
RESOLVENT ESTIMATES WITH MILD TRAPPING

JARED WUNSCH

Abstract. We discuss recent progress in understanding the effects of
certain trapping geometries on cut-off resolvent estimates, and thus on
the qualititative behavior of linear evolution equations. We focus on
trapping that is unstable, so that strong resolvent estimates hold on the
real axis, and large resonance-free regions can be shown to exist beyond
it.

1. Introduction

Let (X, g) be a Riemannian manifold isometric to Rn outside a compact
set. Let ∆ denote the (non-negative) Laplace-Beltrami operator

∆ =
1
√
g
Dig

ij√gDj ,

where Di = −ı∂xi . The resolvent

(∆− λ2)−1

is a priori defined as a family of bounded operators L2(X) → L2(X), as λ
runs over the upper half-space Imλ > 0. When the manifold is precisely Rn
we can write down the Schwartz kernel of the resolvent by Fourier methods;
for instance in R3 the Schwartz kernel is

eiλ|x−y|

4π|x− y|
.

We thus see explicitly that this kernel analytically continues to be an entire
function of λ ∈ C. It has the modest defect of exponential growth at infinity,
which is remedied if we consider it as a map L2

c(R3)→ L2
loc(R3). The same

holds true on Rn for all odd n.
Putting geometry back into the picture, we may regard X as a pertur-

bation of Euclidean space, and an easy application of analytic Fredholm
theory (see, e.g., [38] in a much more general setting) shows that in gen-
eral, for n odd, (∆− λ2)−1 continues as a meromorphic family of operators
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Γ

Figure 1. The contour of integration in (1).

L2
c(X) → L2

loc(X), for all λ ∈ C. The poles of this family of operators are
known as the resonances of the Laplacian. We may equally well think of
them as the poles of the cutoff resolvent family

χ(∆− λ2)χ : L2(X)→ L2(X)

with χ ∈ C∞c (X), and we will adopt this point of view in what follows. (For
a survey of some recent developments in the theory of resonances comple-
mentary to the discussion here, we refer the reader to [54].)

We note that while the new results described in this paper fit (more
or less) in the geometric context described above, much of the history of
the subject is closely tied to the problem where X is replaced by an exte-
rior domain of a smoothly bounded subset of Rn (the “obstacle problem”)
equipped with, say, Dirichlet boundary conditions. As the obstacle problem
has considerable similarities to that considered here, we will cite results on
the obstacle problem as motivation without further comment.

We now recall two different estimates in the theory of evolution equations
that follow from an “appropriate” understanding of the resolvent continued
to the real axis and beyond.

1.1. Energy decay for the wave equation. Let U(t) = sin t
√

∆/
√

∆
be (part of the) wave propagator. Then we may write U(t) as a contour
integral around the spectrum of the Laplacian, which is in this situation
simply continuous spectrum along the positive real axis. Thus, letting Γ
denote the contour shown in Figure 1.1, we have

(1)

χU(t)χ =
1

2πı

∫
Γ
χ(µ−∆)−1χ

sin t
√
µ

√
µ

dµ

= − 1

πı

( ∫
R+ı0

χR(λ)χeıtλ dλ+

∫
R+ı0

χR(λ)χe−ıtλ dλ
)

Here we have made the change of variables µ = λ2 and pushed the contour
within ε of the real axis for any ε > 0 (hence the contour is written R+ ı0).

Now suppose we are interested in the local large-t asymptotics of a so-
lution to the wave equation, i.e., of χU(t)f for f compactly supported, or
equivalently to χU(t)χg for any g ∈ L2(X); here χ is again a compactly
supported cutoff function. For t� 0, can can always slide the contour of in-
tegration in the first integral on the last line of (1) upward to R+ ıν (ν > 0)
and we get exponential decay, O(e−νt) for this term. The second integral,
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Imλ=−ν0

Figure 2. A resonance-free strip.

however, is trickier, as we would wish to slide this contour downward below
the real axis, where we only know that the resolvent is meromorphic.

In order to deal with this second term, let us now suppose we have:

(1) χ(∆− (µ+ ıν)2)−1χ analytic for −ν0 ≤ ν ≤ 0.

(2)
∥∥χ(∆− (µ+ ıν)2)−1χ

∥∥
L2 . 〈µ〉N in this strip.1

If these conditions hold, then we can shift the second contour, at the cost
of some powers of µ or, equivalently, powers of ∆ and for K sufficiently
large get the bound O(e−νt) for any ν < ν0 for the smoothed wave operator

χ〈∆〉−KU(t)χ. Thus we obtain exponential decay of local energy (potentially
with derivative loss).

We further remark that in flat space, N = −1 in the second condition and
we in fact have no derivative loss in the estimates: whenever (D2

t −∆)u = 0
and u has compactly supported Cauchy data,

‖χut‖2 + ‖χ∇u‖2 ≤ Ce−νt
(
‖ut(0)‖2 + ‖∇u(0)‖2

)
(where the constant may depend on the size of the support).

1.2. Local smoothing for the Schrödinger equation. We now consider
a second application, which only involves the cut-off resolvent estimate on
the real axis. This application is to the initial value problem for the time-
dependent Schrödinger equation:

(2)
(
ı−1 ∂

∂t
+ ∆)u = 0, u|t=0 = u0.

The estimate on the cut-off resolvent that holds on the real axis in Euclidean
space,

(3) ‖χR(µ)χ‖L2 . 〈µ〉−1,

implies the following property of u :∫ 1

0
‖χu‖2H1/2 dt . ‖u0‖2L2 .

In other words, we have the following mapping property of the propagator:

e−ıt∆ : L2 → L2([0, 1];H
1/2
loc (X))

1Here and henceforth, f . g means f ≤ Cg for some constant C.
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(see Constantin-Saut [13], Sjölin [37], Vega [49], Kato-Yajima [28], Yajima
[51]). A proof that (3) gives this estimate proceeds via a standard “TT ∗”
estimate which reduces to proving the corresponding estimate on the inho-
mogeneous equation:(

ı−1 ∂

∂t
+ ∆)v = χf, u|t=0 = 0 =⇒ ‖χu‖

L2
tH

1/2
x

. ‖χf‖
L2
tH

−1/2
x

.

This inhomogeneous estimate, in turn, follows from Fourier transform and
(3).

1.3. Semi-classical rescaling, and estimates in non-trapping geome-
tries. Having established that cut-off resolvent estimates on and below the
real axis are of key importance in the study of the wave and Schrödinger
equations, we now pursue the question of when they hold in non-Euclidean
geometries. To begin, we note that both the validity of the estimate (3) and
also of the existence of a pole-free strip with polynomial resolvent bounds are
high-frequency questions: they manifestly hold in any compact range of Reλ,
hence they hinge only on the asymptotics of the resolvent as Reλ → +∞.
Consequently, we now introduce a semi-classical rescaling of the problem:
we set

λ2 =
z

h2

and study the operator family

Ph(z) ≡ h2∆− z

and its inverse

Rh(z) ≡ (h2∆− z)−1.

We now note that the existence of a resonance free strip in λ is equivalent
to pole-free region in z for χRh(z)χ of form

[1− δ, 1 + δ] + i[−ν0h, 0],

and the desired polynomial growth estimate in Reλ becomes a polynomial
estimate in h−1. Likewise the free resolvent estimate on the real axis (3)
rescales to:

‖χRh(z)χ‖ . h−1, z ∈ [1− δ, 1 + δ].

In order to explain a broad setting in which these estimates generalize,
we now introduce the notion of trapped set. Let Hp denote the Hamilton
vector field of p = σh(P ), i.e., the generator of geodesic flow in the cosphere
bundle. Then the trapped set K is defined by

ρ ∈ K ⇐⇒ exp(tHp) remains in a compact set for all t.

We say the metric is non-trapping if K = ∅.
The following is the classical result on estimates for non-trapping metrics:
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Proposition 1. If the metric is nontrapping then there is a resonance free
region of the form

[1− δ, 1 + δ] + ı[−ν0h|log h|, 0]

and the free resolvent estimate holds:

‖χRh(z)χ‖ . h−1, z ∈ [1− δ, 1 + δ].

Indeed, a somewhat stronger statement holds on the distribution of reso-
nances: for h small, the region [1− δ, 1 + δ] + ı[−νh|log h|, 0] contains only
finitely many resonances, for any value of ν.

These estimates have a lengthy history in both the obstacle case and
the metric setting considered here. The deduction of exponential energy
decay from the eventual smoothness of solutions to the wave equation with
compactly supported data (a very weak form of Huygens’ Principle) follows
from work of Lax-Phillips [29] and Vainberg [46, 47]. (For further references
on the propagation of singularities arguments leading to these estimates
in the obstacle case, we refer the reader to [43]; in the metric case dealt
with here, it simply follows from Hörmander’s theorem on propagation of
singularities for operators of real principal type [27].)

The estimate on the real axis is sharp: Ralston [34] showed (in the obstacle
setting) that the estimate on the real axis can only hold if the trapped set
is empty. Indeed, if there is stable trapping, e.g. a closed elliptic geodesic,
then it is known that the resolvent grows on R, with resonances approaching
the real axis, as Reλ→ +∞ (see e.g., [39, 40], [42], [41]). The minimal size
of the resonance free strip was established by Burq [8], who showed that

there must always be a region of the form Imλ > −Ce−ε|λ| free of poles of
(∆ − λ2) and consequently there is energy decay for the wave equation at
the rate log(2 + t)−k if we accept loss of k derivatives.

2. Resolvent estimates in the presence of mild trapping

2.1. Normally hyperbolic trapping. What, then, if there are trapped
orbits, i.e., K 6= ∅, but the trapping is at least unstable? The classical
example of Ikawa sheds considerable light on this problem: in the case of
the exterior problem for two strictly convex obstacles, there is a unique
trapped orbit consisting of the single orbit bouncing back and forth between
them; this orbit is highly unstable, and Ikawa was able to show that in this
case there is a strip Im z ≥ −ν0h that is free of resonances, and indeed
to derive asymptotics for the locations of the resonances. A refinement of
Tang-Zworski [43] and Burq [5] shows that while the non-trapping estimate
cannot hold on the real axis, we still have:

Rh(λ) .
|log h|
h

, λ ∈ [1− δ, 1 + δ].

In other words, we lose only a factor of |log h| relative to the non-trapping es-
timate. This implies, among other things, that the local smoothing estimate
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for the Schrödinger propagator only barely fails: for any ε > 0,

e−ıt∆ : L2 → L2([0, 1];H
1/2−ε
loc ).

In the boundary-less case, the analogous situation in which we have a single
unstable hyperbolic orbit (e.g., the unique closed geodesic on the surface of
revolution shown in Figure 4 below) was analyzed by Christianson [12]. More
generally, the author and Zworski [50] have recently studied the situation of
normally hyperbolic trapping, in which there is a whole manifold of unstable
trapped orbits. We now describe these results.

One motivation for considering this geometric set-up comes from the
Kerr black hole. This is a family of Lorentzian metrics which solve the
Einstein equations and describe rotating black holes. The trapped set of
null-geodesics (known as the “photon sphere” in the special, spherically
symmetric, case of the Schwarzschild metric) has the dynamical structure
described below, and thus the results of [50] address the obstructions to
decay posed by the trapped rays. Considerable geometric and analytic dif-
ficulties are present in the study of wave decay on Kerr backgrounds that
are not addressed by [50] however; see, e.g. [44], [45] [19], [14], [1], [23, 24]
for results along these lines and for further references. In the related setting
of Kerr-de-Sitter black hole metrics2 and their perturbations, some of the
obstructions to decay posed by the asymptotically Euclidean end of the de
Sitter space are not present. In the case of slowly-rotating3 Kerr-de-Sitter
metrics, Dyatlov [21, 20] used the results from [50] presented below to show
that wave equation solutions decay exponentially to a constant value; Vasy
[48] was able to extend such decay estimates to a wide class of perturba-
tions of Kerr-de-Sitter space, again using the results of [50] to cope with the
trapped set.

The dynamical hypotheses employed in [50] are as follows. For simplicity
of exposition here we stick to the geometric set-up described above, where
we consider the operator h2∆ on the manifold (X, g) with g Euclidean out-
side a compact set. Let ϕt denote the corresponding geodesic flow. Let r
denote the distance function to a fixed point in X and locally define the
backward/forward trapped sets by:

Γ± = {ρ : lim
t→∓∞

r(ϕt(ρ)) 6=∞}.

The the trapped set is simply

K = Γ+ ∩ Γ−.

We make dynamical assumptions as follows:

2These metrics describe rotating black holes in a universe with positive cosmological
constant.

3Slowly rotating means that the angular momentum parameter in the metric, usually
denoted a, is taken to be small.
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(1) Γ± are codimension-one smooth manifolds intersecting transversely
at K. (It is not difficult to verify that Γ± must then be coisotropic
and K symplectic.)

(2) The flow is hyperbolic in the normal directions to K within the en-
ergy surface: letting the superscript 1 denote the intersection of the
set in question with the unit cosphere bundle (e.g., K1 = K ∩ S∗X)
then there exist subbundles E± of TK1Γ1

± (the “unstable/stable sub-
spaces”) such that

TK1Γ1
± = TK1 ⊕ E±,

where

dϕt : E± → E±

and there exists θ > 0 such that on K1,

(4) ‖dϕt(v)‖ ≤ Ce−θ|t|‖v‖ for all v ∈ E∓, ±t ≥ 0.

These assumptions can be verified directly (see [50]) for the trapped set
of a slowly rotating Kerr black hole4 (i.e. when the angular momentum pa-
rameter a is small—see [50] for the explicit form of the metric) but they are
not stable under perturbations, hence do not obviously apply to perturba-
tions of Kerr metrics. However, the bicharacteristic flow for the Kerr metric
in fact satisfies a more stringent (and well-studied) hypothesis that is sta-
ble under perturbation, and that implies the dynamical hypotheses above.
In particular, the standard dynamical notion of r-normal hyperbolicity im-
plies items (1) and (2), and is stable under perturbations, modulo possible
loss of derivatives. This hypothesis says, roughly speaking, that along K
the tangent space of the normal bundle to K splits into subbundles E±

which are exponentially expanded/contracted by the flow, while the expan-
sion/contraction of directions along TK is much milder by comparison (e.g.,
polynomial in the case of the Kerr metric). It is then a profound theorem
of Fenichel [22] and Hirsch-Pugh-Shub [26] that there exist stable/unstable
manifolds Γ± tangent to E± and satisfying the dynamical hypotheses above,
and moreover that these stronger hypotheses are structurally stable.5

Our main result on the resolvent for normally hyperbolic trapping is as
follows:

Theorem 2. (Wunsch-Zworski [50]) Under the normal hyperbolicity hy-
potheses described above, there exist δ, ν0 > 0 such that (h2∆ − z)−1 is
meromorphic in the region

[1− δ, 1 + δ] + ı[−ν0h, 0]

4See also [48] for analogous discussion of the Kerr-de-Sitter metric.
5Albeit in general, perturbing results in loss of differentiability of the manifolds Γ± and

K; however for any desired finite degree of differentiability, shrinking the perturbation
preserves that degree of smoothness, which suffices for our purposes.
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and the following polynomial resolvent estimates on the hold: on the real
axis, we have

‖χRh(λ)χ‖ . |log h|
h

, λ ∈ [1− δ, 1 + δ],

while below the axis there exists k > 0 such that

‖χRh(z)χ‖ . h−k, z ∈ [1− δ, 1 + δ] + ı[−ν0h, 0].

In the case when the operator has real analytic coefficients a more precise
resonance free region was obtained by Gérard-Sjöstrand [25], albeit with-
out the polynomial bound on the resolvent that makes contour deformation
(with loss of derivatives) feasible to obtain exponential energy decay for
solutions to the wave equation. A similar estimate on the optimal width
of the resonance free strip in the setting considered here, and with much
reduced smoothness assumptions on the stable/unstable manifolds Γ±, has
been recently announced by Nonnenmacher-Zworski [52].

Estimates like Theorem 2 have also been proved in the case when K
is fractal rather than a smooth manifold: provided the set is sufficiently
filamentary, in a manner measured by a topological pressure condition, an
estimate of the same form was previously proved by Nonnenmacher-Zworski
[32]; in [33] these authors also obtain more precise resolvent bounds below
the real axis. (See also Christianson [11] and Datchev [17] for applications
to Schrödinger local smoothing in the presence of various assumptions on
the ends of X.)

2.2. Degenerate hyperbolic trapping. Since stable trapping, for instance
by elliptic closed geodesics, generates exponentially growing resolvent esti-
mates, while unstable trapping with hyperbolic dynamics leads only to a
loss of |log h| on the real axis, the reader might wonder whether there are
situations in which a nontrivial polynomial loss occurs. This phenomenon
was demonstrated by the author and Hans Christianson [10] in the following
situation: We consider the manifold X = Rx × Rθ/2πZ, equipped with a
metric of the form

ds2 = dx2 + (1 + x2m)1/mdθ2,

Here the trapped set is again the closed orbit where x = 0. If m = 1, this
is again the classic case of a single trapped hyperbolic orbit, but if m is
an integer greater than 1 the hyperbolicity degenerates with the stable and
unstable manifold no longer intersecting transversely. Christianson and the
author showed the following:

Theorem 3. (Christianson-Wunsch [10]) For m an integer at least 2,

‖χRh(λ)χ‖ . h−2m/(m+1), λ ∈ [1− δ, 1 + δ]

and this estimate is sharp.
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Consequently, the optimal local smoothing estimate in this situation en-
tails a nontrivial loss of derivatives:

e−ıt∆ : L2 → L2([0, 1];H
1/(m+1)
loc ),

and we may obtain a polynomial rather than exponential rate of energy
decay for the wave equation.

2.3. Trapping by cone points. While metrics with trapped rays always
have losses in resolvent estimates on the real axis and in Schrödinger local
smoothing (see Doi [18] and Burq-Bony-Ramond [4] as well as Ralston [34] in
the obstacle case), we now present a situation involving wave propagation on
singular manifolds in which a weaker form of “diffractive” trapping results
in (almost) no loss whatsoever. This is the setting of manifolds with cone
points.

In joint work with Dean Baskin, the author considers a manifold X of
dimension n with conic singularities that is isometric to Rn outside a com-
pact set. Here a manifold with conic singularities means a manifold X with
compact boundary Y = ∂X equipped with a metric that can be brought to
the form

g = dx2 + x2h

in a neighborhood of Y, with h a smooth tensor restricting to give a metric
on Y. The metric thus degenerates at the boundary, and each boundary
component becomes a cone point.

In considering trapping, we must now distinguish two kinds of geodesic
on X. Following Melrose-Wunsch [31], we let a diffractive geodesic denote
a geodesic that can enter and leave a cone point (i.e., a single boundary
component) along any pair of geodesics. By contrast, a geometric geodesic
is one that is restricted to enter and leave a single cone point along a pair
of geodesics that are connected by a geodesic of length π inside Y (with
respect to the metric h|Y ). In [31], the geometric geodesics are shown to be
exact those that are (locally) approximable by ordinary geodesics in X◦.

We impose geometric hypotheses that

(1) The flow along geometric geodesics is non-trapping.
(2) No three cone points are collinear along a geometric geodesic.
(3) No two cone points are conjugate to one another.

(The last condition can be most easily interpreted as saying that the geodesic
flowouts from two different cone points intersect transversely.)

Then the following estimate on the resolvent holds:

Theorem 4. (Baskin-Wunsch [3]) For χ ∈ C∞c (X), there exist δ, ν0 > 0
such that the cut-off resolvent

χ(h2∆− z)−1χ

can be analytically continued from Im z > 0 to the region

z ∈ [1− δ, 1 + δ] + ı[−ν0h|log h|, 0]
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and for some C, T > 0 enjoys the estimate∥∥χ(h2∆− z)−1χ
∥∥
L2→L2 ≤

C

h
eT |Im z|/h

in this region.

This implies that the trapping of waves induced by diffraction among
cone points has only a very weak effect on the decay of solutions to the wave
equation on such a manifold: in particular, solutions to the wave equation
on R × X enjoy exponential local energy decay. Likewise, the resolvent
estimate on the real axis (which is the same as would be obtained with no
trapped rays) implies that the Schrödinger propagator e−ıt∆ enjoys the local

smoothing estimate with no loss, mapping L2 → L2([0, 1]t;H
1/2
loc (X)).

The theorem is proved by first establishing a result on weak escape of
singularities for solutions to the wave equation. We recall that in odd di-
mensional Euclidean space, Huygens’ Principle tells us that any solution
to the wave equation with compactly supported Cauchy data is eventually
zero in any fixed compact set F ; in a non-trapping perturbation of Euclidean
space (of any dimension), the solution does not in general vanish after long
time but instead, by propagation of singularities, is eventually in C∞(F ).
In the conic situation, by contrast, we expect that singularities may persist
forever in a compact set, diffracting back and forth among the cone points,
but it turns out that they become milder and milder as time passes:

Theorem 5. (Baskin-Wunsch [3]) For any r there exists Tr such that for
|t| > Tr, for all s,

χ cos t
√

∆χ : Ds → Ds+r.

(Here Ds is the domain of ∆s/2 and agrees with Hs away from the cone
points.) One can then deduce Theorem 4 from Theorem 5 by adapting an
argument of Vainberg [47] that employs the Fourier transform of the outgo-
ing singular parts of the solution as an initial parametrix for the resolvent,
solving away the resulting errors by using the free wave operator (for which
the resolvent estimate assuredly holds).

One especially interesting and elementary setting in which our result on
resonance-free regions applies is that of exterior domains to polygons in
R2. We can double such domains by gluing together two copies along their
boundary to obtain a manifold with cone points; solving the wave equa-
tion with Dirichlet/Neumann boundary conditions is equivalent to working
with odd/even solutions on the doubled manifold. Provided the domain is
nontrapping in the sense that billiard trajectories missing the cone points
escape to infinity, we can thus show that there is a logarithmic region free
of resonances for the obstacle problem with either boundary condition.6

6There is some mild technical complication from the fact that the manifold has two
Euclidean ends, rather than just one as in our hypotheses, but the same strategy of proof
applies.
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We remark that the size of the resonance free region in Theorem 5 is
probably sharp: in the related situation of the exterior problem in R2 out-
side two strictly convex analytic obstacles, one having a corner, Burq [7] has
shown that resonance poles for (∆−λ2)−1 lie (asymptotically) along curves
of the form Imλ = C|Reλ|+D. The poles are thus at distance O(h|log h|)
from the real axis after semiclassical rescaling. (We also refer the reader to
Zworski [53] where analogous logarithmic strings of poles are shown to arise
from finite order singularities of a one-dimensional potential, thus substanti-
ating heuristics from Regge [36].) Consequently, the only loss in this setting
of “diffractive trapping” relative to the non-trapping case is that we expect
that some region of the form z ∈ [1 − δ, 1 + δ] + ı[−ν0h|log h|, 0] probably
contains infinitely many resonances in the former case, while this is not so
in the latter.

3. From resolvent estimates to damped waves

We now turn to a problem related to, but crucially distinct from, that
of resolvent estimates and decay for solutions to the wave equation: we
now consider the damped wave equation on a compact, connected Riemann-
ian manifold X. We fix a nonnegative “damping function” a(x) ∈ C∞ and
consider the initial value problem:7

(5)

{ (
∂2
t + ∆g + a(x)∂t

)
u(x, t) = 0,

u(x, 0) = u0 ∈ H1(X), ∂tu(x, 0) = u1 ∈ H0(X).

It is well known [2], [30] that if a > 0 somewhere, then any solution tends
to zero as t → +∞. Moreover Lebeau has shown (see [30]) that the energy
of the waves,

E(u, t) =
1

2

∫
X

(
|∂tu|2 + |∇u|2

)
dx

decays at a logarithmic rate provided the data lie in a space with higher
regularity than the energy space; this is of course analogous to the results
discussed above for energy decay of solutions to the wave equation on non-
compact manifolds in the presence of trapping.

To understand decay rates for the damped wave equation in further detail,
we make a semiclassical reduction: Fourier transforming, it turns out that
we can replace the damped wave operator by an operator of the form

(6) h2∆ + ıh
√
za− z;

exponential energy decay then follows from the existence of a pole-free region
of the form

(7) z ∈ [1− δ, 1 + δ] + ı[−ν0h, 0]

together with polynomial bounds for the inverse of this non-self-adjoint op-
erator; smaller regions of analyticity yield sub-exponential decay rates. In

7Recall that the Laplacian employed here is the positive operator ∆ = d∗d.
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the results discussed here, the z dependence of the middle term in (6) will be
treatable as a perturbation in the operator above, and we study the family

(8) (h2∆ + ıha− z)−1

which is at least formally quite similar to the resolvent studied in previous
sections.

Now in analogy with the trapped set in noncompact problems, we intro-
duce the undamped set

(9) N = {ρ ∈ S∗X : ∀t ∈ R, a ◦ etHp(ρ) = 0}

consisting of points that do not encounter the interior of the damping region
under the forward- or backward-bicharacteristic flow. If N = ∅ we are said
to be in the situation of geometric control. Classic results of Rauch-Taylor
[35], Bardos-Lebeau-Rauch [2] and Lebeau [30] show that in the setting of
geometric control, we do have a pole-free region of the form (7) and expo-
nential decay of energy. By contrast, if N 6= ∅, it is known that exponential
decay cannot hold without derivative losses. The situation is thus closely
analogous to that described above for resolvent estimates, leading one to
wonder if there is a link between the resolvent estimates for a noncompact

manifold X̃ with trapped set K and estimates for (8) on a compact manifold
X with undamped set N ≡ K, as long as the two manifolds are isometric
in a neighborhood of the undamped/trapped set. In joint work with Hans
Christianson, Emmanuel Schenck, and András Vasy, the author has proved
that this is so: provided one has polynomial resolvent bounds on the real
axis, one can “glue” these bounds to obtain the exact same estimate for the
damped resolvent family (8). While our motivation comes from gluing on
non-compact ends, the following theorem is in fact phrased in terms of the
resolvent for the problem with “complex absorbing potential” ıa replacing
the damping coefficient ıha; such a potential has the effect of annihilating
semiclassical wavefront set along (forward) bicharacteristics passing through
it. Estimates with non-compact ends and with complex absorbing potential
are known to be equivalent in a wide variety of geometric settings by a recent
gluing theorem of Datchev-Vasy [16]. Phrasing the resolvent estimate in this
way allows us to stay within the setting of compact manifolds, however:

Theorem 6. (Christianson-Schenck-Vasy-Wunsch [9]) Assume that for some
δ ∈ (0, 1) fixed and k ∈ Z, there is a function 1 ≤ α(h) = O(h−k) such that

‖(h2∆g + ıa− z)−1‖L2→L2 ≤
α(h)

h
,

for z ∈ [1− δ, 1 + δ]. Then there exist C, ν0 > 0 such that

‖(h2∆g + ıha− z)−1‖L2→L2 ≤ C
α(h)

h
,

for z ∈ [1− δ, 1 + δ] + ı[−ν0h/α(h), 0].
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N
a > 0 a > 0

Figure 3. The compact manifold X with damping.

K

Figure 4. The noncompact manifold X̃.

An essential new ingredient in the proof is a recently obtained estimate of
Datchev-Vasy [15] which improves the microlocal resolvent estimates avail-
able at points which are backwards- or forwards-trapped relative to those
which are trapped along both directions of the flow.

Theorem 6 has applications in all the examples discussed above (nor-
mally hyperbolic trapping, fractal hyperbolic trapping, degenerate hyper-
bolic trapping) giving various subexponential decay rates for solutions to
the damped wave equation in these settings; we refer the reader to [9] for
further details, including the explicit decay rates thus obtained. It is at least
sometimes sharp, e.g. in the case of a surface of rotation with N given by an
single undamped hyperbolic orbit, according to work of Burq-Christianson
[6].
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