Math 441/2 Preliminary Examination

September 2005

Do all of the following questions. All homology and cohomology is with integer coefficients unless otherwise stated.
1.a.) Let X be a compact submanifold of a \mathcal{C}^{∞} manifold Y with $\operatorname{dim} Y=2 n$, $\operatorname{dim} X=n$, and both manifolds oriented. Suppose there exist $f_{1}, \ldots, f_{n} \in$ $\mathcal{C}^{\infty}(Y)$ with $d f_{i}$ linearly independent on X such that $X=\left\{f_{i}=0\right.$ for all $\left.i\right\}$. Show that the intersection number $I(X, X)=0$.
b.) Use the first part to show that the diagonal submanifold of $S^{2} \times S^{2}$ cannot be defined by the vanishing of two independent \mathcal{C}^{∞} functions.
2.a.) Define what it means for a map $f: X \rightarrow Y$ of \mathcal{C}^{∞} manifolds to be a submersion.
b.) Let X be compact and $f_{t}: X \rightarrow Y$ a smooth family of maps parametrized by $t \in[0,1]$; that is, $F(t, x):=f_{t}(x)$ is a smooth map $[0,1] \times X \rightarrow Y$. Let f_{0} be a submersion. Show there exists $\epsilon>0$ such that f_{t} is a submersion for all $t<\epsilon$.
3. Let $Y=T \cup S^{2}$ where T is the torus in \mathbb{R}^{3} obtained by rotating the circle

$$
C=\left\{(x, y) \mid(x-2)^{2}+y^{2}=1\right\}
$$

about the y-axis. Here S^{2} denotes the two sphere of radius one centered at the origin.
a.) Compute the homology groups of Y.
b.) Compute the cohomology ring of Y.
4. Let X be a finite CW complex, let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements and let \mathbb{Q} be the field of rational numbers. Prove or disprove the following statement: there is an integer N so that for all primes $p>N$ and all integers $k \geq 0$,

$$
\operatorname{dim}_{\mathbb{F}_{p}} H_{k}\left(X, \mathbb{F}_{p}\right)=\operatorname{dim}_{\mathbb{Q}} H_{k}(X, \mathbb{Q})
$$

Here the symbol dim_{k} indicates the dimension of the indicated vector space.
5.a.) Calculate the orientation double cover of $\mathbb{R} \mathrm{P}^{2 n+1}$; explain why this calculation demonstrates that $\mathbb{R} \mathrm{P}^{2 n+1}$ is orientable.
b.) State the Poincare Duality Theorem for compact manifolds without boundary. To do this you will have to first define the notion of an orientation class.

Over

6.a.) Let Z be a path-connected space so that $H_{1}(Z)=0$. What can you say about $\pi_{1}(Z)$?
b.) Prove or disprove: There exists a space Z satisfying $H_{1}(Z)=0 \neq \pi_{1}(Z)$.
7. Let ξ be an oriented real n-place bundle over a space X. For this problem you may assume the Thom Isomorphism Theorem.
a.) Define the Euler class $e(\xi)$ of ξ.
b.) Prove the existence of a long exact sequence (the Gysin Sequence)

$$
\cdots \rightarrow H^{k-n} X \xrightarrow{\smile e(\xi)} H^{k} X \rightarrow H^{k} E(\xi)_{0} \rightarrow H^{k-n+1} X \rightarrow \cdots
$$

Here $E(\xi)_{0} \subseteq E(\xi)$ is the total space of ξ minus the zero section.
c.) Let $\xi=\gamma$ be the canonical \mathbb{C}-plane bundle over $\mathbb{C} P^{n}$. Use the Gysin sequence to give a calculation of the cohomology ring $H^{*}\left(\mathbb{C P}^{n}\right)$.

