Geometry and Topology Prelim

June 2013

Do at least two problems from each group, and more if you can.

Group I

1. Let (X, x_{0}) be a path-connected space with a basepoint and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
(a) Suppose $q: Y \rightarrow X$ a covering map. Show the set $q^{-1}\left(x_{0}\right)$ has a left action by π.
(b) Now suppose X has a universal cover and A is a left π-set. Find a covering map $q: Y \rightarrow X$ with $q^{-1}\left(x_{0}\right) \cong A$ as π-sets.
2. Let T be the torus and let T_{0} be T with a small open disk deleted. Let M be the Möbius band. Define $X=T_{0} \cup_{S^{1}} M$, where we identify the boundary circles of T_{0} with the boundary circle of M. Then X is the connect sum of T and $\mathbb{R P}^{2}$. Compute $\pi_{1}(X)$ and $H_{*}(X, \mathbb{Z})$.
3. Let $X \subseteq \mathbb{R}^{3}$ be the union of the unit sphere S^{2} and the unit disk in the $x y$-plane. Give X the structure of a CW complex and write down the resulting CW chain complex for computing the homology of X.

Group II

1. Consider the two vector fields on \mathbb{R}^{2} given by

$$
X=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, \quad Y=\frac{\partial}{\partial y} .
$$

(a) Find the smooth \mathbb{R}-action on \mathbb{R}^{2} whose infinitesimal generator is X. Namely, find smooth $\theta_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with the property that $\theta_{0}=\mathrm{Id}$ and

$$
\left.\frac{d}{d t}\right|_{t=0} \theta_{t}(p)=X_{p}, \quad \text { for all } p \in \mathbb{R}^{2} .
$$

(b) Find $\mathcal{L}_{X} Y$ using (a) and the definition of the Lie derivative

$$
\mathcal{L}_{X} Y=\left.\frac{d}{d t}\right|_{t=0}\left(\theta_{-t}\right)_{*} Y .
$$

(c) Compute $[X, Y]$ directly and check that your answer is the same as your answer to (b).
2. Let (M, g) be a Riemannian manifold of dimension n.
(a) Fix a point p in M. Explain why we can choose a coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ centered at p with the property that the components of the tensor g at the point p are given by

$$
g_{i j}=\delta_{i j}
$$

where $\delta_{i j}=1$ if $i=j$ and 0 otherwise.
(You may want to use the following fact from linear algebra: if A is a positive definite symmetric matrix then there exists an invertible $n \times n$ matrix B such that $B^{T} A B=I$, where I is the identity matrix.)
(b) Let $\left(x^{1}, \ldots, x^{n}\right)$ be the coordinates from (a). Define a new coordinate system $\left(\tilde{x}^{1}, \ldots, \tilde{x}^{n}\right)$ in a neighborhood of the point p by $x^{k}=\tilde{x}^{k}-\frac{1}{2} \sum_{i, j} \Gamma_{i j}^{k}(p) \tilde{x}^{i} \tilde{x}^{j}$, where $\Gamma_{i j}^{k}(p)$ are the Christoffel symbols of the Levi-Civita connection of g at the point p in the x^{1}, \ldots, x^{n} coordinates. Show that for all i, j, k,

$$
\frac{\partial}{\partial \tilde{x}^{k}} \tilde{g}_{i j}=0 \quad \text { at } p,
$$

where $\tilde{g}_{i j}$ are the components of the metric g in the $\tilde{x}^{1}, \ldots, \tilde{x}^{n}$ coordinates.
(Recall the formula: $\Gamma_{i j}^{k}=\frac{1}{2} \sum_{q} g^{k q}\left(\partial_{i} g_{j q}+\partial_{j} g_{i q}-\partial_{q} g_{i j}\right)$.)
3. Let M be a smooth manifold of dimension $2 n$. We say that a 2 -form ω on M is symplectic if $d \omega=0$ and ω^{n} is a nowhere vanishing $2 n$-form on M.
(a) Show that if M is compact with no boundary then no symplectic form ω on M is exact.
(b) Show explicitly that $\omega=\sum_{i=1}^{n} d x^{i} \wedge d x^{n+i}$ is an exact symplectic form on $M=\mathbb{R}^{2 n}$. (Recall that a form α is exact if $\alpha=d \beta$ for some form β.)

Group III

1. Show that $\mathbb{C P} P^{2} \times S^{4}$ and $\mathbb{C P}^{4} \vee S^{4}$ are not homotopy equivalent.
2. Let M and N be two compact orientable n-manifolds without boundary and suppose there is a map $f: M \rightarrow N$ so that $f_{*}: H_{n}(M, \mathbb{Z}) \rightarrow H_{n}(N, \mathbb{Z})$ is an isomorphism. Show $f^{*}: H^{*}(N, \mathbb{Q}) \rightarrow H^{*}(M, \mathbb{Q})$ is one-to-one.
3. Let γ_{n} be the tautological bundle over $\operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right)$. Then a typical element in $E\left(\gamma_{n}\right)_{0}$ is a pair (W, v) where $W \subseteq \mathbb{C}^{\infty}$ is a complex n-dimensional subspace and $0 \neq v \in W$. Define a map

$$
q: E\left(\gamma_{n}\right)_{0} \rightarrow \operatorname{Gr}_{n-1}\left(\mathbb{C}^{\infty}\right)
$$

sending (W, v) to W_{v} where W_{v} is perpendicular to v. Assume you know that q is a homotopy equivalence. Then use induction and the Gysin sequence to prove that there are elements $c_{i} \in H^{2 i}\left(\operatorname{Gr}_{n}\left(\mathbb{C}^{\infty}\right), \mathbb{Z}\right), i \leq i \leq n$, and an isomorphism

$$
\mathbb{Z}\left[c_{1}, \cdots, c_{n}\right] \cong H^{*}\left(\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right), \mathbb{Z}\right)
$$

