Algebra Preliminary Examination

Northwestern University, September 2017

Do all of the following questions. Each question is worth 0.5 points.

- Question 1. Let α be a root of $X^6 + X^3 + 1$. Find all homomorphisms $\mathbb{Q}(\alpha) \to \mathbb{C}$ of fields.
- Question 2. Let S_3 be the symmetric group on 3 elements, and k an algebraically closed field of characteristic zero.
 - 1. Find all conjugacy classes of S_3 .
 - 2. Find the dimension and the multiplicity in the regular representation of all irreducible representations of S_3 over k.
 - 3. Write down the character table of S_3 over k.
- Question 3. Let K be a field and let $M_3(K)$ denote the K-algebra of 3-by-3 matrices. Let B denote the subalgebra of $M_3(K)$ of upper-triangular matrices. Determine whether B is semisimple.
- Question 4. Put $R = \mathbb{F}_q[X, Y]/\langle X^q Y XY^q \rangle$ where q is a power of prime. Let x, y be the image of X, Y in R, respectively. Show that for every $a \in \mathbb{F}_q$, R is not a finitely generated module over $\mathbb{F}_q[y ax]$.
- Question 5. Let G be a group and H a subgroup of finite index. Show that there exists a normal subgroup N of G contained in H and also of finite index.
- Question 6. Let R be a commutative ring that is a finitely generated \mathbb{Z} -algebra. Let \mathfrak{m} be a maximal ideal of R. Show that R/\mathfrak{m} is a finite field.