Preliminary Examination

Real and Complex Analysis

PART A. Do problems 1, 2 and 3

1. (a) Define

$$f(t) = \int_0^{100} \frac{\cos(1/x+t)}{|x+t|^{1/2}} \, dx.$$

Prove or disprove: $\lim_{t\to 0^+} f(t) = f(0)$.

(b) Define

$$g(t) = \int_0^{100} \frac{\cos^{-1/2}(x)}{|x + t^{1/2}|} \, dx.$$

Prove or disprove: $\lim_{t\to 0^+} g(t) = g(0)$.

The notation $t \to 0^+$ indicates limit from the right (the positive *t*-axis).

2. Prove or give a counterexample for each of the following statements. The functions f, f_1, f_2, \ldots are assumed to be measurable.

(a) The unit ball in $L^1([0,1])$ is compact.

(b) If $f_i \to f$ in $L^2(\mathbf{R}^n)$, then $f_i \to f$ a.e.

(c) Suppose f, f_1, f_2, \ldots possess a common bound in $L^2(\mathbf{R}^n)$ and in $L^{\infty}(\mathbf{R}^n)$. If $f_i \to f$ a.e., then $f_i \to f$ in $L^2(\mathbf{R}^n)$.

(d) Suppose f, f_1, f_2, \ldots possess a common L^{∞} bound in B_1 , the unit ball in \mathbb{R}^n . If $f_i \to f$ in measure in B_1 , then $f_i \to f$ in $L^2(B_1)$.

3. Use the method of residues to evaluate the integral

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+4)^2} \, dx$$

PART B. Do problem 4 or 5

4. Suppose that h, h_1, h_2, \ldots are L^2 functions on \mathbb{R}^n such that for every continuous function ϕ of compact support,

$$\lim_{i \to \infty} \int_{\mathbf{R}^n} \phi(x) h_i(x) \, dx = \int_{\mathbf{R}^n} \phi(x) h(x) \, dx,$$

Prove that

$$\int_{\mathbf{R}^n} |h(x)|^2 \, dx \le \lim_{i \to \infty} \int_{\mathbf{R}^n} |h_i(x)|^2 \, dx.$$

5. Prove that if u is a function in $L^2([0, 2\pi])$, then

$$\lim_{n \to \infty} \int_0^{2\pi} u(x) \sin(nx) \, dx = 0.$$

PART C. Do problem 6 or 7

6. Let B_1 be the ball of radius 1 in \mathbb{R}^n . Suppose that f is simultaneously in $L^p(B_1)$ for each $p \in [12, \infty]$. Prove that

$$\lim_{p \to \infty} \|f\|_{L^p(B_1)} = \|f\|_{L^\infty(B_1)}$$

7. Let f be an L^1 function on \mathbf{R}^n . Prove that for a.e. x in \mathbf{R}^n ,

$$\lim_{r \to \infty} \frac{1}{|B_r|} \int_{B_r(x)} |f(y) - f(x)| \, dy = 0,$$

where $B_r(x)$ be the ball in \mathbf{R}^n with center x and radius r, and $B_r = B_r(0)$. (You are allowed to assume the weak L^1 estimate on the maximal function.)

PART D. Do problem 8 or 9

8. How many zeros does $z^6 + 4z^2 - 1$ have in the annulus $\{z : 1 \le |z| \le 2\}$?

9. (a) Find a linear fractional transformation that maps 0 to i, 1 to ∞ , and -1 to 1. (b) Suppose $f(z) \in H(\Omega)$, Ω contains the closed unit disc, f(0) = 1/2, and |f(z)| > 1 when |z| = 1. Prove that f(z) has a zero in the unit disc.