Part A: Do TWO of the following 3 problems.

A1. (a) Define chart, atlas and manifold.
(b) Let X denote the one point compactification of the complex numbers C. So $X=C \cup\{\infty\}$ and the sets $\{z:|z|>r, r>0\} \cup\{\infty\}$ form a neighborhood basis of $\{\infty\}$. Prove that X is a manifold and the function $f: X \rightarrow X$ is smooth if f is defined by $f(z)=z^{2}$ if $z \in C$ and $f(\infty)=\infty$. In particular prove f is smooth at the point ∞.

A2. (a) Define transversal intersection of two submanifolds.
(b) Suppose $f: R^{n} \rightarrow R$ and $g: R^{n} \rightarrow R$ are C^{∞} functions and that the derivatives $d f_{x} \neq d g_{x}$ whenever $f(x)=g(x)$. Prove that the graphs of f and g are submanifolds of R^{n+1} and that they intersect transversally. Note: the graph of f is $\left\{(x, f(x)) \in R^{n+1}: x \in R^{n}\right\}$.

A3. (a) Define critical point and critical value of a smooth function. State Sard's Theorem.
(b) Suppose $f: S^{1} \rightarrow R^{4}$ is a smooth embedding. Prove that there is a three dimensional subspace V of R^{4} such that $P \circ f: S^{1} \rightarrow V$ is one-to-one, where P is orthogonal projection of R^{4} onto V.

Part B: Do EACH of the following 3 problems.
B1. Calculate $H_{p}\left(R P^{3} \times R P^{3} ; \mathbf{R}\right)$ for all p and for $\mathbf{R}=\mathbf{Z} / 2 \mathbf{Z}$ and $\mathbf{R}=\mathbf{Z} / 3 \mathbf{Z}$.
B3. A homology class $\alpha \in H_{n}(X ; \mathbf{Z})$ is called spherical if there is a map $f: S^{n} \rightarrow X$ such that $f_{*}(\mu)=\alpha$, where μ generates $H_{n}(X ; \mathbf{Z})$.
Which classes $\alpha \in H_{p+q}\left(S^{p} \times S^{q} ; \mathbf{Z}\right)$ are spherical $(p \geq 1, q \geq 1)$?
B3. Calculate $H_{*}(X ; \mathbf{Z})$ where $X=S^{2} \cup\left\{(0,0, t) \in \mathbf{R}^{3} \mid-1 \leq t \leq 1\right\} \cup\left(D^{2} \times\{0\}\right)$.
In words: X is the union of a 2 -sphere with an equatorial disk and with a line segment joining the North and South poles.

Part C: Do TWO of the following 4 problems.
C1. Can $\mathbf{C} P^{2}$ be homeomorphic to a proper subspace of itself? Explain your answer.
C2. Let $p: X \rightarrow Y$ be a covering map with X (and hence Y) path-connected and locally path-connected. Suppose there is a map $f: X \rightarrow X$ such that $p \circ f=p$. Show that f is a homeomorphism.

C3. Suppose $A \subset X$ where X is contractible. Suppose that $\alpha \in H^{p}(X, A)$ and $\beta \in H^{q}(X, A)$ where $p>0$ and $q>0$. Show that $0=\alpha \cup \beta \in H^{p+q}(X, A)$.

C4. Prove that $S^{2 n}$ cannot be a covering space of $\mathbf{C} P^{n}$ if $n \geq 2$.

