Geometry and Topology Preliminary Examination
 Northwestern University
 Spring 2014

Do at least two problems from each group, and more if you can.

Group I

1) Give an example of a covering space $X \rightarrow Y$ where Y is the wedge of three circles and $\pi_{1}(X)$ is the dihedral group $a^{2}=1, b^{4}=1, a b a=b^{3}$.
2) Fix a natural number $N>0$. Let

$$
X=\left\{(u, \zeta) \mid u \in U(2, \mathbb{C}), \zeta \in \mathbb{C}, \operatorname{det}(u)=\zeta^{N}\right\}
$$

Let p be the projection $(u, \zeta) \mapsto u$. Show that there is no continuous map $q: U(2, \mathbb{C}) \rightarrow X$ such that $p q=\mathrm{id}$.
3) Let $D=\{z \in \mathbb{C}| | z \mid \leqslant 1\}$ and let

$$
X=\left(D \times S^{1}\right)-\left(L_{1} \cup L_{2} \cup L_{3} \cup L_{4}\right)
$$

where

$$
\begin{array}{cc}
L_{1}=\left\{\left(z_{1}, z_{2}\right) \left\lvert\, z_{1}=-\frac{1}{2}\right.\right\}, & L_{2}=\left\{\left(z_{1}, z_{2}\right) \left\lvert\, z_{1}=\frac{1}{2}\right.\right\} \\
L_{3}=\left\{\left.\left(z_{1}, z_{2}\right)| | z_{1}-\frac{1}{2} \right\rvert\,=\frac{1}{2}, z_{2}=1\right\}, & L_{4}=\left\{\left.\left(z_{1}, z_{2}\right)| | z_{1}+\frac{1}{2} \right\rvert\,=\frac{1}{2}, z_{2}=1\right\} .
\end{array}
$$

Compute $\pi_{1}(X)$.

Group II

1) Let G be a (finite-dimensional, not necessarily connected) Lie group, with identity element $e \in G$. Let $m: G \times G \rightarrow G$ be the group multiplication map.
(a) Via the usual identification $T_{(e, e)}(G \times G) \cong T_{e} G \oplus T_{e} G$, show that $d m_{e}: T_{e} G \oplus T_{e} G \rightarrow$ $T_{e} G$ is given by

$$
d m_{e}(X, Y)=X+Y
$$

for every $X, Y \in T_{e} G$.
Let now $i: G \rightarrow G$ be the inversion map of G.
(b) Show that for every $X \in T_{e} G$ we have

$$
d i_{e}(X)=-X
$$

2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth positive function, and consider the surface of revolution

$$
M=\left\{(f(u) \cos v, f(u) \sin v, u) \in \mathbb{R}^{3} \mid u \in \mathbb{R}, 0 \leqslant v<2 \pi\right\} .
$$

(a) Show that M is a submanifold of \mathbb{R}^{3}.
(b) Let $\iota: M \hookrightarrow \mathbb{R}^{3}$ be the inclusion. Using (u, v) as global coordinates on M, write down the metric $g=\iota^{*} g_{\text {Eucl }}$ induced from the Euclidean metric on \mathbb{R}^{3}.
(c) Write down the same metric explicitly when $f(x)=e^{x}$.
3) Consider the vector fields

$$
X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}, \quad Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y},
$$

in \mathbb{R}^{3} with the standard coordinates (x, y, z).
(a) Find local coordinates (u, v, w) in a neighborhood of $(x, y, z)=(1,0,0)$, such that in these coordinates we have

$$
X=\frac{\partial}{\partial u}, \quad Y=\frac{\partial}{\partial v} .
$$

(b) Is it possible to do the same for the vector fields

$$
X^{\prime}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}, \quad Y^{\prime}=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} ?
$$

Group III

1) Compute $H^{k}\left(\mathbb{R} \mathbb{P}^{8} ; \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}\right)$, for all k.
2) Show that if $\pi: \mathbb{C P}^{2 n} \rightarrow X$ is a covering space, then $X=\mathbb{C P}^{2 n}$ and π is the identity.
3) Let M be a compact orientable manifold of dimension $n \geqslant 2$, and $p \in M$. Suppose you know the de Rham cohomology groups of M, determine those of $M \backslash\{p\}$.
