Preliminary Examination — Real Analysis — Feb. 19. 1998

Instructions: You have **three** hours. Write your I.D. number on two bluebooks and mark them A and B. Do **six** of the eight problems below — **three** problems from Part A in bluebook A, and **three** problems from Part B in bluebook B. Indicate which of the problems are to be graded. You may assume that all functions are real-valued.

PART A

A1. Prove that if $f \in L^1[a, b]$ and

$$F(x) = \int_{a}^{x} f(t) dt, \quad a \le x \le b,$$

then F'(x) = f(x) for almost every x in [a, b].

A2. Let (X, \mathcal{B}, μ) be a complete measure space, $g \in L^q(\mu)$, $1 \leq q < \infty$, and let F be the linear functional on $L^p(\mu)$, $\frac{1}{p} + \frac{1}{q} = 1$, defined by $F(f) = \int fg \, d\mu$. Prove that $||F|| = ||g||_q$.

A3. Prove that the space c_o of all sequences which converge to zero is a Banach space (with the ℓ^{∞} norm).

A4. State Fubini's Theorem. Prove that if $f \in L^1(0, 1)$ and a > 0, then the integral

$$F_a(x) = \int_0^x (x-t)^{a-1} f(t) \, dt$$

exists for almost every x in (0, 1) and $F_a \in L^1(0, 1)$.

PART B

B1. Prove that a function f is of bounded variation on a compact interval [a, b] if and only if f is the difference of two monotonic functions on [a, b].

B2. State the Hahn Decomposition Theorem. Prove that if ν is a signed measure on a measurable space (X, \mathcal{B}) , then there are two mutually singular measures ν^+ and ν^- on (X, \mathcal{B}) such that $\nu = \nu^+ - \nu^-$. Also prove that there is only one such pair of mutually singular measures.

B3. State the Radon-Nikodym Theorem. Prove that if (X, \mathcal{B}, μ) is a σ -finite measure space and ν is a σ -finite measure defined on \mathcal{B} , then there exists a measure ν_0 , singular with respect to μ , and a measure ν_1 , absolutely continuous with respect to μ , such that $\nu = \nu_0 + \nu_1$.

B4. State the Hahn-Banach Theorem. Prove that if x_o is an element in a normed vector space X, then there is a bounded linear functional f on X such that $f(x_o) = ||f|| ||x_o||$.