Preliminary Exam in Analysis Fall 2018

Instructions:

(1) There are three parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.
(1) (a) State the Dominated Convergence Theorem for Lebesgue measurable functions.
(b) Let $\left\{f_{n}\right\}$ be a sequence of Lebesgue measurable functions on $[0,1]$ satisfying

$$
0 \leq f_{n}(x) \leq \sin ^{2 n}(\pi x), \quad 0 \leq x \leq 1 .
$$

Show that $\int_{0}^{1} f_{n} d x \rightarrow 0$ as $n \rightarrow \infty$.
(c) Let $\left\{f_{n}\right\}$ be a sequence of Lebesgue measurable functions on \mathbb{R} satisfying

$$
0 \leq f_{n}(x) \leq \sin ^{2 n}(\pi x), \quad x \in \mathbb{R} .
$$

Is it true that $\int f_{n} d x \rightarrow 0$ as $n \rightarrow \infty$? Explain your answer.
(2) Let $E \subset \mathbb{R}$ be Lebesgue measurable. For a fixed $c \in(0,1)$ suppose that

$$
m(E \cap(a, b)) \leq c(b-a)
$$

for every $a, b \in \mathbb{R}$ with $a<b$. Show that $m(E)=0$.
Note: You may use without proof the fact that every open set in \mathbb{R} can be written as the countable disjoint union of open intervals.
(3) Let $0<r<p<q<\infty$. For $f \geq 0$ in $L^{p}(\mathbb{R})$ show that $f=g+h$ where $g \in L^{r}(\mathbb{R})$ and $h \in L^{q}(\mathbb{R})$. Moreover, show that given $N>0, g$ and h can be chosen so that

$$
\|g\|_{r}^{r} \leq N^{r-p}\|f\|_{p}^{p}, \quad \text { and } \quad\|h\|_{q}^{q} \leq N^{q-p}\|f\|_{p}^{p} .
$$

Hint: consider the sets $\{f>N\}$ and $\{f \leq N\}$.
(4) Let (X, \mathcal{M}, μ) be a measure space.
(a) Show that if $\left\{E_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$ satisfies $E_{k+1} \subset E_{k}$ for all k and $\mu\left(E_{1}\right)<\infty$ then

$$
\mu(E)=\lim _{k \rightarrow \infty} \mu\left(E_{k}\right) .
$$

where $E=\bigcap_{k=1}^{\infty} E_{k}$.
(b) Let v be a finite measure on (X, \mathcal{M}) which is absolutely continuous with respect to μ (namely $v(E)=0$ whenever $E \in \mathcal{M}$ with $\mu(E)=0$). Show that for each $\varepsilon>0$ there exists $\delta>0$ such that $\mu(E)<\delta$ with $E \in \mathcal{M}$ implies $v(E)<\varepsilon$.

Hint: argue by contradiction and let $A_{n} \in \mathcal{M}$ satisfy $\mu\left(A_{n}\right)<2^{-n}$ and $v\left(A_{n}\right) \geq$ ε. Consider the decreasing sequence $E_{k}=\cup_{n \geq k} A_{n}$.
(5) (a) Define what it means for a function $F:[a, b] \rightarrow \mathbb{R}$ to be absolutely continuous.
(b) Suppose that $F:[0,1] \rightarrow \mathbb{R}$ has the following properties:
(i) For every $\varepsilon>0, F$ is absolutely continuous on $[\varepsilon, 1]$.
(iii) $F=G-H$ where $G, H:[0,1] \rightarrow \mathbb{R}$ are increasing functions which are continuous at 0 .
Show that F is absolutely continuous on $[0,1]$.

Part II. Functional Analysis

Do three of the following five problems.
(1) Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space and let $\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i x \xi} d x$ be the Fourier transform of f. Define the 'periodization operator' $\mathcal{P}: \mathcal{S}(\mathbb{R}) \rightarrow C\left(S^{1}\right)$ by $P f(x)=2 \pi \sum_{n \in \mathbb{Z}} f(x+2 n \pi)$.Here, $S^{1} \simeq[0,2 \pi] /(0 \sim 2 \pi)$ is the unit circle $\mathbb{R} / 2 \pi \mathbb{Z}$.

- (i) Show that $\mathcal{P} f \in C\left(S^{1}\right)$ if $f \in \mathcal{S}(\mathbb{R})$ (equivalently, that f is a periodic continuous function on \mathbb{R} of period 2π).
- (ii) There is a second way to periodize (make periodic) $f \in \mathcal{S}(\mathbb{R})$: Let $\mathcal{Q} f(x)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{i n x}$. Show that $\mathcal{P} f(x)=\mathcal{Q} f(x)$.
(2) Let $L^{p}(X, \mu)$ be the L^{p} space of a measure space.
- Define 'weak convergence in $L^{p \prime}$.
- Show that the L^{p} norm is weakly lower semi-continuous: If $f_{j} \rightharpoonup f$ (i.e. f_{j} tends to f weakly in L^{p}), then

$$
\liminf _{j \rightarrow \infty}\left\|f_{j}\right\|_{p} \geq\|f\|_{p}
$$

(Hint: recall the map $f \rightarrow|f|^{p-2} \bar{f}$.)
(3) Let T be the operator on $L^{2}[[0,1], d x]$ defined by

$$
T f(x)=\int_{0}^{x} f(y) d y
$$

- (i) Show that T is compact.
- (ii) Show that 0 is in the spectrum of T, and in fact is in the spectrum of every compact operator on an infinite dimensional Hilbert space. (The spectrum of a bounded operator T is $\{\lambda \in C:(T-\lambda)$ is not invertible as a bounded operator).
- (iii) Show that T has no eigenvalues.
(4) Let H be a Hilbert space and let $T \in \mathcal{L}(H)$ be a bounded operator on H. Let $\operatorname{Ran}(\mathrm{T})$ be the range of T. Let T^{*} be the adjoint of T.
- (i) Show that $H=\operatorname{ker} T \oplus \overline{\operatorname{RanT}^{*}}$ where \oplus is orthogonal direct sum.
- (ii) Give an example of a bounded operator T on $L^{2}[0,1]$ such that $\operatorname{Ran}(T)$ is not closed (with proof).
- (ii) Suppose that there exists $C>0$ so that $\|f\| \leq C\|T f\|$ for all f. Show that $\operatorname{Ran}(T)$ is closed.
(5) Let U be a unitary operator on a Hilbert space H. Let

$$
\text { Pf }:=s-\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} U^{k} f,
$$

where $s-\lim$ means the limit in L^{2} (strong limit).

- (i) Let $H_{U}=\{v \in H: U v=v\}$. Let $W=\{U v-v: v \in H\}$. Show that H_{U} is a closed subspace, that $H_{U} \perp W$ and that $P: W \rightarrow\{0\}$..
- (ii) Show that $H=\overline{H_{U} \oplus W}$. (Hint: If $f \perp W$, consider $f-U f$.)
- (iii) Show that the limit exists for every $f \in H$ and that P is an orthogonal projection. Onto what subspace?

Part III. Complex Analysis

Do three of the following five problems.
(1) Without using Picard's theorem, show the following.
(a) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a nonconstant entire function. Show that $f(\mathbb{C})$ is dense.
(b) Show that if f is entire and if there is a line L such that $f(\mathbb{C}) \cap L=\varnothing$ then f is constant.
(2) Show that for every $\lambda>1$, the equation $e^{z}-z=\lambda$ has exactly one solution in the half-plane $\operatorname{Re}(z)<0$ and this solution is real.
(3) Let $\Omega \subset \mathbb{C}$ be a bounded domain and $\left\{f_{j}\right\}$ be a sequence of holomorphic functions on Ω. Assume

$$
\int\left|f_{j}(z)\right|^{2} d z<C<\infty
$$

for some C that does not depend on j. Show that $\left\{f_{j}\right\}$ is a normal family, that is, every subsequence of $\left\{f_{j}\right\}$ has a convergent subsequence that converges uniformly on compact sets of Ω.
(4) Determine all complex analytic functions f on the unit disc which satisfy

$$
f^{\prime \prime}\left(\frac{1}{n}\right)+\pi f\left(\frac{1}{n}\right)=0
$$

for $n=2,3,4, \ldots$
(5) (a) Let f be an entire function that satisfies $\lim _{z \rightarrow \infty}|f(z)|=\infty$. Show that f is a polynomial.
(b) Let f and g be entire functions such that

$$
\lim _{z \rightarrow \infty} f(g(z))=\infty
$$

Show that both f and g are polynomials.

