ANALYSIS PRELIMINARY EXAM Friday, September 16, 2011

Part I. Do four of the following five problems.

- (1) (a) State the monotone convergence theorem, the dominated convergence theorem and Fatou's lemma.
 - (b) Show that the monotone convergence theorem can fail for a sequence of not necessarily nonnegative functions.
 - (c) Use the monotone convergence theorem to prove Fatou's lemma.
- (2) State Hölder's inequality (including the condition for the case of equality) and use it to prove the following inequality: for positive *α*, *β*, and *γ* and measurable functions *f*, *g*, and *h* on a measure space,

$$\|fgh\|_{1} \leq \|f\|_{\alpha} \|g\|_{\beta} \|h\|_{\gamma}, \qquad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 1.$$

(3) Suppose that $f \in L^1[0,1]$ and $\lambda > 0$. Show that the integral

$$F_{\lambda}(x) = \int_0^x (x-t)^{\lambda-1} f(t) dt$$

exists for almost every $x \in [0, 1]$ and $F_{\lambda} \in L^{1}[0, 1]$.

(4) Let $f : [a, b] \to \mathbb{R}$ be a function of bounded variation on [a, b] and $V(f)_a^b$ the total variation of f on the interval [a, b]. Show that

$$\int_{a}^{b} |f'(t)| \, dt \le V(f)_{a}^{b}$$

(5) We use $\mu(f)$ to denote the integral of a function f with respect to a measure μ . Let $\{\mu_n, n \ge 0\}$ be a sequence of Borel measures on [0,1] such that $\mu_n(f) \rightarrow \mu_0(f)$ for all continuous function f on [0,1]. Show that

$$\mu_0(O) \le \liminf_{n \to \infty} \mu_n(O)$$

for every open set $O \subset [0, 1]$.

Part II. Do two of the following four problems.

- (1) Suppose that *Y* is a finite dimensional (in the usual algebraic sense) subspace of a Banach space *X*. If $x_n \in Y$ and $x_n \to x$ in *X*, then $x \in Y$; namely, every finite dimensional subspace of a Banach space is closed.
- (2) Let *X* be a Banach space. A linear operator $T : X \to X$ is compact if the image of every bounded set is precompact (i.e., the closure is compact). Let $K : [0,1]^2 \to \mathbb{R}$ be a continuous function on the unit square. Show that the integral operator

$$Kf(x) = \int_0^1 K(x, y) f(y) \, dy$$

is compact on C[0, 1].

(3) Let $\{e_n\}$ be an orthonormal basis for a Hilbert space *H*. Let $\{f_n\}$ be an orthonormal set in *H* such that

$$\sum_{n=1}^{\infty} \|f_n - e_n\| < \infty.$$

Show that $\{f_n\}$ is also an orthonormal basis for *H*.

- (4) (a) State the Open Mapping Theorem and the Closed Graph Theorem for Banach spaces.
 - (b) Let X be a linear vector space that is complete in the norms $|\cdot|$ and $||\cdot||$. Prove that if there is a constant *C* such that $|x| \le C ||x||$ for all $x \in X$, then there is another constant C_1 such that $||x|| \le C_1 |x|$.

Part III. Do four of the following five problems.

(1) Let $\xi \in \mathbb{R}$. Use the method of residues to calculate the integral

$$\int_{\mathbb{R}} \frac{e^{-2\pi i x\xi}}{\cosh \pi x} \, dx.$$

- (2) Find the number of roots of $z^7 5z^4 + 8z 1 = 0$ in the annulus $\{1 < |z| < 2\}$.
- (3) Consider the power series

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

- (a) Find the radius of convergence of the power series.
- (b) Find the maximal open subset of C to which the power series can be analytically continued.
- (4) (a) Suppose that *f* is holomorphc on a disk $D(0; R) = \{|z| \le R\}$ and satisfies the bound $|f(z)| \le M$ on |z| = R. Show that

$$|f(z) - f(0)| \le \frac{2M|z|}{R}.$$

- (b) State Liouville'e theorem and use part (a) to give a proof of it.
- (5) Let $\alpha \in \mathbb{C}$ such that $|\alpha| < 1$ and let

$$L(z) = \phi_{\alpha}(z) := \frac{z - \alpha}{1 - \bar{\alpha} z}.$$

Let $L_1 = L$ and $L_{n+1} = L \circ L_n$. Show that $\lim_{n\to\infty} L_k$ exists uniformly on compact subsets of the unit disk D(0, 1) and determine the limit function. Hint: show that L_n is a Möbius transformation ϕ_{α_n} with $|\alpha_n| < 1$ and find $\lim_{k\to\infty} \alpha_n$.