PRELIMINARY EXAM IN ANALYSIS SPRING 2021

INSTRUCTIONS:

(1) There are **three** parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do **three** of the following five problems.

Problem 1. This problem has two parts.

- (a) State the three convergence theorems of Lebesgue integration theory: (1) the monotone convergence theorem; (2) Fatou's lemma; (3) the dominated convergence theorem.
- (b) Let *f* be a nonnegative measurable function on a measure space (X, \mathscr{F}, μ) . Show that

$$\lim_{n\to\infty}\int_X n\log\left(1+\frac{f}{n}\right)\,d\mu=\int_X f\,d\mu.$$

Problem 2. Suppose that (X, \mathscr{F}, μ) is a measure space such that $\mu(X) < \infty$ and f a measurable function such that f > 0 almost everywhere. Show that for any $\epsilon > 0$ there is a $\delta > 0$ such that $\int_{F} f d\mu \ge \delta$ for all $E \in \mathscr{F}$ such that $\mu(E) \ge \epsilon$.

Problem 3. Let *f* be a nonnegative measurable function. Then for $p \ge 1$,

$$\int_X f^p \, d\mu = p \int_0^\infty \lambda^{p-1} \mu \left\{ f \ge \lambda \right\} \, d\lambda.$$

Problem 4. Let [a, b] be a finite interval. (a) State the definition of a function of bounded variation on the interval [a, b]. Let f be an integrable function on [a, b] and

$$F(x) = \int_{a}^{x} f(t) \, dt.$$

Show that the total variation of *F* on [a, b] is given by

$$V(F)_a^b = \int_a^b |f(t)| \, dt.$$

Problem 5. Let (X, \mathscr{F}, μ) and (Y, \mathscr{G}, ν) be two measure spaces and f a nonnegative measurable function on $(X \times Y, \mathscr{F} \times \mathscr{G})$. Let $1 \le p \le \infty$. Show that

$$\left\{\int_X \left[\int_Y f(x,y)\,\mu(dx)\right]^p\,\nu(dy)\right\}^{1/p} \leq \int_Y \left[\int_X f(x,y)^p\,\mu(dx)\right]^{1/p}\,\nu(dy).$$

Part II. Functional Analysis

Do three of the following five problems.

Problem 1. This problem has three parts.

- (a) Let f and g be L^{∞} functions with compact support. Show that the convolution $f * g \in C_c(\mathbb{R})$ (continuous functions of compact support). Hint: You might use that $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$).
- (b) Let *E* be a bounded measurable subset of \mathbb{R} and χ_E its characteristic function (also called indicator function). Let $-E = \{-x : x \in E\}$ and let $E E = \{x y : x, y \in E\}$. Show that $\chi_E * \chi_{-E} \in C_c(\mathbb{R})$ and satisfies $\chi_E * \chi_{-E}(0) = m(E)$, and $\chi_E * \chi_{-E}(x) = 0$ if $x \notin E E$.
- (c) Let *F* be a measurable subset of \mathbb{R} such that m(F) > 0. Prove that F F contains some interval around 0.

Problem 2. Let \mathcal{P} be the normed space of all polynomials on \mathbb{R} equipped with the norm $||p|| = \max_j |\alpha_j|$ where α_j are the coefficients of $p = \sum_{j=1}^N \alpha_j x^j$ (where *N* is the degree of *p*). Is $(\mathcal{P}, || \cdot ||)$ a Banach space?

Problem 3. Let $f \in S(\mathbb{R})$ (Schwartz space) and assume that both (i) f(n) = 0 for all $n \in \mathbb{Z}$ and (ii) $\hat{f}(2\pi n) = 0$ for all $n \in \mathbb{Z}$. Prove or disprove that $f \equiv 0$ (Hint: Use the Poisson summation formula).

Problem 4. Let $T : H \to H$ be a bounded self-adjoint operator on an infinite dimensional Hilbert space.

- (a) Define the point spectrum $\sigma_{pp}(T)$, the continuous spectrum $\sigma_c(T)$ and the residual spectrum $\sigma_r(T)$.
- (b) Suppose that *T* is compact, injective and self-adjoint. Show that $0 \in \sigma_c(T)$ (i.e. that Ran(T) is dense in *H*).
- (c) Suppose that *T* is bounded and self-ajdoint. Prove that

$$||T|| = \sup\{|\lambda| : \lambda \in \sigma(T)\}.$$

Problem 5. Let $T : X \to Y$ be a compact operator between Banach spaces. Prove that for any $\epsilon > 0$ there exists a finite dimensional subspace $M \subset \text{Ran}(T)$ such that for all $x \in X$,

$$\inf_{m\in M}||Tx-m||\leqslant \epsilon||x||.$$

Part III. Complex Analysis

Do **three** of the following five problems.

Problem 1. Let *n* be a positive integer and *C* the boundary of the unit disc centered at z = 0 and oriented in the counterclockwise direction.

(a) Compute the contour integral

$$\int_C \left(z - \frac{1}{z}\right)^n \frac{dz}{z}.$$

(b) Use the result in (a) to evaluate the real-variable integral

$$\int_0^{2\pi} \sin^n(x) \, dx.$$

Problem 2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence $R \in (0, \infty)$. Show that there exists a point w with |w| = R such that f(z) cannot be analytically continued to any open set which contains w.

Problem 3. Let \mathcal{F} be a family of holomorphic functions on the open unit disk D. Suppose $\mathcal{F}' := \{f' : f \in \mathcal{F}\}$ is a normal family and there exists a point $p \in D$ such that $\{f(p) : f \in \mathcal{F}\}$ is bounded. Prove \mathcal{F} is a normal family.

Problem 4. An *entire transcendental function* is an entire function (that is, a holomorphic function $f : \mathbb{C} \to \mathbb{C}$) that is not a polynomial. Prove the following two assertions.

- (a) Suppose f(z) is an entire function. If there exist an integer $n \ge 1$ and a constant C > 0 such that $|f(z) \le C|z|^n$ for all z, then f(z) is a polynomial of degree less than or equal to n.
- (b) An entire transcendental function comes arbitrarily close to every value $w \in \mathbb{C}$ outside every circle in the complex plane.
- (b) Let $A_R = \{z : |z| > R\}$. If f(z) is an entire transcendental function, then for every R > 0, $f(A_R)$ is dense in \mathbb{C} .

Problem 5. Determine the group of holomorphic bijections (automorphisms) of the set |z| > 1, the complement of the closed unit disk.