PRELIMINARY EXAM IN ALGEBRA FALL 2018 Solve all of the following problems. Each question is worth 1/2 point.

- (1) Suppose that $R \subset S \subset T$ are commutative rings, that *T* is integral over *S*, and that *S* is integral over *R*. Is it true that *T* is integral over *R*? Prove or give a counterexample.
- (2) Fix a positive integer *n*. Let \mathcal{F} be the functor from abelian groups to abelian groups taking a group *G* to G/nG. Compute the left derived functors $L_i\mathcal{F}(G)$ for every finitely generated abelian group *G*.
- (3) Suppose *G* is a finite group that acts on a finite set *X*. For $g \in G$, let X^g be the set of fixed points of *g* in *X*. For $k \in \{1, 2\}$ show that the action is *k*-transitive iff

$$\frac{1}{|G|}\sum_{g\in G}|X^g|^k=k.$$

- (4) Suppose that $F \subset K$ is a Galois extension, and that $F \subset L_1, \ldots, L_n \subset K$ are intermediate Galois extensions. Identify $\operatorname{Gal}(K/L_i)$ as a subgroup of $\operatorname{Gal}(K/F)$. Prove that $\operatorname{Gal}(K/F) = \langle \operatorname{Gal}(K/L_1), \ldots, \operatorname{Gal}(K/L_n) \rangle$ if and only if $L_1 \cap \cdots \cap L_n = F$.
- (5) What is the degree of the splitting field of $X^4 + 3$ over Q?
- (6) Let *G* be a *p*-group and $N \triangleleft G$ a nontrivial normal subgroup. Prove that $N \cap Z(G) \neq \{1\}$.