ANALYSIS PRELIMINARY EXAM, SEPTEMBER 2010.

Part I. Do three of the following five problems

- (1) (a) State Fatou's lemma and the monotone convergence theorem.
 - (b) Show that the inequality in Fatou's lemma may be strict.
 - (c) Show that the monotone convergence theorem need not hold for *decreasing* sequences of functions.
- (2) Let $\{f_n\}$ be a sequence of Lebesgue measurable functions defined on a measurable set $E \subset \mathbb{R}$. Define E_0 to be the set of points x in E such that $\lim_{n\to\infty} f_n(x)$ exists and is finite. Prove that E_0 is measurable.
- (3) Assume that $f \in L^2([0,1])$ and define

$$g(x) = \frac{1}{x} \int_0^x f(s) \, ds.$$

Show that $g \in L^2[0, 1]$ and $||g||_2 \le 2||f||_2$.

(4) Let (X, \mathscr{A}, μ) and (Y, \mathscr{B}, ν) be σ -finite measure spaces, and let $f \in L^1(X \times Y, \mathscr{A} \otimes \mathscr{B}, \mu \times \nu)$. Suppose that for μ -a.e. $x \in X$:

$$\int_{Y} \left| f(x,y) - \int_{X} f(w,y) \, d\mu(w) \right| \, d\nu(y) = 0,$$

and for ν -a.e. $y \in Y$:

$$\int_X \left| f(x,y) - \int_Y f(x,z) \, d\nu(z) \right| \, d\mu(x) = 0.$$

Prove that *f* is $(\mu \times \nu)$ - a.e. equal to a constant function.

(5) Let $f \in L^1(X, d\mu)$ and consider the measure $\nu = f d\mu$. Show that for any $\epsilon > 0$ there is a $\delta > 0$ with the following property: for any measurable set $E \subset X$ such that $\mu(E) \leq \delta$ we have $|\nu(E)| \leq \epsilon$.

Part II. Do three of the following four problems.

- (1) Is the unit ball of $L^1(X, \mu)$ weakly compact? If yes, prove it. If not, find a counterexample.
- (2) Suppose that *A* is a linear operator defined everywhere on a Hilbert space *H* satisfying $\langle Av, w \rangle = \langle v, Aw \rangle$ for all $v, w \in H$. Show that *A* is continuous.
- (3) Let χ be the characteristic function of the rational numbers in [0, 1] (one on the rationals, zero on the irrationals). Does there exist a sequence {*f_n*} of continuous functions on [0, 1] that converges pointwise to χ?
- (4) Suppose that $\{\mu_n\}$ is a sequence of measures on S^1 and that $\mu_n \to \mu = d\theta$ (Lebesgue measure) in the weak* topology. Does it follow that $\mu_n(E) \to \mu(E)$ for any Borel set $E \subset S^1$? If yes, prove it. If not, find a counterexample.

Part III. Do **three** of the following four problems.

(1) How many zeroes (counting multiplicity) does $\sin(z) + 2iz^2$ have inside the rectangle

$$\left\{z: |\operatorname{Re}(z)| < \frac{\pi}{2}, |\operatorname{Im}(z)| \le 1\right\}?$$

(2) Let *f* be a meromorphic function on the complex plane C. Suppose that for every polynomial *p*(*z*) and every closed contour Γ avoiding the poles of *f* we have

$$\int_{\Gamma} p(z) f(z)^2 \, dz = 0.$$

Prove that *f* is entire.

- (3) Find explicitly a Riemann map (that is, a biholomophic bijection) of the unit disk \mathbb{D} onto each of the following domains:
 - (a) the extended plane \hat{C} minus the segment [-1, 1];
 - (b) the strip 0 < Im(z) < 1;
 - (c) the first quadrant;
 - (d) the intersection of the unit disk with the upper half plane.
- (4) The Fourier transform of a function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$\hat{f}(z) = \int_{-\infty}^{\infty} f(x) e^{-ixz} dx.$$

Does there exist a function $f \in C_c(\mathbb{R})$ (continuous with compact support) such that $\hat{f} \in C_c(\mathbb{R})$? (Hint: Use complex analysis. You do not need any prior knowledge of the Fourier transform).