Topology Preliminary Exam, September 1997

Do 2 of 3 problems in Part A and 4 of 6 problems in Part B

Be sure to indicate which problems you are submitting.

Part A

A1. Define chart, atlas and manifold. Define C^{∞} function from one manifold to another and define diffeomorphism.
If $f: M \rightarrow N$ is a C^{∞} function from the manifold M to the manifold N prove that its graph $G=\{(x, f(x)) \in M \times N \mid x \in M\}$ has the structure of a manifold and that it is diffeomorphic to M.

A2. Define critical point and critical value of a smooth function. State Sard's Theorem. Consider two C^{∞} functions $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: S^{1} \rightarrow S^{1}$. Is it possible that the set of critical values of f are dense in \mathbf{R} or that the set of critical values of g are dense in S^{1} ? In each case prove your answer; i.e. either prove it is not possible or construct an example.

A3. Define transversal intersection of two submanifolds.
Suppose M^{m} and N^{n} are compact manifolds of dimension m and n respectively. Let $f: M \rightarrow N$ be a C^{∞} function and suppose $y \in N$ is a regular value of f. Let $W=f^{-1}(y)$ so that W is a submanifold of M. Assume W is non-empty. If V is a submanifold of M which has a non-empty transverse intersection with W then give upper and lower bounds (in terms of m and n) on the possible dimension of V. Justify your answer. Give an example to show that at least one of these bounds is not valid if $W=f^{-1}(y)$ is a submanifold of M but $y \in N$ is not a regular value of f.

Part B

B1. A space Y is said to dominate a space X if there exist maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g \circ f$ is homotopic to the identity map of X. Suppose that X and Y are finite CW-complexes such that both X dominates Y and Y dominates X. Prove that $H_{p}(X) \approx H_{p}(Y)$ for all $p \geq 0$.

B2. Describe a CW-complex structure for the complex projective plane $C P^{2}$ including a description of the attatching maps of the cells. In addition, prove that $C P^{2}$ is simply-connected.

B3. Suppose that $f: S^{4} \rightarrow S^{4}$ is a map such that $f(-x)=-f(x)$. Then f induces a map g : $R P^{4} \rightarrow R P^{4}$ by $g(\{x,-x\})=\{f(x),-f(x)\}$. Prove that $g^{*}: H^{1}\left(R P^{4} ; \mathbf{Z} / 2 \mathbf{Z}\right) \rightarrow H^{1}\left(R P^{4} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ is an isomorphism.
Hint: First prove that g induces an isomorphism of the fundamental group.
B4. What are the following homology and cohomology groups (for all values of p)?

$$
H_{p}\left(R P^{3} ; \mathbf{Z}\right), H_{p}\left(R P^{3} ; \mathbf{Z} / 2 \mathbf{Z}\right), H^{p}\left(R P^{3} ; \mathbf{Z} / 5 Z\right), H_{p}\left(R P^{3} \times R P^{2} ; \mathbf{Z}\right)
$$

B5. The diagonal $D=\left\{(x, x) \in S^{1} \times S^{1} \mid x \in S^{1}\right\}$ of $S^{1} \times S^{1}$ is homeomorphic to S^{1}. Suppose that two copies of $S^{1} \times S^{1}$ are glued together along the diagonal D to obtain the space Y. Calculate the homology groups of Y.
Remark: D has a neighborhood in $S^{1} \times S^{1}$ homeomorphic to an open annulus $S^{1} \times(-1,1)$.
B6. Calculate the cohomology ring $H^{*}(K ; \mathbf{Z} / 2 \mathbf{Z})$. of the Klein bottle K.
Hint: K is the connected sum of two copies of $R P^{2}$ and has a useful map onto $R P^{2} \vee R P^{2}$.

