GEOMETRY AND TOPOLOGY PRELIMINARY EXAM, JUNE 2010.

Answer 6 questions, including at least one of 4 and 5.

Question 1.

Let *G* be a discrete group, and *X* a connected space.

- (1) Assuming any path and homotopy lifting properties you need, explain how to construct a group homomorphism $\pi_1(X, x) \to G$ from a principal *G* bundle on *X*.
- (2) The fundamental group of $S^1 \vee S^1$ is the free group on two generators γ_1 and γ_2 . Construct (explicitly) a principal $\mathbb{Z} \times \mathbb{Z}$ bundle on $S^1 \vee S^1$ such that the associated group homomorphism $\pi_1(S^1 \vee S^1) \to \mathbb{Z} \times \mathbb{Z}$ sends

$$\gamma_1
ightarrow (1,0)$$

 $\gamma_2
ightarrow (0,1).$

Question 2.

Let $a, b \in \mathbb{RP}^2$ be two distinct points.

Let *X* be the space quotient of $\mathbb{RP}^2 \times \{1, 2, 3\}$ by the relations $(b, 1) \sim (a, 2), (b, 2) \sim (a, 3), (b, 3) \sim (a, 1).$

Calculate the fundamental group of *X*, and hence classify all 3-fold connected covers of *X*.

Question 3. (1) Using the coordinate definition of the exterior derivative, prove the formula

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]),$$

where *X* and *Y* are vector fields, and w is a 1-form on a manifold, *M*.

(2) Suppose $M = G = GL(2, \mathbb{R})$. Define left-invariant vector fields *X*, *Y* on *M*, and a left-invariant 1-form ω on *M*, by the formulae

$$X_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y_1 = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}, \quad \omega_1 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + b - d.$$

Here $1 \in G$ is the identity, and we have identified the tangent space to *G* at the identity with the Lie algebra of *G*, i.e. the set of 2×2 matrices. Calculate $d\omega(X, Y)$ as a function on *G*.

Question 4.

Consider the distribution on $M = \{(x, y, z) \in \mathbb{R}^3 | x > 0, y > 0\}$ given by

$$\Delta_{(x,y,z)} = \operatorname{Span}\left\{y\frac{\partial}{\partial x} + xy\frac{\partial}{\partial z}, x\frac{\partial}{\partial y} + xy\frac{\partial}{\partial z}\right\}.$$

- (1) Show that this distribution is integrable.
- (2) Describe the maximal integral submanifolds.

Question 5.

Let *M* be a compact Riemannian manifold.

- (1) What does it mean for a smooth map $f : (0, t) \to M$ to be a geodesic?
- (2) Suppose that *M* is two-dimensional. Let $\sigma : M \to M$ be an isometry which satisfies $\sigma^2 = 1$. Suppose that the fixed point set $\gamma = \{x \in M \mid \sigma(x) = x\}$ is a connected one-dimensional submanifold of *M*.

Show that γ is the image of a geodesic.

(3) Let

$$M = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 1, \text{ and } z > 0 \}.$$

Show that, for every straight line through the origin $L \subset \mathbb{R}^2$, the set

$$\{(x, y, z) \in M \mid (x, y) \in L\}$$

is a geodesic in M.

Question 6.

Let *G* be a finite group acting freely on a manifold *M* (this means that a non-identity element of *G* has no fixed points).

- (1) Prove that M/G is a manifold.
- (2) Prove that

$$H^i_{dR}(M/G) = H^i_{dR}(M)^G$$

where $H_{dR}^{i}(M)^{G}$ is the fixed points of the *G* action on $H_{dR}^{i}(M)$.

(3) Use this result to show that, if *N* is a compact, connected *n* dimensional manifold which is non-orientable,

$$H^n_{dR}(N) = 0.$$

Question 7.

If M, N are connected oriented manifolds of the same dimension. Let M' (respectively, N') be the manifold with boundary obtained by removing a small open ball from M (respectively, N). Let M#N be the manifold obtained by gluing the boundary sphere of M' to that of N', using an orientation reversing diffeomorphism.

Calculate the de Rham cohomology ring of $(S^1 \times S^3) # \mathbb{CP}^2$.

Question 8.

Let Σ_g denote the compact oriented surface of genus *g*. Let

$$X = \Sigma_g \setminus \{p_1, \ldots, p_k\}$$

where the p_i are distinct points in Σ_g .

- (1) Calculate the compactly supported de Rham cohomology of X.
- (2) Is it true that every class in $H_c^i(X)$ can be represented as the fundamental class of some submanifold?
- (3) Using intersection theory, or otherwise, calculate the ring structure on $H_c^*(X)$.

2