Preliminary Examination in Analysis September 18, 2009

PART I. Do any three of the four problems in this part.

Problem I.1. Prove that if $X \subset [0,1]$ is Borel measurable, then for any $\epsilon > 0$ there is an open set U containing X such that $\mu(U \setminus X) < \epsilon$.

Problem I.2. Suppose $\{f_n\}$ is a sequence of measurable functions and $\lim_{n\to\infty} f_n(x) = f(x)$ almost everywhere. Prove that f is measurable.

Problem I.3. Prove or give a counterexample: If $\{f_n\}$ is a sequence of measurable functions defined on [0, 1] such that $0 \le f_n(x) \le 1$ and

$$\lim_{n \to \infty} \int f_n \ d\mu = 0,$$

then for almost all $x \in [0, 1]$

$$\lim_{n \to \infty} f_n(x) = 0.$$

Problem I.4. State the following three convergence theorems in the Lebesgue integration theory and outline a proof of one of them.

- (1) Fatou's lemma;
- (2) Monotone convergence theorem;
- (3) Dominated convergence theorem.

PART II Do any **four** of the five problems in this part.

Problem II.1. Prove that a linear function from a Hilbert space H to itself is continuous if H is finite dimensional. Give an example of a linear function from a subspace of a Hilbert space to itself which is not continuous.

Problem II.2. Define the function ν from subsets of \mathbb{R} to $[0, \infty]$ by $\nu(A) = \infty$ if 0 is in the closure of A and $\nu(A) = 0$ otherwise. Prove that ν is finitely additive but not countably additive.

Problem II.3. Let (X, \mathcal{B}, μ) be a measure space, and that $f, g \in L^p(X, \mathcal{B}, \mu)$ have positive L^p -norm. Suppose that $||f + g||_p = ||f||_p + ||g||_p$. Show that

$$\frac{f}{\|f\|_p} = \frac{g}{\|g\|_p}, \qquad \mu - \text{a.e.}$$

Problem II.4. State the Baire Category Theorem. Is it possible for a sequence of continuous functions $f_n: [0,1] \to [0,1]$ to have a pointwise limiting function $f: [0,1] \to [0,1]$ that is 0 on the rationals and 1 on the irrationals? Give an example or prove it is not possible.

Problem II.5. Suppose that X and Y are compact Hausdorff spaces and $f: X \times Y \to \mathbf{R}$ is a continuous function. Prove that for every $\epsilon > 0$ there exist n > 0 and continuous functions f_1, f_2, \ldots, f_n on X and continuous functions g_1, g_2, \ldots, g_n on Y such that:

$$\|f - \sum_{i=1}^n f_i g_i\|_{\infty} < \epsilon,$$

where $\| \|_{\infty}$ denotes the sup norm.

PART III Do any **three** of the four problems in this part.

Problem III.1. Let $f(z) = z^4 + \frac{z^3}{4} - \frac{1}{4}$ How many zeros does f have in $\{z \in \mathbb{C} : \frac{1}{2} < |z| < 1\}$?

Problem III.2. Let A be the set of $z \in \mathbb{C}$ such that $|z| \leq 1$, $\text{Im}(z) \leq 0$, and $z \notin \{1, -1\}$. Find an explicit continuous function $u: A \to \mathbb{R}$ such that

- u is harmonic on the interior of A,
- u(z) = 3 for $z \in A \cap \mathbb{R}$
- u(z) = 7 for z in the intersection of A with the unit circle.

Problem III.3. Find explicitly a Riemann map (that is, a biholomophic bijection) of the open unit disk D onto each of the following domains:

- (1) the whole plane minus the nonpositive real axis;
- (2) the first quadrant;
- (3) the intersection of the unit disk with the upper half plane;
- (4) the unit disk minus the segment [0, 1).

Problem III.4. Suppose $f \colon \mathbb{R} \to \mathbb{R}$ is real analytic and periodic with period 2π . Prove that f has an analytic continuation F defined on a strip

$$S = \{x + iy \in \mathbb{C} : |y| < \rho\}$$

with $\rho > 0$, and that $F(z + 2\pi) = F(z)$ for $z \in S$.