PRELIMINARY EXAM IN ANALYSIS SPRING 2013

INSTRUCTIONS:

(1) There are **three** parts to this exam: I (measure theory), II (functional analysis), and III (complex analysis). Do **three** problems from each part.

(2) In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I. Measure Theory

Do **three** of the following five problems.

- (1) State and prove Fatou's Lemma (you may use the monotone convergence theorem).
- (2) Show that, if $f : \mathbb{R} \to \mathbb{R}$ is measurable, then the set $\{x \in \mathbb{R} \mid m(f^{-1}(x)) > 0\}$ has measure zero.
- (3) Let $A_n \subset [0,1]$ be subsets of measure 1/2. Show that the set of points that are contained in infinitely many of the A_n 's has measure at least 1/2.
- (4) Let $\{f_n\} \subset L^1([0,1], dx)$. Suppose that $f_n \to f$ a.e. on [0,1]. Show: (a)

$$\int_0^1 |f_n| \to \int_0^1 |f| dx \implies ||f_n - f||_{L^1[0,1]} \to 0.$$

(b) Also construct an example where $f_n \to 0$ a.e. but $\int |f_n| dx$ does not converge to zero.

Hint: Think about $h_n(x) = \frac{|f(x)| + |f_n(x)|}{2} - \left| \frac{f_n(x) - f(x)}{2} \right|$.

- (5) Let (Ω, μ) be a measure space and let f ∈ L[∞](X, μ) be a positive measurable bounded function. Let ν be a measure on [0, ∞] and let φ(t) = ν[0, t). Consider the distribution function μ{x ∈ X : f(x) > t} of f. Prove the formulae:
 (a) ∫_Ωφ(f(x))dμ(x) = ∫₀[∞] μ{f > t}dν(t).
 - (b) $f(x) = \int_0^\infty \chi_{\{y: f(y) > t\}}(x) dt.$

Here, χ_E is the characteristic (indicator function) of *E*.

Part II. Functional Analysis

Do **three** of the following five problems.

(1) Let $g \in L^1(\mathbb{R}, dx)$ satisfy $\int_{\mathbb{R}} g(x) dx = 1$. Calculate

$$\lim_{n \to \infty} \int_{\mathbb{R}} g(x) \sin^2(nx) dx$$

and prove that your answer is correct.

- (2) Let $1 , let <math>\{u_n\}_{n=1}^{\infty} \subset L^p(X,\mu)$, $\{v_n\}_{n=1}^{\infty} \subset L^q(X,\mu)$ be two sequences with $\frac{1}{p} + \frac{1}{q} = 1$. Suppose that $u_n \to u$ weakly in L^p and $v_n \to v$ strongly in L^q . Prove
 - $\{u_n\}$ is a bounded family in L^p .
 - that $u_n v_n \rightarrow uv$ weakly in L^1 .
- (3) Suppose that $T, U \in \mathcal{L}(H)$ are bounded linear operators on a Hilbert space H, with U unitary. Suppose that ||T U|| < 1. Show that T is invertible. (Here, $|| \cdot ||$ is the operator norm.)
- (4) Suppose that *K* is a self-adjoint compact operator on a Hilbert space *H*, and suppose that *K* is positive in the sense that $\langle Kf, f \rangle \ge 0$ for all $f \in H$. Suppose that Kf = g and Kg = f. Show that f = g.
- (5) Let C[0,1] be the continuous functions on [01,] equipped with the sup norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Let $C^1[0,1] \subset C[0,1]$ be the C^1 functions (one continuous derivative), viewed as a subspace of $(C[0,1], || \cdot |_{\infty})$
 - (a) Show that $\frac{d}{dx}$: $(C^1[0,1], || \cdot ||_{\infty} \to C^0[0,1],)$ has a closed graph but is not a bounded linear operator.
 - (b) Why does this not contradict the closed graph theorem? Prove that your answer is correct.

Part III. Complex Analysis

Do **three** of the following five problems.

(1) Show that there exists a well-defined branch of the logarithm Logz in the disc $|z - 1 - i| = \frac{5}{4}$ centered at 1 + i. Then calculate

$$\int_{|z-1-i|=\frac{5}{4}} \frac{\text{Log}z}{(z-1)^2} dz$$

(2) Is the punctured plane C\{0} conformally equivalent (i.e. biholomorphic) to the punctured unit disc D\{0} (D is the open unit disc; i.e {*z* : 0 < |*z*| < 1}. Prove that your answer is correct.</p>

- (3) You may want to recall the hyperbolic pseudo-distance function on the unit disc: $\rho(z, w) = \left| \frac{z - w}{1 - \overline{w}z} \right|.$
 - (a) Let $a, b \in \mathbb{D}$. Does there exist an automorphism $f : D \to D$ of the unit disc to itself satisfying f(a) = b and and f(b) = a? Prove that your answer is correct.
 - (b) Let $a_1, a_2, b_1, b_2 \in \mathbb{D}$. Give a necessary and sufficient condition for the existence of an automorphism g (a composition of a Moebius transformation $B_{\alpha}(z) = \frac{z-\alpha}{1-\bar{\alpha}z}$ or a rotation $T_{\theta} = e^{i\theta}$) such that $g(a_1) = b_1, g(a_2) = b_2$?
- (4) How many zeros does $z^9 + z^5 8z^3 + 2z + 1$ have between the circles $\{|z| = 1\}$ and $\{|z| = 2\}$
- (5) Let *f* be analytic in the open unit disc \mathbb{D} and suppose its zeros are $\{a_1, \ldots, a_n\}$, and that it has no zeros on $\partial \mathbb{D}$. Let $M = \sup_{z \in \mathbb{D}} |f(z)|$. Show that for |z| < 1,

$$|f(z)| \le M \prod_{j=1}^{n} \frac{|z-a_j|}{|1-\bar{a}_j z|}.$$