Geometry and topology preliminary exam, September 2010. ANSWER 9 QUESTIONS.

Question 1.

Let X, Y be connected locally contractible topological spaces, and suppose that
(1) The universal cover of Y is contractible.
(2) The fundamental group of X is trivial.

Show that every continuous map $f: X \rightarrow Y$ is homotopic to a constant map.

Question 2.

Let $Y \rightarrow X$ be a covering space of a topological space X. Let $y \in Y$ and let $x=p(y)$.
(1) Outline a construction of an action of the group $\pi_{1}(X, x)$ on the set $p^{-1}(x)$ (you may assume any path-lifting properties you need, as long as they are stated clearly).
(2) How do $\pi_{1}(Y, y), \pi_{0}(Y), \pi_{1}(X, x)$ and $p^{-1}(x)$ relate?

Now, let S be any set with an action of the group $\pi_{1}(X, x)$. Construct a covering space Y_{S} of X with a $\pi_{1}(X, x)$-equivariant isomorphism

$$
S \cong p^{-1}(x)
$$

(You may assume the existence of a universal cover, if necessary).

Question 3.

Let S_{k} be the space obtained from the sphere S^{2} by
(1) Removing k disjoint open discs from S^{2}, to leave a manifold whose boundary is k circles;
(2) Gluing a Möbius band onto each circle (which we can do, as the boundary of a Möbius band is also a circle).

Use Van Kampen's theorem to calculate $\pi_{1}\left(S_{k}\right)$ for each $k>0$.
Question 4. (1) State van Kampen's theorem, allowing you to compute the fundamental group of a space X written as a union of two open subsets U, V whose intersection is connected.
(2) Let

$$
G=\left\langle g_{1}, \ldots, g_{k} \mid r_{1}, \ldots, r_{l}\right\rangle
$$

be a finitely presented group, with generators g_{i} and relations r_{j}. Construct a space X with $\pi_{1}(X)=G$. (You should prove that $\pi_{1}(X)$ has this property).

Question 5.

Let

$$
f: \operatorname{Mat}(n, n) \times \operatorname{Mat}(n, n) \rightarrow \operatorname{Mat}(n, n)
$$

be the map of multiplication, $f(A, B)=A \cdot B$, where A and B are $n \times n$ matrices. Since $\operatorname{Mat}(n, n)$ is a vector spaces, its tangent bundle is trivial

$$
T \operatorname{Mat}(n, n) \cong \operatorname{Mat}(n, n) \times \operatorname{Mat}(n, n)=\{(A ; X), A, X \in \operatorname{Mat}(n, n)\}
$$

(1) Describe the derivative $\operatorname{Df}(A, B ; X, Y)$ of f at the $\operatorname{point}(A, B ; X, Y) \in T(\operatorname{Mat}(n, n) \times \operatorname{Mat}(n, n))$.
(2) Let g be the Riemannian metric

$$
g_{A}(X, Y)=\operatorname{tr}(X \cdot Y)
$$

Compute the pullback $f^{*}(g)$ explicitly.

Question 6.

Let M be the sphere $x^{2}+y^{2}+z^{2}=1$ with spherical coordinates

$$
x=\cos (\theta) \sin (\phi), \quad y=\sin (\theta) \sin (\phi), \quad z=\cos (\phi),
$$

for $\theta \in[0,2 \pi), \phi \in[0, \pi]$. Let $d A$ denote the usual area form

$$
d A=\sin (\theta) d \theta d \phi
$$

Using a coordinate system for the northern and southern hemisphere, calculate

$$
\int_{M} e^{a f(x, y, z)} d A
$$

where a is a number, and $f(x, y, z)=z$ is the height function on the sphere.

Question 7.

Consider the distribution on \mathbb{R}^{3} given by

$$
\Delta_{(x, y, z)}=\operatorname{Span}\left\{y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}, z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right\} .
$$

(1) Show that this distribution is integrable.
(2) Describe the maximal integral submanifolds.

Question 8.

Let M be a Riemannian manifold.
(1) What does it mean for a connection on M to be symmetric?
(2) What does it mean for a connection on M to be compatible with the metric?
(3) Suppose Γ is the connection on \mathbb{R}^{n} whose covariant derivative is given by

$$
D_{\partial_{i}} \partial_{j}=\sum_{k} \Gamma_{i j}^{k} \partial_{k}, \quad \partial_{i}=\frac{\partial}{\partial x_{i}},
$$

and g is a Riemannian metric on \mathbb{R}^{n} given by

$$
g\left(\partial_{i}, \partial_{j}\right)=g_{i j} .
$$

Derive the formula for the coordinates $\Gamma_{i j}^{k}$ in terms of the metric $g_{i j}$, where Γ is the unique symmetric connection compatible with the metric.

Question 9.

Let X be a vector field on a manifold M, induced by $g_{t}: M \rightarrow M$ so that

$$
(X \cdot f)(x)=\left.\frac{d}{d t}\right|_{t=0} f\left(g_{t}(x)\right) .
$$

(1) If Y is another vector field, the Lie Derivative $\mathcal{L}_{X} Y$ is defined by

$$
\left(\mathcal{L}_{X} Y\right)_{p}=\left.\frac{d}{d t}\right|_{t=0} g_{-t *}(Y),
$$

where $g_{-t *}(Y)$ is the pushforward of Y through g_{-t}. Prove that $\left(\mathcal{L}_{X} Y\right)(f)=$ $X \cdot(Y \cdot f)-Y \cdot(X \cdot f)$.
(2) If ω is a differential form, we define

$$
\left(\mathcal{L}_{X} \omega\right)_{p}=\left.\frac{d}{d t}\right|_{t=0}\left(g_{t}^{*} \omega\right)_{p}
$$

where $g_{t}^{*}(\boldsymbol{\omega})$ is the pullback of ω. Prove that

$$
d \mathcal{L}_{X} \omega=\mathcal{L} d \omega
$$

for ω a differential form on \mathbb{R}^{n}.

Question 10.

Let U, V be open subsets of M which cover M. Write out the Mayer-Vietoris sequence for the cohomology of M.

Let $T=S^{1} \times S^{1}$. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

be a 2×2 integer matrix with determinant one. Let

$$
\phi_{A}: T \rightarrow T
$$

be the map defined by

$$
\phi_{A}(\theta, \sigma)=(a \theta+b \sigma, c \theta+d \sigma),
$$

where $\theta, \sigma \in \mathbb{R} / \mathbb{Z}$ are the angle coordinates $T=S^{1} \times S^{1}$.
Let

$$
M=T \times[0,1] / \sim
$$

where \sim is the equivalence relation identifying $(t, 0)$ with $\left(\phi_{A}(t), 1\right)$.
Calculate the de Rham cohomology of M.
Question 11. (1) State Stoke's theorem.
(2) Let M be a manifold, and $\omega \in \Omega^{r}(M)$ be an r-form. Suppose that

$$
\int_{\Sigma} \omega=0
$$

for all submanifolds r of Σ which are diffeomorphic to a sphere.
Show that $\mathrm{d} \omega=0$.

Question 12. (1) Let $\phi, \psi: C^{*} \rightarrow D^{*}$ be cochain maps between two cochain complexes. What does it mean for ϕ, ψ to be cochain homotopic?
(2) Let M, N be smooth manifolds, and let $f, g: M \rightarrow N$ be smooth maps. Let $F: M \times[0,1] \rightarrow N$. Use F to construct a cochain homotopy between the two cochain maps

$$
f^{*}, g^{*}: \Omega^{*}(N) \rightarrow \Omega^{*}(M)
$$

Question 13. (1) Use the Mayer-Vietoris sequence to compute the de Rham cohomology of $\mathbb{C} \mathbb{P}^{n}$.
(2) Using intersection theory, or otherwise, calculate the ring structure on $H_{d R}^{*}\left(\mathbb{C P}^{n}\right)$.

