Preliminary Examination in Real Analysis

Instructions: You have **three** hours. You need to work out totally **six** problems, **four** in part I, and **two** in part II.

PART I

- On Rⁿ, state Fatou's Lemma and use it to prove the Lebesgue Dominated Convergence Theorem.
- 2. Let E be a Lebesgue measurable set in \mathbb{R}^n . Define
 - a. Convergence a.e. on E.
 - b. Convergence in measure on E.
 - c. Uniform convergence on E.

Write down all the possible relations among a. b. and c.

d. Define (strong) convergence in $L^p(E)$, $1 \le p < \infty$.

Does d. imply b.? Does b. imply d.? If your answer is YES, give a proof. If your answer is NO, give a counterexample.

- 3. Let (X, \mathcal{B}) be a measurable space and let ν and μ be σ -finite measures on (X, \mathcal{B}) .
 - a. Define $\nu \perp \mu$ and $\nu \ll \mu$.
 - b. State the Radon-Nikodym Theorem.
 - c. Extend the Radon-Nikodym Theorem to the case of signed measure and prove it.

Instructions: Work either problem 4. or 5. Indicate which problem you want to be graded.

- 4. State the Baire Category Theorem and use it to prove the Uniform Boundedness Principle.
- 5. State and prove the Riesz Representation Theorem for $L^p(E)$, where $1 \le p < \infty$ and $E \subset \mathbb{R}^n$ is a Lebesgue measurable set of finite measure.

PART II

Instructions: Work TWO of the following FOUR problems. Indicate which two problems you want graded.

6. Let $K(x, y) \in L^q(\mathbb{R}^2)$ and $f(y) \in L^p(\mathbb{R}^1)$, where $1 \le q < \infty$, $1 , and <math>\frac{1}{p} + \frac{1}{q} = 1$. Show that the operator T defined by

$$Tf(x) = \int K(x,y)f(y) \, dy$$

is a bounded linear operator from $L^p(\mathbb{R}^1)$ to $L^q(\mathbb{R}^1)$.

- Suppose that (X, B) is a measurable space and ν and μ are finite measures on (X, B), such that ν ≪ μ. If λ = ν + μ and if f = [dν/dλ], show that 0 ≤ f(x) < 1 a.e. λ.
 Let f_n be a sequence of functions in L^p(E) and g_n be a sequence of functions in L^q(E),
- 8. Let f_n be a sequence of functions in $L^p(E)$ and g_n be a sequence of functions in $L^q(E)$, where $E \subset \mathbb{R}^n$ is a Lebesgue measurable set, and $\frac{1}{p} + \frac{1}{q} = 1$, $1 . If <math>f_n \to f$ strongly in $L^p(E)$ and $g_n \to g$ weakly in $L^q(E)$, show that $\int f_n g_n \to \int fg$.
- 9. Let X, Y be normed linear spaces, and X^* , Y^* denote their conjugate spaces. On $X \times Y$, we define

$$||(x,y)|| = (||x||^2 + ||y||^2)^{1/2}.$$

Show that for any $F \in (X \times Y)^*$, there is a unique pair of functionals $f \in X^*$, $g \in Y^*$, such that F(x, y) = f(x) + g(y). Moreover, if we define on $X^* \times Y^*$,

$$||(f,g)|| = (||f||^2 + ||g||^2)^{1/2},$$

show that $(X \times Y)^*$ is isometrically isomorphic to $X^* \times Y^*$.