Algebraic Topology Preliminary Exam September 2007

Do all of the following questions. Homology and cohomology have integer coefficients unless otherwise specified.

1. Let X be the space obtained from a torus $T = S^1 \times S^1$ be attaching a Möbius band M by a homeomorphism from the boundary circle of M to $S^1 \times \{x_0\} \subseteq T$. Compute $\pi_1(X, x_0)$.

2. Let $p: \tilde{X} \to X$ be the universal cover of a path-connected and locallypath connected space X and let $A \subseteq X$ be a path-connected and locally pathconnected subspace. Let \tilde{A} be a path component of $p^{-1}(X)$. Show that $\tilde{A} \to A$ is a covering space and that the image of

$$\pi_1(\tilde{A}, b) \to \pi_1(A, a)$$

is the kernel of $i_*: \pi_1(A, a) \to \pi_1(X, a)$. Here $b \in \tilde{A}$ is any basepoint and a = p(b).

3. Let M be a closed orientable 3-dimensional manifold. Write H_1M as $F \oplus T$ where F is a free abelian group and T is a torsion abelian group. Prove $H_2M \cong F$.

4. Show that $S^3 \times \mathbb{CP}^{\infty}$ and $(S^1 \times \mathbb{CP}^{\infty})/(S^1 \times \{x_0\})$ have isomorphic cohomology rings.

5. Let X be a topological space which can be written as finite union of open subspaces $U_i \subseteq X$, $1 \leq i \leq n$. Suppose for all pairs $i, j, 1 \leq i \leq j \leq n$, the intersection

 $U_i \cap U_i$

has the property that all its path components are contractible. Prove $H_m X = 0$ for $m \ge n$.

6. Let X be the Moore space obtained from S^n , $n \ge 1$, by attaching an (n+1)-cell by a map of degree d. Let $f : X \to S^{n+1}$ be the quotient map obtained by collapsing the *n*-sphere.

a.) Show that $0 = f_* : \tilde{H}_*X \to \tilde{H}_*S^{n+1}$, but that $0 \neq f^* : H^{n+1}S^{n+1} \to H^{n+1}X$.

b.) Deduce that the splitting in the Universal Coefficient Theorem for cohomology cannot be natural.

7. Let X be the topological space obtained as the quotient of the sphere S^2 under the equivalence relation $x \sim -x$ for x in the equatorial circle. Describe a CW complex whose underlying space is X. Compute the homology $H_*(X)$.