Topology Preliminary Exam, September 1996

Do 2 of 3 problems from Part A and 4 of 6 problems from Part B.
Be sure to indicate which problems you are submitting.

Part A

In Part A, X will be the subset of \mathbf{R}^{3} defined by $x^{2}+y^{2}+z^{2}=1$.
(A1.) (a) Show that X is a smooth manifold.
(b) Describe the normal space to X (as a subset of \mathbf{R}^{6}).
(A2.) (a) Describe the tangent space to X (as a subset of \mathbf{R}^{6}).
(b) Calculate the self intersection number of X.
(A3.) Consider the function $f: X \rightarrow \mathbf{R}^{4}$ given by $f(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)$. Let Y be the image set $f(X)$.
(a) Show that Y is a smooth manifold and that the map f is smooth.
(b) Describe the tangent space to Y.
(c) Calculate the mod 2 self intersection number of Y.

Part B

(B1.) Let $p: \tilde{X} \rightarrow X$ be a covering map. Assume \tilde{X} and X are path connected and that $\pi_{1}\left(X, x_{0}\right)$ is finite. Let $\tilde{x}_{0} \in \tilde{X}$ so that $p\left(\tilde{x}_{0}\right)=x_{0}$. Show that the number of points in $p^{-1}\left(x_{0}\right)$ is equal to $\left[\pi_{1}\left(X, x_{0}\right): p_{*} \pi_{1}\left(\tilde{X}, \tilde{x}_{0}\right)\right]$, the index of the image of p_{*} in the fundamental group of X.
(B2.) Let $f: S^{3} \rightarrow S^{3}$ be a map such that $f(-x)=-f(x)$ for all $x \in S^{3}$. Then f induces a map $g: \mathbf{R} P^{3} \rightarrow \mathbf{R} P^{3}$.
(a) Show that $g_{*}: \pi_{1}\left(\mathbf{R} P^{3}, *\right) \rightarrow \pi_{1}\left(\mathbf{R} P^{3}, *\right)$ is an isomorphism.
(b) Show that $f_{*}: H_{3}\left(S^{3} ; \mathbf{Z}\right) \rightarrow H_{3}\left(S^{3} ; \mathbf{Z}\right)$ is multiplication by an odd integer.
(B3.) (a) Describe a map $f: S^{2} \times S^{2} \rightarrow S^{4}$ such that $f_{*}: H_{4}\left(S^{2} \times S^{2} ; \mathbf{Z}\right) \rightarrow H_{4}\left(S^{2} ; \mathbf{Z}\right)$ is an isomorphism. (b) Does there exist a map $f: S^{4} \rightarrow S^{2} \times S^{2}$ such that $f_{*}: H_{4}\left(S^{2} ; \mathbf{Z}\right) \rightarrow H_{4}\left(S^{2} \times S^{2} ; \mathbf{Z}\right)$ is an isomorphism? Explain your answer.
(B4.) Give an example of a map $f: S^{p} \rightarrow S^{q}$, for some p and q with $p>q$, such that f is not homotopic to a constant map. Include a proof that your map f is, in fact, not homotopic to a constant map.
(B5.) Let P be the projective plane and let K be the Klein bottle.
(a) What are $H_{*}(K ; \mathbf{Z})$ and $H^{*}(K ; \mathbf{Z})$?
(b) What is $H_{*}(K \times P ; \mathbf{Z})$?
(B6.) Let M be a compact connected manifold of dimension m and let N be a compact connected manifold of dimension n, both without boundary. Suppose there is a map $f: M \rightarrow N$ which is one-to-one.
(a) Show that $m \leq n$.
(b) Show that if $m=n$, then f is a homeomorphism of M onto N.

