Homework 1, due 1/30

- 1. Define a topology \mathcal{T} on $X = \mathbf{R}$ as follows: a subset U is in \mathcal{T} if either $U = \emptyset$, or $X \setminus U$ is finite.
 - (a) Show that \mathcal{T} defines a topology.
 - (b) Which of the following functions $f : X \to X$ are continuous (using the topology \mathcal{T} on both copies of X):
 - (i) $f(x) = \sin x$,
 - (ii) $f(x) = x^2$.
- 2. Consider the set Y = [-1, 1] as a subspace of **R**, with the subspace topology induced by the standard topology on **R** Which of the following sets are open in Y? Which are open in **R**?

$$\begin{split} &A = \{x : 1/2 < |x| < 1\}, \\ &B = \{x : 1/2 < |x| \le 1\}, \\ &C = \{x : 1/2 \le |x| < 1\}, \\ &D = \{x : 1/2 \le |x| \le 1\}, \\ &E = \{x : 0 < |x| < 1 \text{ and } 1/x \notin \mathbf{Z}_+\}. \end{split}$$

- 3. Let $A \subset X$ and let A' be the limit points of A. Prove that $\overline{A} = A \cup A'$. Note: this is Theorem 17.6 in Munkres. You can read the proof there if you are stuck, but write it up in your own words.
- 4. Let A, B, A_{α} be subsets of X. Prove that
 - (a) $\overline{A} \cup \overline{B} = \overline{A \cup B}$
 - (b) $\bigcup_{\alpha} \overline{A_{\alpha}} \subset \overline{\bigcup_{\alpha} A_{\alpha}}$. Give an example when equality fails.
- 5. What is wrong with the following "proof" that $\overline{\bigcup A_{\alpha}} \subset \bigcup \overline{A}_{\alpha}$: if $\{A_{\alpha}\}$ is a collection of sets in X and if $x \in \overline{\bigcup A_{\alpha}}$, then every neighborhood U of x intersects $\bigcup A_{\alpha}$. Thus U must intersect some A_{α} , so that x must belong to the closure of some A_{α} . Therefore, $x \in \bigcup \overline{A}_{\alpha}$.