Question 1.

Let G be a discrete group, and X a connected space.
(1) Assuming any path and homotopy lifting properties you need, explain how to construct a group homomorphism $\pi_{1}(X, x) \rightarrow G$ from a principal G bundle on X.
(2) The fundamental group of $S^{1} \vee S^{1}$ is the free group on two generators γ_{1} and γ_{2}. Construct (explicitly) a principal $\mathbb{Z} \times \mathbb{Z}$ bundle on $S^{1} \vee S^{1}$ such that the associated group homomorphism $\pi_{1}\left(S^{1} \vee S^{1}\right) \rightarrow \mathbb{Z} \times \mathbb{Z}$ sends

$$
\begin{aligned}
& \gamma_{1} \rightarrow(1,0) \\
& \gamma_{2} \rightarrow(0,1) .
\end{aligned}
$$

Question 2.

Let $a, b \in \mathbb{R P}^{2}$ be two distinct points.
Let X be the space quotient of $\mathbb{R} \mathbb{P}^{2} \times\{1,2,3\}$ by the relations $(b, 1) \sim(a, 2),(b, 2) \sim$ $(a, 3),(b, 3) \sim(a, 1)$.

Calculate the fundamental group of X, and hence classify all 3-fold connected covers of X.

Question 3. (1) Using the coordinate definition of the exterior derivative, prove the formula

$$
\mathrm{d} \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y])
$$

where X and Y are vector fields, and ω is a 1-form on a manifold, M.
(2) Suppose $M=G=G L(2, \mathbb{R})$. Define left-invariant vector fields X, Y on M, and a left-invariant 1-form ω on M, by the formulae

$$
X_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y_{1}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right), \quad \omega_{1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+b-d .
$$

Here $1 \in G$ is the identity, and we have identified the tangent space to G at the identity with the Lie algebra of G, i.e. the set of 2×2 matrices. Calculate $\mathrm{d} \omega(X, Y)$ as a function on G.

Question 4.

Consider the distribution on $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x>0, y>0\right\}$ given by

$$
\Delta_{(x, y, z)}=\operatorname{Span}\left\{y \frac{\partial}{\partial x}+x y \frac{\partial}{\partial z}, x \frac{\partial}{\partial y}+x y \frac{\partial}{\partial z}\right\} .
$$

(1) Show that this distribution is integrable.
(2) Describe the maximal integral submanifolds.

Question 5.

Let M be a compact Riemannian manifold.
(1) What does it mean for a smooth map $f:(0, t) \rightarrow M$ to be a geodesic?
(2) Suppose that M is two-dimensional. Let $\sigma: M \rightarrow M$ be an isometry which satisfies $\sigma^{2}=1$. Suppose that the fixed point set $\gamma=\{x \in M \mid \sigma(x)=x\}$ is a connected one-dimensional submanifold of M.

Show that γ is the image of a geodesic.
(3) Let

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=1, \text { and } z>0\right\}
$$

Show that, for every straight line through the origin $L \subset \mathbb{R}^{2}$, the set

$$
\{(x, y, z) \in M \mid(x, y) \in L\}
$$

is a geodesic in M.

Question 6.

Let G be a finite group acting freely on a manifold M (this means that a non-identity element of G has no fixed points).
(1) Prove that M / G is a manifold.
(2) Prove that

$$
H_{d R}^{i}(M / G)=H_{d R}^{i}(M)^{G}
$$

where $H_{d R}^{i}(M)^{G}$ is the fixed points of the G action on $H_{d R}^{i}(M)$.
(3) Use this result to show that, if N is a compact, connected n dimensional manifold which is non-orientable,

$$
H_{d R}^{n}(N)=0
$$

Question 7.

If M, N are connected oriented manifolds of the same dimension. Let M^{\prime} (respectively, N^{\prime}) be the manifold with boundary obtained by removing a small open ball from M (respectively, N). Let $M \# N$ be the manifold obtained by gluing the boundary sphere of M^{\prime} to that of N^{\prime}, using an orientation reversing diffeomorphism.

Calculate the de Rham cohomology ring of $\left(S^{1} \times S^{3}\right) \# \mathbb{C P}{ }^{2}$.

Question 8.

Let Σ_{g} denote the compact oriented surface of genus g. Let

$$
X=\Sigma_{g} \backslash\left\{p_{1}, \ldots, p_{k}\right\}
$$

where the p_{i} are distinct points in Σ_{g}.
(1) Calculate the compactly supported de Rham cohomology of X.
(2) Is it true that every class in $H_{c}^{i}(X)$ can be represented as the fundamental class of some submanifold?
(3) Using intersection theory, or otherwise, calculate the ring structure on $H_{c}^{*}(X)$.

