Geometry/Topology Exam

Student Id:_____

Instructions: Complete each problem, show your work in detail. Theorems which are used or quoted must be stated explicitly.

Score	
1	
2	
3	
4	
5	
6	
Total	

Question 1. Which of the following subspaces of \mathbb{R}^2 is a topological manifold? Justify

- a The graph of the function y = |x|;
- b The union of the coordinate axes.

Question 2. Calculate the fundamental group of a 'flat tire' (a two-dimensional torus with a small disk removed from it).

Question 3. Let f(r) > 0 be smooth with f(0) = 0 and $\frac{d}{dr}f(0) = 1$, and consider the warped product metric on \mathbb{R}^2 given by $g_{ij} = dr^2 + f^2(r)g_{S^1}$. Consider polar coordinates $(x^1, x^2) = (r, \theta)$:

- In polar coordinates compute the Levi-Civita connection $\Gamma_{ij}^k = \frac{1}{2}g^{sk} (\partial_i g_{js} + \partial_j g_{is} \partial_s g_{ij}).$
- In polar coordinates write the geodesic equation of a curve $\gamma(t) = (\gamma_r(t), \gamma_{\theta}(t))$.
- For each $\theta \in S^1$ show $\gamma(t) = (t, \theta)$ solves the geodesic equation.
- Prove the injectivity radius at the origin satisfies $inj(0,0) = \infty$. That is, show the previous geodesics are globally minimizing for $t \in [0, \infty)$.

Question 4. Show the following:

- a Let (M^n, g) be a compact Riemannian manifold and let $f : M \to \mathbb{R}$ be a harmonic function $\Delta f = 0$. Show that f is a constant.
- b Let (M^n, g) be a compact oriented Riemannian manifold and let $\omega \in \Omega^n(M)$ be a hodge harmonic form $(d^*d + dd^*)\omega = 0$. Show that ω is a multiple of the volume form.

Question 5. Let A, B be path connected open (nonempty) subsets of \mathbb{S}^n so that $A \cup B = \mathbb{S}^n$.

- a If $n \geq 2$, prove $A \cap B$ is path connected.
- b Is the conclusion still true for n = 1?

Question 6. Compute the relative homology group $H_*(X, A; \mathbb{Z})$ for the following pairs:

- a $X = \mathbb{S}^2$, A is the equator.
- b X is the Möbius band, A is the boundary.