GEOMETRY AND TOPOLOGY PRELIMINARY EXAM, SEPTEMBER 2010. Answer 9 questions.

Question 1.

Let X, Y be connected locally contractible topological spaces, and suppose that

- (1) The universal cover of Y is contractible.
- (2) The fundamental group of *X* is trivial.

Show that every continuous map $f : X \to Y$ is homotopic to a constant map.

Question 2.

Let $Y \to X$ be a covering space of a topological space X. Let $y \in Y$ and let x = p(y).

- (1) Outline a construction of an action of the group $\pi_1(X, x)$ on the set $p^{-1}(x)$ (you may assume any path-lifting properties you need, as long as they are stated clearly).
- (2) How do $\pi_1(Y, y)$, $\pi_0(Y)$, $\pi_1(X, x)$ and $p^{-1}(x)$ relate?

Now, let *S* be any set with an action of the group $\pi_1(X, x)$. Construct a covering space Y_S of *X* with a $\pi_1(X, x)$ -equivariant isomorphism

$$S \cong p^{-1}(x)$$

(You may assume the existence of a universal cover, if necessary).

Question 3.

Let S_k be the space obtained from the sphere S^2 by

- (1) Removing *k* disjoint open discs from *S*², to leave a manifold whose boundary is *k* circles;
- (2) Gluing a Möbius band onto each circle (which we can do, as the boundary of a Möbius band is also a circle).

Use Van Kampen's theorem to calculate $\pi_1(S_k)$ for each k > 0.

- **Question 4.** (1) State van Kampen's theorem, allowing you to compute the fundamental group of a space *X* written as a union of two open subsets *U*, *V* whose intersection is connected.
 - (2) Let

$$G = \langle g_1, \ldots, g_k \mid r_1, \ldots, r_l \rangle$$

be a finitely presented group, with generators g_i and relations r_j . Construct a space *X* with $\pi_1(X) = G$. (You should prove that $\pi_1(X)$ has this property).

Question 5.

Let

$$f: \operatorname{Mat}(n,n) \times \operatorname{Mat}(n,n) \to \operatorname{Mat}(n,n)$$

be the map of multiplication, $f(A, B) = A \cdot B$, where *A* and *B* are $n \times n$ matrices. Since Mat(n, n) is a vector spaces, its tangent bundle is trivial

$$T\operatorname{Mat}(n,n) \cong \operatorname{Mat}(n,n) \times \operatorname{Mat}(n,n) = \{(A;X), A, X \in \operatorname{Mat}(n,n)\}.$$

- (1) Describe the derivative Df(A, B; X, Y) of f at the point $(A, B; X, Y) \in T$ (Mat $(n, n) \times$ Mat(n, n)).
- (2) Let *g* be the Riemannian metric

$$g_A(X,Y) = tr(X \cdot Y).$$

Compute the pullback $f^*(g)$ explicitly.

Question 6.

Let *M* be the sphere $x^2 + y^2 + z^2 = 1$ with spherical coordinates

$$x = \cos(\theta)\sin(\phi), \quad y = \sin(\theta)\sin(\phi), \quad z = \cos(\phi),$$

for $\theta \in [0, 2\pi)$, $\phi \in [0, \pi]$. Let *dA* denote the usual area form

$$dA = \sin(\theta) d\theta d\phi.$$

Using a coordinate system for the northern and southern hemisphere, calculate

$$\int_M e^{af(x,y,z)} dA$$

where *a* is a number, and f(x, y, z) = z is the height function on the sphere.

Question 7.

Consider the distribution on \mathbb{R}^3 given by

$$\Delta_{(x,y,z)} = \operatorname{Span}\left\{y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}, z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}\right\}.$$

- (1) Show that this distribution is integrable.
- (2) Describe the maximal integral submanifolds.

Question 8.

Let *M* be a Riemannian manifold.

- (1) What does it mean for a connection on *M* to be *symmetric*?
- (2) What does it mean for a connection on *M* to be *compatible with the metric*?
- (3) Suppose Γ is the connection on \mathbb{R}^n whose covariant derivative is given by

$$D_{\partial_i}\partial_j = \sum_k \Gamma_{ij}^k \partial_k, \quad \partial_i = \frac{\partial}{\partial x_i},$$

and *g* is a Riemannian metric on \mathbb{R}^n given by

$$g(\partial_i,\partial_j)=g_{ij}.$$

Derive the formula for the coordinates Γ_{ij}^k in terms of the metric g_{ij} , where Γ is the unique symmetric connection compatible with the metric.

Question 9.

Let *X* be a vector field on a manifold *M*, induced by $g_t : M \to M$ so that

$$(X \cdot f)(x) = \left. \frac{d}{dt} \right|_{t=0} f(g_t(x))$$

(1) If *Y* is another vector field, the *Lie Derivative* $\mathcal{L}_X Y$ is defined by

$$(\mathcal{L}_X Y)_p = \left. \frac{d}{dt} \right|_{t=0} g_{-t*}(Y),$$

where $g_{-t*}(Y)$ is the pushforward of Y through g_{-t} . Prove that $(\mathcal{L}_X Y)(f) = X \cdot (Y \cdot f) - Y \cdot (X \cdot f)$.

(2) If ω is a differential form, we define

$$(\mathcal{L}_X \omega)_p = \left. \frac{d}{dt} \right|_{t=0} (g_t^* \omega)_p,$$

where $g_t^*(\omega)$ is the pullback of ω . Prove that

$$d\mathcal{L}_{\mathrm{X}}\omega=\mathcal{L}d\omega$$

for ω a differential form on \mathbb{R}^n .

Question 10.

Let *U*, *V* be open subsets of *M* which cover *M*. Write out the Mayer-Vietoris sequence for the cohomology of *M*.

Let $T = S^1 \times S^1$. Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$

be a 2×2 integer matrix with determinant one. Let

$$\phi_A: T \to T$$

be the map defined by

$$\phi_A(\theta,\sigma) = (a\theta + b\sigma, c\theta + d\sigma),$$

where $\theta, \sigma \in \mathbb{R}/\mathbb{Z}$ are the angle coordinates $T = S^1 \times S^1$.

Let

$$M = T \times [0,1] / \sim$$

where ~ is the equivalence relation identifying (t, 0) with $(\phi_A(t), 1)$.

Calculate the de Rham cohomology of *M*.

Question 11. (1) State Stoke's theorem.

(2) Let *M* be a manifold, and $\omega \in \Omega^{r}(M)$ be an *r*-form. Suppose that

$$\int_{\Sigma} \omega = 0$$

for all submanifolds *r* of Σ which are diffeomorphic to a sphere. Show that $d\omega = 0$.

- **Question 12.** (1) Let $\phi, \psi : C^* \to D^*$ be cochain maps between two cochain complexes. What does it mean for ϕ, ψ to be cochain homotopic?
 - (2) Let M, N be smooth manifolds, and let $f, g : M \to N$ be smooth maps. Let $F : M \times [0, 1] \to N$. Use F to construct a cochain homotopy between the two cochain maps

$$f^*, g^*: \Omega^*(N) \to \Omega^*(M).$$

- **Question 13.** (1) Use the Mayer-Vietoris sequence to compute the de Rham cohomology of \mathbb{CP}^n .
 - (2) Using intersection theory, or otherwise, calculate the ring structure on $H_{dR}^*(\mathbb{CP}^n)$.