Algebraic Topology Preliminary Exam
 June 2009

Do all of the following questions.

1. Let X be a path-connected space with abelian fundamental group A and contractible universal cover. Suppose $f: Y \rightarrow X$ is a continuous map so that

$$
0=f^{*}: H^{1}(X, A) \longrightarrow H^{1}(Y, A) .
$$

Prove f is null-homotopic.
2.i.) Let X be a CW complex and suppose that for all non-negative integers n, X has only finitely many n-cells. Prove that if $\tilde{H}_{*}\left(X, \mathbb{F}_{p}\right)=0$ for all primes p, then $\tilde{H}_{*}(X, \mathbb{Q})=0$.
ii.) Show by example that the hypothesis on the number of cells in X is necessary.
3.i.) Let M be a compact, connected manifold without boundary of even dimension $2 n$. Show that there is a unique class $v \in H^{n}\left(M, \mathbb{F}_{2}\right)$ so that

$$
v \smile u=u^{2}
$$

for all $u \in H^{n}\left(M, \mathbb{F}_{2}\right)$.
ii.) Find v if $M=\mathbb{R P}^{2} \times \mathbb{R P}^{2}$.
4. One form of the Poincaré conjecture states that if a smooth 3-manifold M is homotopy equivalent to S^{3}, then M is diffeomorphic to S^{3}.
i.) Assuming this version of the Poincaré conjecture, show that the universal cover of any connected 3 -manifold M is either S^{3} or contractible.
ii.) Now assume M is orientable. Show that M is parallelizable; that is, there exists a trivialization of the tangent bundle, $T M \cong M \times \mathbb{R}^{3}$.

Over
5. Let X and Y be two spaces and define

$$
X * Y=X \times Y \times[-1,1] / \sim
$$

where \sim is the smallest equivalence relation so that

$$
(x, y,-1) \sim\left(x^{\prime}, y,-1\right) \quad \text { and } \quad(x, y, 1) \sim\left(x, y^{\prime}, 1\right)
$$

Show that there is a short exact sequence

$$
0 \rightarrow \tilde{H}_{n+1}(X * Y) \longrightarrow \tilde{H}_{n}(X \times Y) \xrightarrow{p} \tilde{H}_{n}(X) \oplus \tilde{H}_{n}(Y) \rightarrow 0
$$

with $p(a)=\left(p_{*}^{1}(a), p_{*}^{2}(a)\right)$. Here p^{i} are the two projections from the product.
6. Let $X=S_{1} \cup S_{2} \subseteq \mathbb{R}^{3}$ be the union of two spheres of radius 2 , one about $(1,0,0)$ and the other about $(-1,0,0)$. Thus

$$
S_{1}=\left\{(x, y, z) \mid(x-1)^{2}+y^{2}+z^{2}=4\right\}
$$

and

$$
S_{2}=\left\{(x, y, z) \mid(x+1)^{2}+y^{2}+z^{2}=4\right\} .
$$

i.) Give a description of X as a CW complex.
ii.) Write out the cellular chain complex of X.
iii.) Calculate $H_{*}(X, \mathbb{Z})$.
7. Consider the tautological \mathbb{H}-line bundle on quaternionic projective space, $E \rightarrow \mathbb{H} P^{n}$. For $n=1, E$ thus defines a 4 -dimensional real vector bundle over $\mathbb{H} P^{1} \cong S^{4}$. Compute the value of the pairing $\left\langle p_{1}(E),\left[S^{4}\right]\right\rangle$. Show whether or not E is equivalent to the tangent bundle of S^{4}.

