Preliminary Exam in Analysis June 2018

INSTRUCTIONS:

(1) There are three parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.
(1) (a) State the Monotone Convergence Theorem for a σ-finite measure space (X, \mathcal{M}, μ).
(b) Show that if $\left\{f_{n}\right\}$ is an increasing sequence of nonpositive (i.e. $f_{n} \leq 0$) measurable functions with $\int_{X}\left|f_{1}\right|<\infty$ then

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} \lim _{n \rightarrow \infty} f_{n} d \mu
$$

(c) Show that the conclusion of (b) is false in general if the assumption $\int_{X}\left|f_{1}\right|<$ ∞ is dropped.
(2) Let f be a continuous function on $[0,1]$ and show that:

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) d x=f(1)
$$

(3) Let E be a Lebesgue measurable set in \mathbb{R}^{d} whose Lebesgue measure is finite. Fix $p>1$ and consider a sequence $\left\{f_{n}\right\}$ of functions in $L^{p}(E)$. Consider the following notions of convergence:
(i) $f_{n} \rightarrow f$ (strongly) in $L^{p}(E)$.
(ii) $f_{n} \rightarrow f$ (strongly) in $L^{1}(E)$.
(iii) $f_{n} \rightarrow f$ in measure on E.
(iv) $f_{n} \rightarrow f$ pointwise a.e. on E.

Show that (i) \Rightarrow (ii) \Rightarrow (iii). Does (iii) \Rightarrow (iv)?
(4) Let E be a Lebesgue measurable subset of $[0,1]$ of positive measure. Show that there exist $k, n \in \mathbb{N}$ and $x, y \in E$ satisfying $|x-y|=k / 2^{n}$.

Hint. Argue by contradiction and consider the sets $E+\frac{1}{2^{n}}$.
(5) (a) Define the total variation $T_{f}(a, b)$ of a function $f:[a, b] \rightarrow \mathbb{R}$.
(b) Show that if f is continuous on $[a, b]$ and continuously differentiable on (a, b) then $T_{f}(a, b) \leq \int_{a}^{b}\left|f^{\prime}\right| d x$.
(c) Show that if $r>s>0$ then the function

$$
f(x)= \begin{cases}x^{r} \sin \left(x^{-s}\right), & \text { for } 0<x \leq 1, \\ 0, & \text { if } x=0 .\end{cases}
$$

has bounded variation.

Part II. Functional Analysis

Do three of the following five problems.
(1) Let $T: H \rightarrow H$ be a non-trivial compact operator on an infinite dimensional Hilbert space. Let $0 \neq \lambda \in \mathbb{C}$.
(a) Show that if λ is not an eigenvalue of T then there exists $C>0$ so that $\|(T-\lambda) x\| \geq C\|x\|$ for all $x \in H$.
(b) Show that $(T-\lambda): H \rightarrow H$ is surjective.
(c) Conclude from (A)-(B) that $(T-\lambda)^{-1}$ is a bounded operator on H.
(2) Let $\phi \in C[0,1]$ and let $M_{\phi} f=\phi f$ be the corresponding multiplication operator on $C[0,1]$.
(a) Prove: Either M_{ϕ} is surjective or the range $M_{\phi} C[0,1]$ has first Baire category in $C[0,1]$.
(b) Find a necessary and sufficient condition that $M_{\phi} C[0,1]$ is of first Baire category.
(3) (a) Let $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Prove that $f * g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
(b) Let $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \phi(x) d x=1$. Let $\phi_{\epsilon}(x)=\frac{1}{\epsilon^{n}} \phi\left(\frac{x}{\epsilon}\right)$. Prove that $f * \phi_{\epsilon} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{n}\right)$ as $\epsilon \rightarrow 0$.
(4) Suppose that $f \in L^{p}(X, \mu)$ for some $p>0$ and that $\mu(X)=1$. Show that when $\log |f| \in L^{1}$ then $\lim _{q \rightarrow 0_{+}}\|f\|_{q}=\exp \left(\int_{X} \log |f| d \mu\right)$.
(5) Let $f \in L^{1}[0,1]$ but $f \notin L^{2}[0,1]$.
(a) Prove that the subspace $\left\{\psi \in L^{2}[0,1]: \int f \psi=0\right\}$ is dense in $L^{2}[0,1]$.
(b) Show that if S is a dense subspace of a Hilbert space H, then there exists an orthonormal basis H consisting of elements of S.
(c) Conclude that there exists an orthonormal basis $\left\{\phi_{n}\right\}$ of $L^{2}[0,1]$ so that $\phi_{n} \in$ $C([0,1])$ and $\int_{0}^{1} f \phi_{n} d x=0$ for all n.

Part III. Complex Analysis

Do three of the following five problems.
(1) Find explicitly a Riemann map (that is, a biholomophic bijection) of the open unit disk D onto each of the following domains:
(a) the upper half-plane minus a slit $\{z \in \mathbb{C}: \operatorname{Im} z>0\} \backslash\{z=i t, 0<t \leq T\}$,
(b) the strip $\{z \in \mathbb{C}:-1<\operatorname{Im} z<1\}$.
(2) In each item, determine all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ that satisfy
(a) $f(z+1)=f(z), \quad|f(z)| \leq e^{|z|}$.
(b) $f(z+1)=f(z), \quad f(z+1+i)=f(z)$.
(3) Let f be a holomorphic function in the unit disc D with $f(0)=f^{\prime}(0)=0$. Show that $g(z)=\sum_{n=1}^{\infty} f\left(\frac{z}{n}\right)$ defines an analytic function on D. Show that $g(z)=c f(z)$ for some constant $c \in \mathbb{R}$ if and only if $f(z)=\alpha z^{2}$ for some $\alpha \in \mathbb{C}$.
(4) Let $A:=\{z \in \mathbb{C}:-1<\operatorname{Im} z<1\}$. Consider the set of functions defined by
$\mathcal{S}=\{f: A \rightarrow \mathbb{C} \mid f$ holomorphic, $f(0)=0$, and $|f(z)|<1\}$.
Prove that

$$
\sup _{f \in \mathcal{S}}|f(1)|=\frac{e^{\pi / 2}-1}{e^{\pi / 2}+1}
$$

(5) Let $P(z)$ be a polynomial all of whose zeros lie in $\{z: \operatorname{Re} z \leq 0\}$. Prove that $P^{\prime}(z) \neq 0$ if $\operatorname{Re} z>0$. Also, show that if $P^{\prime}(z)=0$ for z with $\operatorname{Re} z=0$, then either z is a zero of order at least two of P or all zeros of P are on the imaginary axis.

