D13 Preliminary Exam

February, 1997

Do all of the problems. Write your solutions in the blue book(s); no notes, books, etc Notation Throughout this exam $U=\{z:|z|<1\}$. A domain is an open connected subset of the complex plane. A function is univalent if it is one-to-one.

1. Define what it means for an entire function to have finite order; finite genus, finite rank. Give an example of an entire function of infinite order and another example of a function of order 3 .
2. Find all entire functions f of finite order such that $f(\log n)=n, n=1,2,3, \ldots$ and prove you are correct.
3. Let D be a domain in the complex plane. (a) Define "normal family" of functions on D (b) State Montel's theorem on normal families of analytic functions on D (c) Let \mathcal{F} be the family of all functions $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ satisfying $\sum_{k=0}^{\infty}\left|a_{k}\right| \leq$ 1.(i)Prove that each $f \in \mathcal{F}$ is analytic on U (ii) Prove that \mathcal{F} is a normal family in U.
4. (a) State Runge's Theorem (b) Use Runge's Theorem (or some other correct procedure) to construct a sequence $\left\{p_{n}\right\}$ of polynomials with $p_{n}(z) \rightarrow 0, \operatorname{Im} z \geq 0$ and $p_{n}(z) \rightarrow 1, \operatorname{Im} z<0$. (c) Can the polynomials $\left\{p_{n}\right\}$ in (b) be chosen so that $\left|p_{n}\left(r e^{i \theta}\right)\right| \leq C(r), 0 \leq \theta \leq 2 \pi, 0<r<\infty$, where $C(r)$ is a constant that depends on r but not on n or θ ? Why or why not? Justify your answer.
5. Is there a univalent analytic function with domain $D_{1}=\{z: 0<|z|<1\}$ and range $D_{2}=\left\{z: \frac{1}{2}<|z|<1\right\}$? Why or why not? Prove your assertion.
6. Evaluate these integrals using the residue theorem; justify your steps.

$$
\text { (a) } \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+16\right)^{2}\left(x^{2}+9\right)} d x \quad \text { (b) } \int_{0}^{2 \pi} \frac{1}{a+\cos t} d t, a>1
$$

7. Is there an entire function h that satisfies $|h(z)| \geq e^{A|z|}$ for some $A>0$ and all sufficiently large $|z|$? Give an example of such a function or prove that none exists.
8. Find the Laurent series for the fuunction $f(z)=\frac{z-1}{z(z-2)^{2}}$ in the region $0<|z-2|<$ 2.
9. How many zeros does $g(z)=z^{4}-3 z+1$ have in U ? Justify your answer.
10. Find the explicit form of all univalent analytic functions that map the upper halfplane $\{x+i y: y>0\}$ onto U.
