is given by

(6.24) a∗(u, v) := a(v, u) =

∫
ΩR

(
(A∇u) · ∇v − k2νuv

)
−
〈
γu, TR(γv)

〉
ΓR
.

Lemma 6.5. Given F ∈ (H1
0,D(ΩR))′, if u is the solution to the variational problem

(6.25) a∗(u, v) = F (v) for all v ∈ H1
0,D(ΩR),



36 JEFFREY GALKOWSKI, EUAN A. SPENCE, AND JARED WUNSCH

then u satisfies

(6.26) a(u, v) = F (v) for all v ∈ H1
0,D(ΩR).

Proof of Lemma 6.5. By (6.25),

a∗(u, v) = F (v) for all v ∈ H1
0,D(ΩR).

The result then follows from the definition of a∗(·, ·) and the following property of the DtN map
TR: 〈

TRψ, φ
〉

Γ
=
〈
TRφ, ψ

〉
Γ

for all φ, ψ ∈ H1/2(ΓR).

This property follows from the fact that, if u and v are solutions of the homogeneous Helmholtz
equation ∆u + k2u = 0 in Rn \ B(0, R), both satisfying the Sommerfeld radiation condition
(6.12c), then ∫

ΓR

(γu)
∂v

∂n
=

∫
ΓR

(γv)
∂u

∂n

by Green’s second identity; see, e.g., [46, Lemma 6.13]. �

Lemma 6.6 (Conditions for quasi-optimality). Given f ∈ L2(ΩR), let S∗f be the solution of
the adjoint problem (6.25) with F (v) defined in (6.16). Let

(6.27) η(HhFEM
) := sup

0 6=f∈L2(ΩR)

min
vhFEM

∈HhFEM

‖S∗f − vhFEM
‖H1

k,A,ν(ΩR)∥∥f∥∥
L2(ΩR)

.

If

(6.28) η(HhFEM) ≤ 1

2Ccont(νmax)
1/2
k

then the Galerkin equations (6.17) have a unique solution which satisfies

(6.29) ‖u− uhFEM‖H1
k,A,ν(ΩR) ≤ 2Ccont

(
min

vhFEM
∈HhFEM

‖u− vhFEM‖H1
k,A,ν(ΩR)

)
.

Proof. Since

(6.30) Re
(
− 〈TRφ, φ〉ΓR

)
≥ 0 for all φ ∈ H1/2(ΓR) and for all k ≥ k0

(see [12, Corollary 3.1] or [39, Theorem 2.6.4]), a(·, ·) satisfies the G̊arding inequality

Re
(
a(v, v)

)
≥ ‖v‖2H1

k,A,ν(ΩR) − 2k2νmax ‖v‖2L2(ΩR)

and the result follows from the account of the Schatz argument in, e.g., [46, Theorem 6.32]. �

The condition (6.28) on η(HhFEM) is implicitly a condition on the meshwidth hFEM. To make
this condition explicit, we observe that the polynomial-approximation bound (6.18) implies that
a bound on η(HhFEM

) (defined by (6.27)) can be obtained from a bound on the H2 norm of the
(adjoint of the) exterior Dirichlet problem.

Lemma 6.7 (Bound on H2 norm). If Ω, A, and ν are as in Theorem 3, then there exists a
k0 > 0 such that the solution of the exterior Dirichlet problem with f , I−A, and 1−ν supported
in ΩR satisfies
(6.31)

‖u‖H2(ΩR) ≤ k CH2

2
√

2

π(νmin)1/2
L
(
νA−1,Ω, R+2

)(
(νmax)1/2 +

1 + (νmin)1/2

k0
+

1

k2
0(νmin)1/2

)
‖f‖L2(ΩR) .
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Proof. Choosing χ such that suppχ ⊂ BR+2 but χ = 1 on BR+1, Theorem 2 with s = 1 implies
that there exists k0 > 0 such that

(6.32)
∥∥A1/2∇u

∥∥2

L2(ΩR+1)
+k2

∥∥ν1/2v
∥∥2

L2(ΩR+1)
≤

(
2
√

2

π
L
(
νA−1,Ω, R+ 2

))2
1

νmin
‖f‖2L2(Ω+) ,

for all k ≥ k0. Since the χ in our argument can be chosen independent of A and ν, the constant
k0 can be chosen uniformly as A and ν vary within a sufficiently small open neighborhood in
C2,α (α > 0), just as in Theorem 2.

We then apply (6.20) with v = u, f̃ = −k2νu− f , and recall that supp f ⊂ ΩR, to obtain

‖u‖H2(ΩR) ≤ CH2

(
2
√

2

π(νmin)1/2
L
(
νA−1,Ω, R+ 2

)(
k(νmax)1/2 + 1 +

1

k(νmin)1/2

)
+ 1

)
‖f‖L2(ΩR) .

The result (6.31) then follows by noting that L(νA−1,Ω, R + 2) ≥ 2; this last inequality holds
since the geodesic needs to at least travel from the boundary of the ball of radius R+ 2 into the
ball of radius R and out again (a distance of at least 4), and in this annular region the metric
is Euclidean and the flow has speed 2. �

We can now prove Theorem 3.

Proof of Theorem 3. Using the polynomial approximation result (6.18) and the definitions of
η(HhFEM

) (6.27) and ‖ · ‖H1
k,A,ν(ΩR) (6.7), we have

η(HhFEM
) ≤ CinthFEM

√
1 + (hFEMk)2 sup

06=f∈L2(ΩR)

‖S∗f‖H2(ΩR)

‖f‖L2(ΩR)

.

By Lemma 6.5, the solution of the adjoint exterior Dirichlet problem with data f is the complex
conjugate of the solution of the exterior Dirichlet problem with data f . Therefore, the bound
(6.31) for the solution of the exterior Dirichlet problem also holds for the solution of the adjoint
problem, and implies that

η(HhFEM
) ≤ CinthFEM

√
1 + (hFEMk)2 k CH2

2
√

2

π(νmin)1/2
L
(
νA−1,Ω, R+ 2

)
×
(

(νmax)1/2 +
1 + (νmin)1/2

k0
+

1

k2
0(νmin)1/2

;

)
the result then follows from using this bound on η(HhFEM) in Lemma 6.6. �

Remark 6.8 (How the bound (1.8) can be used in the analysis of preconditioning strategies).
The Galerkin method (6.17) is equivalent to a linear system of equations; denote the matrix
of this linear system by A. Linear systems involving A are difficult to solve because (a) the
dimension of A is proportional to hFEM

−n and (by Theorem 3) hFEM must decrease like k−2 for
the Galerkin solution to be quasioptimal, therefore A is large, and (b) since A is large and sparse
(when using standard piecewise-polynomial bases of HhFEM

), iterative methods are usually used
to solve the linear system, but A is both non-normal (in general) and sign-indefinite when k is
sufficiently large, and the efficient iterative solution of linear systems involving such matrices is
difficult. One therefore seeks to precondition A; i.e., to find a B such that (i) B−1 approximates
A−1 and (ii) the action of B−1 is cheap to compute, and one then applies the iterative solver to
B−1A.

A very popular and successful preconditioner for A is based on choosing B−1 to be a cheap
approximation of (Aα)−1, where Aα is the Galerkin matrix arising from the exterior Dirichlet
problem with k2 7→ k2 + iα, i.e., with artificial absorption α added. The rationale behind this
method (introduced in [21]) is that the larger α is, the less oscillatory the problem is, and hence
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the easier it is to find a cheap approximation to (Aα)−1. However, the larger α is, the further
(Aα)−1 is from A−1, hence the question of what is the optimal α is nontrivial.

Although one of the advantages of preconditioning with absorption, compared to other
Helmholtz-preconditioning strategies, is its easy applicability to variable-coefficient problems
(see, e.g., [41]), the only existing analysis is for constant-coefficient Helmholtz problems (i.e. (6.2)
with A = I and ν = 1). As a component of determining the optimal α, [24, Theorem 1.4] proved
that, when A = I, ν = 1, Ω is starshaped, and a quasi-optimal error estimate (similar to (6.22))
holds for Galerkin discretizations of the problem with absorption, there exists C > 0 (indepen-
dent of k and hFEM, but dependent on Ω and ThFEM) such that

(6.33) ‖I− (Aα)−1A‖ ≤ Cα/k;

i.e. choosing α to be a sufficiently small multiple of k guarantees that (Aα)−1 is a good ap-
proximation to A−1, uniformly as k → ∞. Using the bound (1.8) in the arguments of [24] one
can show that the bound (6.33) holds when A, ν, and Ω satisfy the conditions of Theorem 3
with C a constant multiple of L(νA−1,Ω, R+ 1); i.e., as the length of the longest ray increases,
less absorption is allowed for (Aα)−1 to be a good approximation to A−1. This result is then
consistent with the numerical experiments in [24, Tables 8 and 9]: the geometry corresponding
to Table 9 supports longer rays than the geometry corresponding to Table 8, and the numerical
results in the tables (the number of iterations required to solve (Aα)−1A with GMRES) show
that a lower amount of absorption is allowed in the former case than in the latter for (Aα)−1 to
be a good preconditioner for A.

Remark 6.9 (How the bound (1.8) can be used in “Uncertainty Quantification”). In the last
10 years there has been a surge of interest in “Uncertainty Quantification (UQ)” of PDEs,
understood as theory and algorithms for computing statistics of quantities of interest involving
PDEs either posed on a random domain or having random coefficients.

There is a large literature on UQ for the Poisson equation

(6.34) −∇ · (A(ω)∇u(ω)) = f(ω),

(where ω is an element of the underlying probability space) due, in part, to its large number of
applications (e.g. in modelling groundwater flow). The fact that a priori bounds on the solution
of (6.34) that are explicit in the coefficient A can easily be obtained is the starting point for
the rigorous analysis of UQ algorithms; see e.g. [2, 1, 25, 38, 14, 15]. For example, for (6.34)
posed in a bounded Lipschitz domain D with homogeneous Dirichlet boundary conditions and
A ∈ L∞(D) with Amin > 0 (in the sense of quadratic forms as in (6.10)), the Lax-Milgram
theorem implies that

(6.35) ‖u‖H1(D) ≤
CD
Amin

‖f‖L2(D) ,

where CD is the constant appearing in the Poincaré inequality ‖v‖H1(D) ≤ C
1/2
D ‖∇v‖L2(D) for all

v ∈ H1
0 (D). In contrast, there has been essentially no rigorous theory of UQ for the Helmholtz

equation with large k because a priori bounds on the solution that are explicit in both k and
the coefficients have not been available.

The recent paper [42] presented general measure-theory arguments that convert a bound
on the (deterministic) Helmholtz equation that is explicit in both k and the coefficients into a
bound, and associated well-posedness result, on the Helmholtz equation with random coefficients
(and random data). The paper [42] used as input to these general arguments the deterministic
bounds from [26] for star-shaped Lipschitz Ω and coefficients satisfying radial monotonicity-like
conditions which are stronger than nontrapping. We highlight that the bound (1.8) can be
used with the arguments of [42] to obtain well-posedness results and a priori bounds on the
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Helmholtz equation (6.2) where the coefficients and domain are such that the problem is almost
surely nontrapping.
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[1] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential

equations with random input data. SIAM Journal on Numerical Analysis, 45(3):1005–1034, 2007.

[2] I. Babuska, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations of stochastic elliptic
partial differential equations. SIAM Journal on Numerical Analysis, 42(2):800–825, 2004.

[3] L. Banjai and S. Sauter. A refined Galerkin error and stability analysis for highly indefinite variational

problems. SIAM Journal on Numerical Analysis, 45(1):37–53, 2007.
[4] H. Barucq, T. Chaumont-Frelet, and C. Gout. Stability analysis of heterogeneous Helmholtz problems and

finite element solution based on propagation media approximation. Math. Comp., 86(307):2129–2157, 2017.
[5] C. Bernardi. Optimal finite-element interpolation on curved domains. SIAM Journal on Numerical Analysis,

26(5):1212–1240, 1989.

[6] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts
in Applied Mathematics. Springer, 3rd edition, 2008.

[7] D. L. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency hetero-

geneous Helmholtz equations. In Meshfree Methods for Partial Differential Equations VIII, pages 85–115.
Springer, 2017.

[8] N. Burq. Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, (245):Exp. No. 826, 4, 167–195,
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