Homework 3, due 2/27

1. Show that if M, N are surfaces, then the Euler characteristic of the connected sum satisfies $\chi(M \# N)=\chi(M)+\chi(N)-2$.
2. Let K be a simplicial complex. Form the cone $C K$ over K as follows: the vertices of $C K$ are the vertices of K as well as one additional vertex o. The simplices of $C K$ are the simplices of K as well as the cones over the simplices of K, i.e. for every simplex $\left[u_{0}, \ldots, u_{p}\right]$ of K we have an additional simplex $\left[o, u_{0}, \ldots, u_{p}\right]$ of $C K$. For example the cone over a p simplex is a $(p+1)$-simplex. Show that $\tilde{H}_{i}(C K)=0$ for all $i \geq 0$.

Hint: think about decomposing each p-chain in CK into two pieces: a piece involving the vertex o (which then corresponds to a $p-1$-chain on K), and a piece not involving o (which corresponds to a p-chain on K). Work out how the boundary map behaves on these two pieces.
3. Suppose that $g:|K| \rightarrow|L|$ is a continuous map between simplicial complexes, and $f: K \rightarrow L$ is a simplicial approximation of g. Show that f and g are homotopic.

Hint: show that there is a family of continuous maps interpolating between f and g linearly: i.e. show that $f_{t}(x)=t f(x)+(1-t) g(x)$ gives well defined maps for $t \in[0,1]$.
4. Let K be the simplicial complex given by the boundary of a triangle (i.e. K has 3 vertices and 3 edges). Let us identify the geometric realization $|K|$ with angles $\theta \in[0,2 \pi)$ as in class. Let $g:|K| \rightarrow|K|$ be the map $g(\theta)=3 \theta(\bmod 2 \pi)$.
(a) Find a simplicial approximation $f: K^{\prime} \rightarrow K$ of g, for some subdivision K^{\prime} of K.
(b) Compute the induced map $f_{*}: H_{1}(|K|) \rightarrow H_{1}(|K|)$. Note that $H_{1}(|K|)=\mathbb{Z}_{2}$.
5. Compute the Betti numbers of the projective plane $\mathbb{R P}^{2}$. You can find a triangulation of it (i.e. a simplicial complex with $\mathbb{R P}^{2}$ as its geometric realization) at e.g. http://www.math.jhu.edu/~ $j m b / n o t e / r p 2 t r i . p d f$.

