Preliminary Exam in Analysis Spring 2021

INSTRUCTIONS:

(1) There are three parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do three problems from each part.
(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do three of the following five problems.
Problem 1. This problem has two parts.
(a) State the three convergence theorems of Lebesgue integration theory: (1) the monotone convergence theorem; (2) Fatou's lemma; (3) the dominated convergence theorem.
(b) Let f be a nonnegative measurable function on a measure space (X, \mathscr{F}, μ). Show that

$$
\lim _{n \rightarrow \infty} \int_{X} n \log \left(1+\frac{f}{n}\right) d \mu=\int_{X} f d \mu
$$

Problem 2. Suppose that (X, \mathscr{F}, μ) is a measure space such that $\mu(X)<\infty$ and f a measurable function such that $f>0$ almost everywhere. Show that for any $\epsilon>0$ there is a $\delta>0$ such that $\int_{E} f d \mu \geq \delta$ for all $E \in \mathscr{F}$ such that $\mu(E) \geq \epsilon$.
Problem 3. Let f be a nonnegative measurable function. Then for $p \geq 1$,

$$
\int_{X} f^{p} d \mu=p \int_{0}^{\infty} \lambda^{p-1} \mu\{f \geq \lambda\} d \lambda
$$

Problem 4. Let $[a, b]$ be a finite interval. (a) State the definition of a function of bounded variation on the interval $[a, b]$. Let f be an integrable function on $[a, b]$ and

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Show that the total variation of F on $[a, b]$ is given by

$$
V(F)_{a}^{b}=\int_{a}^{b}|f(t)| d t .
$$

Problem 5. Let (X, \mathscr{F}, μ) and (Y, \mathscr{G}, v) be two measure spaces and f a nonnegative measurable function on $(X \times Y, \mathscr{F} \times \mathscr{G})$. Let $1 \leq p \leq \infty$. Show that

$$
\left\{\int_{X}\left[\int_{Y} f(x, y) \mu(d x)\right]^{p} v(d y)\right\}^{1 / p} \leq \int_{Y}\left[\int_{X} f(x, y)^{p} \mu(d x)\right]^{1 / p} v(d y) .
$$

Part II. Functional Analysis

Do three of the following five problems.
Problem 1. This problem has three parts.
(a) Let f and g be L^{∞} functions with compact support. Show that the convolution $f *$ $g \in C_{c}(\mathbb{R})$ (continuous functions of compact support). Hint: You might use that $C_{c}(\mathbb{R})$ is dense in $L^{1}(\mathbb{R})$).
(b) Let E be a bounded measurable subset of \mathbb{R} and χ_{E} its characteristic function (also called indicator function). Let $-E=\{-x: x \in E\}$ and let $E-E=\{x-y$: $x, y \in E\}$. Show that $\chi_{E} * \chi_{-E} \in C_{c}(\mathbb{R})$ and satisfies $\chi_{E} * \chi_{-E}(0)=m(E)$, and $\chi_{E} * \chi_{-E}(x)=0$ if $x \notin E-E$.
(c) Let F be a measurable subset of \mathbb{R} such that $m(F)>0$. Prove that $F-F$ contains some interval around 0 .

Problem 2. Let \mathcal{P} be the normed space of all polynomials on \mathbb{R} equipped with the norm $\|p\|=\max _{j}\left|\alpha_{j}\right|$ where α_{j} are the coefficients of $p=\sum_{j=1}^{N} \alpha_{j} x^{j}$ (where N is the degree of $p)$. Is $(\mathcal{P},\|\cdot\|)$ a Banach space?
Problem 3. Let $f \in \mathcal{S}(\mathbb{R})$ (Schwartz space) and assume that both (i) $f(n)=0$ for all $n \in \mathbb{Z}$ and (ii) $\hat{f}(2 \pi n)=0$ for all $n \in \mathbb{Z}$. Prove or disprove that $f \equiv 0$ (Hint: Use the Poisson summation formula).
Problem 4. Let $T: H \rightarrow H$ be a bounded self-adjoint operator on an infinite dimensional Hilbert space.
(a) Define the point spectrum $\sigma_{p p}(T)$, the continuous spectrum $\sigma_{c}(T)$ and the residual spectrum $\sigma_{r}(T)$.
(b) Suppose that T is compact, injective and self-adjoint. Show that $0 \in \sigma_{c}(T)$ (i.e. that $\operatorname{Ran}(T)$ is dense in $H)$.
(c) Suppose that T is bounded and self-ajdoint. Prove that

$$
\|T\|=\sup \{|\lambda|: \lambda \in \sigma(T)\} .
$$

Problem 5. Let $T: X \rightarrow Y$ be a compact operator between Banach spaces. Prove that for any $\epsilon>0$ there exists a finite dimensional subspace $M \subset \operatorname{Ran}(T)$ such that for all $x \in X$,

$$
\inf _{m \in M}\|T x-m\| \leqslant \epsilon\|x\| .
$$

Part III. Complex Analysis

Do three of the following five problems.
Problem 1. Let n be a positive integer and C the boundary of the unit disc centered at $z=0$ and oriented in the counterclockwise direction.
(a) Compute the contour integral

$$
\int_{C}\left(z-\frac{1}{z}\right)^{n} \frac{d z}{z}
$$

(b) Use the result in (a) to evaluate the real-variable integral

$$
\int_{0}^{2 \pi} \sin ^{n}(x) d x
$$

Problem 2. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ have radius of convergence $R \in(0, \infty)$. Show that there exists a point w with $|w|=R$ such that $f(z)$ cannot be analytically continued to any open set which contains w.
Problem 3. Let \mathcal{F} be a family of holomorphic functions on the open unit disk D. Suppose $\mathcal{F}^{\prime}:=\left\{f^{\prime}: f \in \mathcal{F}\right\}$ is a normal family and there exists a point $p \in D$ such that $\{f(p): f \in \mathcal{F}\}$ is bounded. Prove \mathcal{F} is a normal family.
Problem 4. An entire transcendental function is an entire function (that is, a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$) that is not a polynomial. Prove the following two assertions.
(a) Suppose $f(z)$ is an entire function. If there exist an integer $n \geqslant 1$ and a constant $C>0$ such that $\left.|f(z) \leqslant C| z\right|^{n}$ for all z, then $f(z)$ is a polynomial of degree less than or equal to n.
(b) An entire transcendental function comes arbitrarily close to every value $w \in \mathbb{C}$ outside every circle in the complex plane.
(b) Let $A_{R}=\{z:|z|>R\}$. If $f(z)$ is an entire transcendental function, then for every $R>0, f\left(A_{R}\right)$ is dense in C.
Problem 5. Determine the group of holomorphic bijections (automorphisms) of the set $|z|>1$, the complement of the closed unit disk.

