Homework 2, due 2/13

- 1. Which of the following pairs of topological spaces are homeomorphic? Justify your answer.
 - (a) X = [0, 1] and Y = (0, 1),
 - (b) X = (0, 1) and $Y = \mathbf{R}$,
 - (c) $X = \mathbf{Z}$ and $Y = \{0\} \cup \{1/n : n = 1, 2, 3, ...\}$, as subspaces of **R**.
- 2. Let X be a topological space and $A \subset X$ a subspace. Show that the inclusion map $j : A \to X$ is continuous. (This is Theorem 18.2 in the book, but write it up in your own words.)
- 3. (a) Show that the metric topology on every metric space X has the following property: if $x, y \in X$ are distinct, then there are disjoint open sets $U, V \subset X$ such that $x \in U$ and $y \in V$. (This is called the Hausdorff property.)
 - (b) Show that the topology \mathcal{T} on \mathbf{R} defined in Question 1 on Homework set 1 is not induced by any metric on \mathbf{R} .
- 4. Let $S^1 \subset \mathbf{R}^2$ be the unit circle $x^2 + y^2 = 1$. Let $f: S^1 \to \mathbf{R}$ be continuous. Show that there is a point $x \in S^1$ such that f(x) = f(-x). (*Hint: use the intermediate value theorem.*)