Geometry/Topology Exam

Student Id:

Instructions: Complete each problem, show your work in detail. Theorems which are used or quoted must be stated explicitly.

Score	
1	
2	
3	
4	
5	
6	
Total	

Question 1. Which of the following subspaces of \mathbb{R}^{2} is a topological manifold? Justify
a The graph of the function $y=|x|$;
b The union of the coordinate axes.

Question 2. Calculate the fundamental group of a 'flat tire' (a two-dimensional torus with a small disk removed from it).

Question 3. Let $f(r)>0$ be smooth with $f(0)=0$ and $\frac{d}{d r} f(0)=1$, and consider the warped product metric on \mathbb{R}^{2} given by $g_{i j}=d r^{2}+f^{2}(r) g_{S^{1}}$. Consider polar coordinates $\left(x^{1}, x^{2}\right)=(r, \theta)$:

- In polar coordinates compute the Levi-Civita connection $\Gamma_{i j}^{k}=\frac{1}{2} g^{s k}\left(\partial_{i} g_{j s}+\partial_{j} g_{i s}-\partial_{s} g_{i j}\right)$.
- In polar coordinates write the geodesic equation of a curve $\gamma(t)=\left(\gamma_{r}(t), \gamma_{\theta}(t)\right)$.
- For each $\theta \in S^{1}$ show $\gamma(t)=(t, \theta)$ solves the geodesic equation.
- Prove the injectivity radius at the origin satisfies $\operatorname{inj}(0,0)=\infty$. That is, show the previous geodesics are globally minimizing for $t \in[0, \infty)$.

Question 4. Show the following:
a Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold and let $f: M \rightarrow \mathbb{R}$ be a harmonic function $\Delta f=0$. Show that f is a constant.
b Let $\left(M^{n}, g\right)$ be a compact oriented Riemannian manifold and let $\omega \in \Omega^{n}(M)$ be a hodge harmonic form $\left(d^{*} d+d d^{*}\right) \omega=0$. Show that ω is a multiple of the volume form.

Question 5. Let A, B be path connected open (nonempty) subsets of \mathbb{S}^{n} so that $A \cup B=\mathbb{S}^{n}$.
a If $n \geq 2$, prove $A \cap B$ is path connected.
b Is the conclusion still true for $n=1$?

Question 6. Compute the relative homology group $H_{*}(X, A ; \mathbb{Z})$ for the following pairs:
a $X=\mathbb{S}^{2}, A$ is the equator.
b X is the Möbius band, A is the boundary.

