Topology Preliminary Exam, September 1996

Do 2 of 3 problems from Part A and 4 of 6 problems from Part B. Be sure to indicate which problems you are submitting.

Part A

In **Part A**, X will be the subset of \mathbf{R}^3 defined by $x^2 + y^2 + z^2 = 1$.

- (A1.) (a) Show that X is a smooth manifold.
 - (b) Describe the normal space to X (as a subset of \mathbf{R}^6).
- (A2.) (a) Describe the tangent space to X (as a subset of R⁶).
 (b) Calculate the self intersection number of X.
- (A3.) Consider the function $f: X \to \mathbf{R}^4$ given by $f(x, y, z) = (x^2 y^2, xy, xz, yz)$. Let Y be the image set f(X).
 - (a) Show that Y is a smooth manifold and that the map f is smooth.
 - (b) Describe the tangent space to Y.
 - (c) Calculate the mod 2 self intersection number of Y.

Part B

- (B1.) Let $p: \tilde{X} \to X$ be a covering map. Assume \tilde{X} and X are path connected and that $\pi_1(X, x_0)$ is finite. Let $\tilde{x}_0 \in \tilde{X}$ so that $p(\tilde{x}_0) = x_0$. Show that the number of points in $p^{-1}(x_0)$ is equal to $[\pi_1(X, x_0) : p_*\pi_1(\tilde{X}, \tilde{x}_0)]$, the index of the image of p_* in the fundamental group of X.
- (B2.) Let $f: S^3 \to S^3$ be a map such that f(-x) = -f(x) for all $x \in S^3$. Then f induces a map $g: \mathbb{R}P^3 \to \mathbb{R}P^3$.
 - (a) Show that $g_*: \pi_1(\mathbb{R}P^3, *) \to \pi_1(\mathbb{R}P^3, *)$ is an isomorphism.
 - (b) Show that $f_*: H_3(S^3; \mathbb{Z}) \to H_3(S^3; \mathbb{Z})$ is multiplication by an odd integer.
- (B3.) (a) Describe a map $f: S^2 \times S^2 \to S^4$ such that $f_*: H_4(S^2 \times S^2; \mathbb{Z}) \to H_4(S^2; \mathbb{Z})$ is an isomorphism. (b) Does there exist a map $f: S^4 \to S^2 \times S^2$ such that $f_*: H_4(S^2; \mathbb{Z}) \to H_4(S^2 \times S^2; \mathbb{Z})$ is an isomorphism? Explain your answer.
- (B4.) Give an example of a map $f: S^p \to S^q$, for some p and q with p > q, such that f is not homotopic to a constant map. Include a proof that your map f is, in fact, not homotopic to a constant map.
- (B5.) Let P be the projective plane and let K be the Klein bottle.
 (a) What are H_{*}(K; Z) and H^{*}(K; Z)?
 (b) What is H_{*}(K × P; Z)?
- (B6.) Let M be a compact connected manifold of dimension m and let N be a compact connected manifold of dimension n, both without boundary. Suppose there is a map $f: M \to N$ which is one-to-one.
 - (a) Show that $m \leq n$.
 - (b) Show that if m = n, then f is a homeomorphism of M onto N.