GEOMETRY AND TOPOLOGY PRELIMINARY EXAM, SEPTEMBER 2011.

Question 1.

Let Gr(2, 4) denote the Grassmannian of two-dimensional planes in \mathbb{R}^4 . Let $GL_4(\mathbb{R})$ be the general linear group of invertible linear transformations of \mathbb{R}^4 . Let $P = \langle e_1, e_2 \rangle \in Gr(2, 4)$ be the two-dimensional plane spanned by the basis vectors $e_1, e_2 \in \mathbb{R}^4$.

- (1) Find an open neighborhood $U \subset Gr(2,4)$ containing *P*, and which is homeomorphic to an open subset of some \mathbb{R}^n .
- (2) Show $GL_4(\mathbb{R})$ acts transitively on Gr(2, 4). What is the stabilizer of *P*?
- (3) Show Gr(2, 4) is a smooth manifold.

Let $X \subset Gr(2, 4)$ denote the subspace of planes $Q \in Gr(2, 4)$ such that $\dim(Q \cap P) \ge 1$.

- (4) Show that the complement $Gr(2, 4) \setminus X$ is contractible.
- (5) Find equations for the intersection of X with your open neighborhood $U \subset Gr(2, 4)$ from part 1.
- (6) Show *X* is not a smooth manifold at *P*.

Question 2.

Consider the two-dimensional sphere $S^2 = \mathbb{C} \cup \{\infty\}$.

Let $0 \in \mathbb{C} \subset S^2$ denote zero.

Let $\mathbb{Z}/n\mathbb{Z} \subset \mathbb{C}^{\times}$ be the cyclic subgroup of *n*th roots of unity.

Let $X_n = S^2 \setminus \mathbb{Z}/n\mathbb{Z}$ denote the complement of the *n*th roots of unity.

- (1) For n = 1, 2, 3, ..., calculate $\pi_1(X_n, 0)$ in terms of generators and relations.
- (2) For n = 2, why is there a canonical isomorphism $\pi_1(X_2, 0) \simeq \pi_1(X_2, x)$ for any $x \in X_2$?
- (3) For n = 2, observe that $\mathbb{Z}/3\mathbb{Z} \subset \mathbb{C}^{\times}$ acts on X_3 by multiplication. Calculate the induced action on $\pi_1(X_3, 0)$ in terms of generators and relations.
- (4) For n = 4, classify all (not necessarily connected) two-fold covers of X_4 .

Question 3.

Let

$$X = \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid \langle x, y \rangle = 0, \ \|x\| = 1, \ \|y\| = 1\} \subset S^2 \times S^2$$

(where $\langle x, y \rangle$ denotes the usual Euclidean inner product on \mathbb{R}^3).

Use the Mayer-Vietoris sequence to compute the cohmology of *X*.

You may use any results you know about the cohomology of spheres and tori, as long as they are stated precisely.

Question 4.

2

Let *M* be a smooth compact oriented manifold, and let $f : M \to M$ be a diffeomorphism. A point $p \in M$ is a fixed point of *f* if f(p) = p. We say that *f* is regular if the derivative $D_p f$ of *f* at *p*, which is a linear automorphism of $T_p M$, has no fixed points.

For each fixed point *p*, define a number L(p) to be 1 if det $D_p f > 0$, and -1 if det $D_p f < 0$.

Let $\Gamma_f \subset M \times M$ be the graph of *f*, which is the image of the embedding

$$Id \times f : M \to M \times M$$
$$x \mapsto (x, f(x)).$$

Note that Γ_f is naturally oriented, because *M* is.

Let $\triangle \subset M \times M$ be the diagonal, that is, the graph of the identity map.

- (1) Show that the set of fixed points of *f* is the intersection of Γ_f with \triangle .
- (2) Show that *f* is regular if and only if Γ_f intersects \triangle transversely.
- (3) Let $[\Gamma_f]$ and $[\triangle]$ denote the fundamental classes of these submanifolds of $M \times M$. Supposing that *f* is regular, use intersection theory to prove that

$$\sum_{p \in \operatorname{Fix}(f)} L(p) = \int_{M \times M} [\Gamma_f] \wedge [\Delta].$$

- (4) Deduce that the Lefschetz number $L(f) = \sum_{p \in Fix(f)} L(p)$ of a regular diffeomorphism only depends on the smooth homotopy class of f.
- (5) Prove that every diffeomorphism f of S^2 which is homotopic to the identity has at least one fixed point.

Question 5.

Define a submanifold $H \subset \mathbb{R}^9$ as follows: $H_3 \subset GL(3,\mathbb{R}) \subset Mat(3 \times 3,\mathbb{R}) \cong \mathbb{R}^9$ is given by the upper-triangular 3×3 matrices with 1's along the diagonal. Note $H \cong \mathbb{R}^3$, coordinatized by writing $h \in H$ as

$$h = \left(\begin{array}{rrr} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right).$$

Note, too, that *H* is a closed subgroup of a Lie group, therefore a Lie group itself.

A basis for the tangent space T_eH to H at the identity at the identity e = (x = 0, y = 0, z = 0) is given by the three vectors $\partial_x|_e$, $\partial_y|_e$, $\partial_z|_e$.

Let U_e and V_e denote elements of T_eH ; we can write U_e and V_e as

$$U_e = a\partial_x|_e + b\partial_y|_e + c\partial_z|_e$$
$$V_e = a'\partial_x|_e + b'\partial_y|_e + c'\partial_z|_e$$

for some $a, a', b, b', c, c' \in \mathbb{R}$.

• Use the definition of left-invariance and the Lie group structure to write down the left-invariant vector *fields U* and *V* corresponding to *U*_e and *V*_e.

In this way, you have constructed a map Ψ : $T_eH \rightarrow Lie(H)$, where Lie(H) is the set of left-invariant vector fields.

• We can think of the vectors $U_e, V_e \in T_eH$ as strictly upper triangular 3×3 matrices, in an evident way. Thus, we can define the matrix product $U_e \cdot V_e$ and $V_e \cdot U_e$. Verify that

$$\Psi(U_e \cdot V_e - V_e \cdot U_e) = [U, V],$$

i.e. that Ψ intertwines the commutator bracket with the Lie bracket.

Question 6.

Let *M* be a manifold and let $\pi : T^*M \to M$ be the cotangent bundle with fibration map π . Define the *canonical one-form* on T^*M (a one-form on a bundle which is itself a space of one-forms) by the formula

$$\Theta_{\xi}(v) = \xi(\pi_* v).$$

Here ξ is a point of T^*M and $v \in T_{\xi}(T^*M)$ is a tangent vector at ξ . Now let $M = \mathbb{R}^2$ and let (x, y, ξ_1, ξ_2) coordinatize the cotangent bundle $T^*\mathbb{R}^2 \cong \mathbb{R}^4$ consisting of covectors $\xi_{(x,y)} = \xi_1 dx|_{(x,y)} + \xi_2 dy|_{(x,y)}$.

• Verify that in these coordinates, the one-form Θ defined above is $\Theta = \xi_1 dx + \xi_2 dy$.

Now switch to polar coordinates (r, θ) in the fibers, $\xi_1 = r \cos \theta$, $\xi_2 = r \sin \theta$, and define the unit tangent bundle $S^* = \{r = 1\}$, with $i : S^* \hookrightarrow T^* \mathbb{R}^2$ the inclusion map.

• Using the coordinates (x, y, θ) , write down $i^*\Theta$, i.e. the restriction of Θ to S^* .

Let us define the one-form $\alpha = i^* \Theta$ on S^* to be the form you wrote down above. With these definitions, a curve $C \hookrightarrow S^*$ in S^* is said to be *Legendrian* if the restriction of α to the curve is zero. Now let us use the Euclidean metric on \mathbb{R}^2 so that we may identfy the unit tangent bundle $S \subset T\mathbb{R}^2$ and the unit cotangent bundle S^* , and we will continue to use the coordinates (x, y, θ) . A parametrized curve (x(t), y(t)) in \mathbb{R}^2 induces a curve in $S \cong S^*$ by setting $\theta(t) = \tan^{-1}(y'(t)/x'(t) - \pi/2) = -\cot^{-1}(y'/x')$ to be the normal direction (effected here by the shift by $\pi/2$).

• Verify that the parametrized cusp

 $x(t) = t^2,$ $y(t) = t^3,$ $\theta(t) = -\cot^{-1}(y'/x')$ $t \in \mathbb{R}$

in \mathbb{R}^2 induces a Legendrian curve in *S* for *all t*.