
MATH 465, LECTURE 23: PLUMBING

J. FRANCIS, NOTES BY O. GWILLIAM

Our goal in this talk is to explain the construction known as “plumbing.” The input is an even
unimodular lattice Q and the output is a 4m-manifold whose middle cohomology has intersection
pairing described by Q.

Theorem 0.1 (Arf). The signature of an even unimodular lattice is a multiple of 8.

Remark 0.2. Recall that for a lattice, even means that 〈v, v〉 is even for all v ∈ Q, and unimodular
means detQ = 1.

Example 0.3. The E8 lattice is defined by the matrix

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 0 0 0 0
0 0 0 0 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


Using Arf’s theorem and plumbing, we will obtain a map

Z→ bP4m = { parallelizable manifolds bounding a 4m-manifold }
by starting with an even unimodular lattice Q and computing its signature(Q)/8 (this lives in Z),
and then using plumbing to construct a 4m-manifold P 4m

Q and taking its boundary ∂PQ ∈ bP4m.

1. Plumbing

Plumbing goes as follows.

• Given Q and a basis indexed by I, for each index i ∈ I choose a sphere Si := S2m
i and take

the disk bundle Disk(TSi)→ Si of its tangent bundle.
• For each nonzero entry aij in Q with i 6= j, glue Disk(TSi) and Disk(TSj) around points

in each as follows:
(1) Choose a disk in the base Di := D2m

i ⊂ Si and pick a splitting of the restriction of
Disk(TSi) to Di as Di ×D2m.

(2) Do likewise for Sj — pick a disk . . .

(3) Glue the two product disks by “switching order”: Di ×D2m
∼=→ D2m ×Dj .

Remark 1.1. If aij > 0, pick a bunch of disjoint points in Si and Sj and do the construction as
above. If aij is negative, reverse orientations. Note, however, that one can pick a representing
matrix Q so that all the off-diagonal entries are 0 or 1.

By following this construction we obtain a 4m-manifold PQ. The intersection number of the Si

and Sj is precisely aij . Hence, if Q is unimodular and has all 2’s along the diagonal, we get an
isomorphism

H2m(PQ)→ H2m(PQ, ∂PQ)

Date: Lecture May 21, 2010. Not yet edited.

1



in the long exact sequence of the pair, where this map is given by the intersection matrix Q. Thus Q
unimodular implies H2m(∂PQ) = 0 and so ∂PQ is (4m−2)-connected. By the h-cobordism theorem,
we then see that ∂PQ is then homotopy equivalent to S4m−1. (Note that we don’t need all 2’s along
the diagonal, just that we have a bundle V with euler(V ) = aii CANT READ MY NOTES HERE)

Theorem 1.2 (Kervaire-Milnor). Plumbing provides a group homomorphism

(Z,+)→ (bP4m,#)

that is surjective. The kernel is σmZ, with

σm = am22m−2(22m−1 − 1)numerator(Bm/4m),

where am = 1 or 2 and Bm denotes the mth Bernoulli number.

Remark 1.3. These particular numbers are a consequence of Adams, J(X) IV.

2. Example: 4m = 8

Note that cokerJ7 = 0 so Θ7 = bP8. Earlier, we gave an example of an even unimodular lattice,
E8. We will now address the question: Is ∂PE8 diffeomorphic to the standard 7-sphere? We know
that

sig(PE8 , ∂) = sig(E8) = 8,

and we know that the tangent bundle TPE8 restricted to its 4-skeleton is trivial, so p1(PE8) = 0.
Hence,

sig(E8) = 7p2/3
2 · 5.

As PE8 is 3-connected, it is a Spin-manifold. By the Atiyah-Singer index theorem, there thus exists
a Dirac operator D/ such that

Â8(PE8
) = indD/ ∈ Z.

(We don’t need anything about the operator other than its existence.)
This integrality result has the following consequence. Recall that

Â8(M) =
7p21 − 4p2
27 · 32 · 5

.

Now suppose that ∂PE8
is the standard 7-sphere. Then it bounds the 8-disk, and so we can construct

a boundaryless 8-manifold

X = PE8
∪S7=∂P D

8.

Then, because p1 = 0,

Â(X) =
−4p2

27 · 32 · 5
= − 1

28
· 1

8

(
7p2

32 · 5

)
= − 1

28
· sig(E8)

8
= − 1

28
,

since we saw earlier that sig(E8) = 8. We thus have a contradiction! Hence ∂P is not diffeomorphic
to S7.

Note that by Kervaire-Milnor, we know that 28 connect-sums of PE8 has the property

Â
(
P#28
E8
∪∂(P#28) D

8
)

= −1 ∈ Z.

(Here P#28 means “iterate the connect-sum operation 28 times.”) Thus we see that the obstruc-
tion/invariant we’ve constructed gives an isomorphism

bP8
∼= Z/28.

Remark 2.1. What we’ve just done is not a proof of Kervaire-Milnor. The goal was simply to
show that these invariants we’ve been discussing are not exotic: they are consequences of the index
theorem, one of the central theorems of mathematics. We simply wanted to explore the invariants
in low dimensions.
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3. Moving on from here

We just gave some techniques for exploring bP4m. What about bP4m+2? The important fact
is that a framed 2k-manifold has a quadratic refinement of the intersection pairing in the middle
dimension. The Arf invariant of a quadratic form gives an invariant of P with ∂P ∈ bP4m+2.

For example, if Q is in a symplectic basis, then Arf(Q) =
∑

i∈I q(xi)q(yi) is a function taking
values in F2.

By work of many topologists (notably Browder and recently Hill-Hopkins-Ravenel), we know that
the Kervaire invariant detects bP .

Theorem 3.1.

bP4m+2
∼=
{

Z/2 4m+ 2 6= 2k − 2
0 else, or for 4m+ 2 = 6, 14, 30, 62
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