
PRELIMINARY EXAM IN ANALYSIS SPRING 2013

INSTRUCTIONS:
(1) There are three parts to this exam: I (measure theory), II (functional analysis), and

III (complex analysis). Each part has five problems. Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may

quote and use theorems and formulas. But if a problem asks you to state or prove a
theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.

Problem I.1. Define the function g(ξ) on R by

g(ξ) =
∫

R

eixξ

(1 + x2)2 dx

Using the convergence theorems, prove that g ∈ C1(R) and show that |g′(ξ)| ≤ 1.

Problem 1.2. This problem has four parts.
(a) State Fatou’s lemma.
(b) Show that Fatou’s Lemma fails for the sequence of functions on the real line R

fn = − 1
n

1[n,2n].

(c) Find a condition for a sequence { fn} of general signed functions under which

lim sup
n→∞

∫
X

fndµ ≤
∫

X
lim sup

n
fndµ.

(d) Find a sequence of functions fn ≥ 0 on [0, 1] which is uniformly integrable and

lim inf
n→∞

∫ 1

0
fndx >

∫ 1

0
lim inf fndx,

i.e., for which Fatou’s Lemma is a strict inequality.

Problem I.3. Let 1 ≤ p < ∞ and f ∈ Lp(Rd, m), where m is the Lebesgue measure. Let
fh(x) = f (x + h). Show that

lim
h→0
‖ fh − f ‖p = 0.

Problem I.4. Let (X, µ) be a measure space and 1 ≤ p < ∞. Suppose that f : X × X →
R+ is measurable and nonnegative on X× X. Show that∥∥∥∥∫X

f (·, y)µ(dy)
∥∥∥∥

p
≤
∫

X
‖ f (·, y)‖p µ(dy).



Problem I.5. Let E ⊂ R be a Lebesgue measurable set. Define the density of E at x by

DE(x) = lim
h→0

m(E ∩ [x− h, x + h])
2h

if the limit exists.
(a) Show that DE(x) = 1 for Lebesgue almost every point of E.
(b) Show that DEc(x) = 0 for Lebesgue almost every point of Ec = R\E.
(c) Find an example of E and x for which DE(x) = 1/2.

Part II. Functional Analysis

Do three of the following five problems.

Problem II.1. This problem has three parts.
(a) Define “ fn → f weakly in Lp(X, µ)”.
(b) Let fn(x) = n1/p I[0,1](nx). Show that fn → 0 weakly if p > 1 but not if p = 1;.
(c) Show that if fn → f , a.e. and ‖ fn‖p ≤ M for some fixed constant M and all n,

then fn → f weakly in Lp(X, µ). Show that this may fail if p = 1. (You may want to
break up X into sets, using Egorov’s theorem and also using that if g ∈ Lq then |g|qdµ
is absolutely continuous with respect to µ).

Problem II.2. This problem has three parts.
(a) State the Open Mapping Theorem and the Closed Graph Theorem.
(b) Show that the following properties for a bounded linear transformation T : X →

Y of Banach spaces are equivalent:
(1) T is an open map.
(2) There exists C > 0 such that for all y ∈ Y, there exists a solution x ∈ X of Tx = y

satisfying ||x||X ≤ C||y||Y.
(c) Suppose that T : X → Y is a surjective bounded linear transformation of Ba-

nach spaces. Show that the transpose map T∗ : Y∗ → X∗ is bounded from below, i.e.
||T∗λ||X∗ ≥ c||λ||Y∗ for some c > 0. (Here, X∗ is the dual space of X, etc.).

Problem II.3. Let H be a Hilbert space and let {en}∞
n=1 be an orthonormal basis. Let

K ⊂ H be a subset. For f ∈ K write f ∼ ∑∞
n=1 anen for the Fourier series with respect to

{en}. Show that K is compact if and only if it is closed, bounded and its elements have
equi-small tails, i.e. for all ε > 0 there exists p such that ∑n≥p |an|2 < ε for all elements
of K.

Problem II.4. This problem has two parts. Let K(x, y) = |x− y|−1/2 and define

T f (x) =
∫

R
K(x, y) f (y)dy for f ∈ C[0, 1].

(a) Prove that T extends to a bounded operator on L2[0, 1].
(b) Define the term “Hilbert-Schmidt operator”. Is T a Hilbert-Schmidt operator?

Problem II.5. This problem has three parts. Let µ, ν be (positive) finite measures on a
measurable space (X,M).

(a) Define the term “ ν� µ (ν is absolutely continuous with respect to µ).



(b) Prove that there exists f ∈ L1(X, µ) such that dν = f dµ (the Radon-Nikodym
theorem). You may use the following outline: Show that `ν(φ) =

∫
X φ dν is a bounded

linear functional on L2(X, µ + ν). Find f using the Riesz representation theorem for
Hilbert spaces.

Part III. Complex Analysis

Do three of the following five problems.

Problem III.1. Let C∗ = C\ {0} be the punctured complex plane. Find all conformal
equivalences of the punctured complex plane C∗ to itself.

Problem III.2. This problem has two parts.
(a) Let f (x) = e−x2

be the Gaussian function. Compute its Fourier transform

f̂ (ξ) =
∫ ∞

−∞
f (x)eiξx dx.

You may use the integral ∫ ∞

−∞
e−x2

dx =
√

π.

(b) Use the calculus of residues to compute the complex line integral∮
C

z
(z2 − 1)(z2 + 1)

dz,

where C =
{
(x, y) ∈ C : x2 + y2 − 2x− 2 = 0

}
in the counterclockwise direction.

Problem III.3. This problem has two parts. Let u be a harmonic function on R2.
(a) Show that there is a holomorphic function f : C → C such that the real part of f

is equal to u.
(b) Show that if there is a constant C such that u(x, y) ≥ C for all (x, y) ∈ R2, then u

must be a constant.

Problem III.4. Let U ⊂ C be a connected domain in the complex plane and { fn} a
sequence of holomorphic functions on U such that fn(z) → f (z) for every z ∈ U and
uniformly on every compact subset of U. Suppose that fn(z) 6= 0 for all n and all z ∈ U.
Show that either f (z) = 0 for all z ∈ U or f never vanishes on U.

Problem III.5. Let

fN(z) = 1 +
z
1!

+
z2

2!
+ · · ·+ zN

N!
.

Let zN be the zero of fN closest to the origin. Show that there is a positive constant C
such that |zN | ≥ CN for all N. You may use Stirling’s formula

√
2πN

(
N
e

)N

< N! <
√

2πN
(

N
e

)N

e1/12N .


