PRELIMINARY EXAM IN ANALYSIS FALL 2018

INSTRUCTIONS:

(1) There are **three** parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.

- (1) (a) State the Dominated Convergence Theorem for Lebesgue measurable functions.
 - (b) Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on [0, 1] satisfying

$$0 \le f_n(x) \le \sin^{2n}(\pi x), \quad 0 \le x \le 1.$$

Show that $\int_0^1 f_n dx \to 0$ as $n \to \infty$.

(c) Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on \mathbb{R} satisfying

 $0 \le f_n(x) \le \sin^{2n}(\pi x), \quad x \in \mathbb{R}.$

Is it true that $\int f_n dx \to 0$ as $n \to \infty$? Explain your answer.

(2) Let $E \subset \mathbb{R}$ be Lebesgue measurable. For a fixed $c \in (0, 1)$ suppose that

$$m(E \cap (a,b)) \le c(b-a)$$

for every $a, b \in \mathbb{R}$ with a < b. Show that m(E) = 0.

Note: You may use without proof the fact that every open set in \mathbb{R} can be written as the countable disjoint union of open intervals.

(3) Let $0 < r < p < q < \infty$. For $f \ge 0$ in $L^p(\mathbb{R})$ show that f = g + h where $g \in L^r(\mathbb{R})$ and $h \in L^q(\mathbb{R})$. Moreover, show that given N > 0, g and h can be chosen so that

 $\|g\|_{r}^{r} \leq N^{r-p} \|f\|_{p}^{p}$, and $\|h\|_{q}^{q} \leq N^{q-p} \|f\|_{p}^{p}$.

Hint: consider the sets $\{f > N\}$ *and* $\{f \le N\}$ *.*

(4) Let (X, \mathcal{M}, μ) be a measure space.

(a) Show that if $\{E_k\}_{k=1}^{\infty} \subset \mathcal{M}$ satisfies $E_{k+1} \subset E_k$ for all k and $\mu(E_1) < \infty$ then $\mu(E) = \lim_{k \to \infty} \mu(E_k)$

$$\mu(E) = \lim_{k \to \infty} \mu(E_k)$$

where
$$E = \bigcap_{k=1}^{\infty} E_k$$
.

(b) Let ν be a **finite** measure on (X, \mathcal{M}) which is absolutely continuous with respect to μ (namely $\nu(E) = 0$ whenever $E \in \mathcal{M}$ with $\mu(E) = 0$). Show that for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ with $E \in \mathcal{M}$ implies $\nu(E) < \varepsilon$.

Hint: argue by contradiction and let $A_n \in \mathcal{M}$ *satisfy* $\mu(A_n) < 2^{-n}$ *and* $\nu(A_n) \ge \varepsilon$. Consider the decreasing sequence $E_k = \bigcup_{n > k} A_n$.

- (5) (a) Define what it means for a function $F : [a, b] \to \mathbb{R}$ to be absolutely continuous.
 - (b) Suppose that $F : [0,1] \to \mathbb{R}$ has the following properties:
 - (i) For every $\varepsilon > 0$, *F* is absolutely continuous on $[\varepsilon, 1]$.
 - (iii) F = G H where $G, H : [0,1] \rightarrow \mathbb{R}$ are increasing functions which are continuous at 0.

Show that *F* is absolutely continuous on [0, 1].

Part II. Functional Analysis

Do three of the following five problems.

- (1) Let $S(\mathbb{R})$ be the Schwartz space and let $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx$ be the Fourier transform of f. Define the 'periodization operator' $\mathcal{P} : S(\mathbb{R}) \to C(S^1)$ by $Pf(x) = 2\pi \sum_{n \in \mathbb{Z}} f(x + 2n\pi)$. Here, $S^1 \simeq [0, 2\pi]/(0 \sim 2\pi)$ is the unit circle $\mathbb{R}/2\pi\mathbb{Z}$.
 - (i) Show that $\mathcal{P}f \in C(S^1)$ if $f \in \mathcal{S}(\mathbb{R})$ (equivalently, that f is a periodic continuous function on \mathbb{R} of period 2π).
 - (ii) There is a second way to periodize (make periodic) $f \in S(\mathbb{R})$: Let $Qf(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n)e^{inx}$. Show that $\mathcal{P}f(x) = Qf(x)$.
- (2) Let $L^p(X, \mu)$ be the L^p space of a measure space.
 - Define 'weak convergence in *L*^{*p*}'.
 - Show that the L^p norm is weakly lower semi-continuous: If $f_j \rightharpoonup f$ (i.e. f_j tends to f weakly in L^p), then

$$\liminf_{j\to\infty}||f_j||_p\geq ||f||_p.$$

(Hint: recall the map $f \to |f|^{p-2}\bar{f}$.)

(3) Let *T* be the operator on $L^2[[0, 1], dx]$ defined by

$$Tf(x) = \int_0^x f(y) dy.$$

- (i) Show that *T* is compact.
- (ii) Show that 0 is in the spectrum of *T*, and in fact is in the spectrum of every compact operator on an infinite dimensional Hilbert space. (The spectrum of a bounded operator *T* is $\{\lambda \in C : (T \lambda) \text{ is not invertible as a bounded operator } \}$.
- (iii) Show that *T* has no eigenvalues.
- (4) Let *H* be a Hilbert space and let $T \in \mathcal{L}(H)$ be a bounded operator on *H*. Let Ran(T) be the range of *T*. Let T^* be the adjoint of *T*.
 - (i) Show that $H = \ker T \oplus \overline{\operatorname{Ran}T^*}$ where \oplus is orthogonal direct sum.
 - (ii) Give an example of a bounded operator *T* on *L*²[0, 1] such that Ran(T) is not closed (with proof).
 - (ii) Suppose that there exists C > 0 so that $||f|| \le C||Tf||$ for all f. Show that Ran(T) is closed.
- (5) Let *U* be a unitary operator on a Hilbert space *H*. Let

$$Pf := s - \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} U^k f,$$

where $s - \lim$ means the limit in L^2 (strong limit).

- (i) Let $H_U = \{v \in H : Uv = v\}$. Let $W = \{Uv v : v \in H\}$. Show that H_U is a closed subspace, that $H_U \perp W$ and that $P : W \rightarrow \{0\}$..
- (ii) Show that $H = \overline{H_U \oplus W}$. (Hint: If $f \perp W$, consider f Uf.)
- (iii) Show that the limit exists for every $f \in H$ and that *P* is an orthogonal projection. Onto what subspace?

Part III. Complex Analysis

Do three of the following five problems.

- (1) Without using Picard's theorem, show the following.
 - (a) Let $f : \mathbb{C} \to \mathbb{C}$ be a nonconstant entire function. Show that $f(\mathbb{C})$ is dense.
 - (b) Show that if *f* is entire and if there is a line *L* such that $f(\mathbb{C}) \cap L = \emptyset$ then *f* is constant.

- (2) Show that for every $\lambda > 1$, the equation $e^z z = \lambda$ has exactly one solution in the half-plane Re(z) < 0 and this solution is real.
- (3) Let $\Omega \subset \mathbb{C}$ be a bounded domain and $\{f_j\}$ be a sequence of holomorphic functions on Ω . Assume

$$\int |f_j(z)|^2 dz < C < \infty$$

for some *C* that does not depend on *j*. Show that $\{f_j\}$ is a normal family, that is, every subsequence of $\{f_j\}$ has a convergent subsequence that converges uniformly on compact sets of Ω .

(4) Determine all complex analytic functions f on the unit disc which satisfy

$$f''\left(\frac{1}{n}\right) + \pi f\left(\frac{1}{n}\right) = 0$$

for n = 2, 3, 4, ...

- (5) (a) Let *f* be an entire function that satisfies $\lim_{z\to\infty} |f(z)| = \infty$. Show that *f* is a polynomial.
 - (b) Let f and g be entire functions such that

$$\lim_{z\to\infty}f(g(z))=\infty.$$

Show that both f and g are polynomials.